modified: diffout.py
[GalaxyCodeBases.git] / c_cpp / etc / calc / zmath.c
blob827dd523a8f67a958501c37e34b8ff9338b0bdc6
1 /*
2 * zmath - extended precision integral arithmetic primitives
4 * Copyright (C) 1999-2007 David I. Bell and Ernest Bowen
6 * Primary author: David I. Bell
8 * Calc is open software; you can redistribute it and/or modify it under
9 * the terms of the version 2.1 of the GNU Lesser General Public License
10 * as published by the Free Software Foundation.
12 * Calc is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
15 * Public License for more details.
17 * A copy of version 2.1 of the GNU Lesser General Public License is
18 * distributed with calc under the filename COPYING-LGPL. You should have
19 * received a copy with calc; if not, write to Free Software Foundation, Inc.
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 * @(#) $Revision: 30.1 $
23 * @(#) $Id: zmath.c,v 30.1 2007/03/16 11:09:46 chongo Exp $
24 * @(#) $Source: /usr/local/src/bin/calc/RCS/zmath.c,v $
26 * Under source code control: 1990/02/15 01:48:28
27 * File existed as early as: before 1990
29 * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
33 #include <stdio.h>
34 #include "zmath.h"
36 HALF _zeroval_[] = { 0 };
37 HALF _oneval_[] = { 1 };
38 HALF _twoval_[] = { 2 };
39 HALF _threeval_[] = { 3 };
40 HALF _fourval_[] = { 4 };
41 HALF _fiveval_[] = { 5 };
42 HALF _sixval_[] = { 6 };
43 HALF _sevenval_[] = { 7 };
44 HALF _eightval_[] = { 8 };
45 HALF _nineval_[] = { 9 };
46 HALF _tenval_[] = { 10 };
47 HALF _elevenval_[] = { 11 };
48 HALF _twelveval_[] = { 12 };
49 HALF _thirteenval_[] = { 13 };
50 HALF _fourteenval_[] = { 14 };
51 HALF _fifteenval_[] = { 15 };
52 HALF _sixteenval_[] = { 16 };
53 HALF _seventeenval_[] = { 17 };
54 HALF _eightteenval_[] = { 18 };
55 HALF _nineteenval_[] = { 19 };
56 HALF _twentyval_[] = { 20 };
57 HALF _sqbaseval_[] = { 0, 1 };
58 HALF _pow4baseval_[] = { 0, 0, 1 };
59 HALF _pow8baseval_[] = { 0, 0, 0, 0, 1 };
61 ZVALUE zconst[] = {
62 { _zeroval_, 1, 0}, { _oneval_, 1, 0}, { _twoval_, 1, 0},
63 { _threeval_, 1, 0}, { _fourval_, 1, 0}, { _fiveval_, 1, 0},
64 { _sixval_, 1, 0}, { _sevenval_, 1, 0}, { _eightval_, 1, 0},
65 { _nineval_, 1, 0}, { _tenval_, 1, 0}, { _elevenval_, 1, 0},
66 { _twelveval_, 1, 0}, { _thirteenval_, 1, 0}, { _fourteenval_, 1, 0},
67 { _fifteenval_, 1, 0}, { _sixteenval_, 1, 0}, { _seventeenval_, 1, 0},
68 { _eightteenval_, 1, 0}, { _nineteenval_, 1, 0}, { _twentyval_, 1, 0}
71 ZVALUE _zero_ = { _zeroval_, 1, 0};
72 ZVALUE _one_ = { _oneval_, 1, 0 };
73 ZVALUE _two_ = { _twoval_, 1, 0 };
74 ZVALUE _ten_ = { _tenval_, 1, 0 };
75 ZVALUE _sqbase_ = { _sqbaseval_, 2, 0 };
76 ZVALUE _pow4base_ = { _pow4baseval_, 4, 0 };
77 ZVALUE _pow8base_ = { _pow8baseval_, 4, 0 };
78 ZVALUE _neg_one_ = { _oneval_, 1, 1 };
81 * 2^64 as a ZVALUE
83 #if BASEB == 32
84 ZVALUE _b32_ = { _sqbaseval_, 2, 0 };
85 ZVALUE _b64_ = { _pow4baseval_, 3, 0 };
86 #elif BASEB == 16
87 ZVALUE _b32_ = { _pow4baseval_, 3, 0 };
88 ZVALUE _b64_ = { _pow8baseval_, 5, 0 };
89 #else
90 -=@=- BASEB not 16 or 32 -=@=-
91 #endif
95 * highhalf[i] - masks off the upper i bits of a HALF
96 * rhighhalf[i] - masks off the upper BASEB-i bits of a HALF
97 * lowhalf[i] - masks off the upper i bits of a HALF
98 * rlowhalf[i] - masks off the upper BASEB-i bits of a HALF
99 * bitmask[i] - (1 << i) for 0 <= i <= BASEB*2
101 HALF highhalf[BASEB+1] = {
102 #if BASEB == 32
103 0x00000000,
104 0x80000000, 0xC0000000, 0xE0000000, 0xF0000000,
105 0xF8000000, 0xFC000000, 0xFE000000, 0xFF000000,
106 0xFF800000, 0xFFC00000, 0xFFE00000, 0xFFF00000,
107 0xFFF80000, 0xFFFC0000, 0xFFFE0000, 0xFFFF0000,
108 0xFFFF8000, 0xFFFFC000, 0xFFFFE000, 0xFFFFF000,
109 0xFFFFF800, 0xFFFFFC00, 0xFFFFFE00, 0xFFFFFF00,
110 0xFFFFFF80, 0xFFFFFFC0, 0xFFFFFFE0, 0xFFFFFFF0,
111 0xFFFFFFF8, 0xFFFFFFFC, 0xFFFFFFFE, 0xFFFFFFFF
112 #elif BASEB == 16
113 0x0000,
114 0x8000, 0xC000, 0xE000, 0xF000,
115 0xF800, 0xFC00, 0xFE00, 0xFF00,
116 0xFF80, 0xFFC0, 0xFFE0, 0xFFF0,
117 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF
118 #else
119 -=@=- BASEB not 16 or 32 -=@=-
120 #endif
122 HALF rhighhalf[BASEB+1] = {
123 #if BASEB == 32
124 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFC, 0xFFFFFFF8,
125 0xFFFFFFF0, 0xFFFFFFE0, 0xFFFFFFC0, 0xFFFFFF80,
126 0xFFFFFF00, 0xFFFFFE00, 0xFFFFFC00, 0xFFFFF800,
127 0xFFFFF000, 0xFFFFE000, 0xFFFFC000, 0xFFFF8000,
128 0xFFFF0000, 0xFFFE0000, 0xFFFC0000, 0xFFF80000,
129 0xFFF00000, 0xFFE00000, 0xFFC00000, 0xFF800000,
130 0xFF000000, 0xFE000000, 0xFC000000, 0xF8000000,
131 0xF0000000, 0xE0000000, 0xC0000000, 0x80000000,
132 0x00000000
133 #elif BASEB == 16
134 0xFFFF, 0xFFFE, 0xFFFC, 0xFFF8,
135 0xFFF0, 0xFFE0, 0xFFC0, 0xFF80,
136 0xFF00, 0xFE00, 0xFC00, 0xF800,
137 0xF000, 0xE000, 0xC000, 0x8000,
138 0x0000
139 #else
140 -=@=- BASEB not 16 or 32 -=@=-
141 #endif
143 HALF lowhalf[BASEB+1] = {
144 0x0,
145 0x1, 0x3, 0x7, 0xF,
146 0x1F, 0x3F, 0x7F, 0xFF,
147 0x1FF, 0x3FF, 0x7FF, 0xFFF,
148 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF
149 #if BASEB == 32
150 ,0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF,
151 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF,
152 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF,
153 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF
154 #endif
156 HALF rlowhalf[BASEB+1] = {
157 #if BASEB == 32
158 0xFFFFFFFF, 0x7FFFFFFF, 0x3FFFFFFF, 0x1FFFFFFF,
159 0xFFFFFFF, 0x7FFFFFF, 0x3FFFFFF, 0x1FFFFFF,
160 0xFFFFFF, 0x7FFFFF, 0x3FFFFF, 0x1FFFFF,
161 0xFFFFF, 0x7FFFF, 0x3FFFF, 0x1FFFF,
162 #endif
163 0xFFFF, 0x7FFF, 0x3FFF, 0x1FFF,
164 0xFFF, 0x7FF, 0x3FF, 0x1FF,
165 0xFF, 0x7F, 0x3F, 0x1F,
166 0xF, 0x7, 0x3, 0x1,
169 HALF bitmask[(2*BASEB)+1] = {
170 #if BASEB == 32
171 0x00000001, 0x00000002, 0x00000004, 0x00000008,
172 0x00000010, 0x00000020, 0x00000040, 0x00000080,
173 0x00000100, 0x00000200, 0x00000400, 0x00000800,
174 0x00001000, 0x00002000, 0x00004000, 0x00008000,
175 0x00010000, 0x00020000, 0x00040000, 0x00080000,
176 0x00100000, 0x00200000, 0x00400000, 0x00800000,
177 0x01000000, 0x02000000, 0x04000000, 0x08000000,
178 0x10000000, 0x20000000, 0x40000000, 0x80000000,
179 0x00000001, 0x00000002, 0x00000004, 0x00000008,
180 0x00000010, 0x00000020, 0x00000040, 0x00000080,
181 0x00000100, 0x00000200, 0x00000400, 0x00000800,
182 0x00001000, 0x00002000, 0x00004000, 0x00008000,
183 0x00010000, 0x00020000, 0x00040000, 0x00080000,
184 0x00100000, 0x00200000, 0x00400000, 0x00800000,
185 0x01000000, 0x02000000, 0x04000000, 0x08000000,
186 0x10000000, 0x20000000, 0x40000000, 0x80000000,
187 0x00000001
188 #elif BASEB == 16
189 0x0001, 0x0002, 0x0004, 0x0008,
190 0x0010, 0x0020, 0x0040, 0x0080,
191 0x0100, 0x0200, 0x0400, 0x0800,
192 0x1000, 0x2000, 0x4000, 0x8000,
193 0x0001, 0x0002, 0x0004, 0x0008,
194 0x0010, 0x0020, 0x0040, 0x0080,
195 0x0100, 0x0200, 0x0400, 0x0800,
196 0x1000, 0x2000, 0x4000, 0x8000,
197 0x0001
198 #else
199 -=@=- BASEB not 16 or 32 -=@=-
200 #endif
201 }; /* actual rotation thru 8 cycles */
203 BOOL _math_abort_; /* nonzero to abort calculations */
207 * popcnt - popcnt[x] number of 1 bits in 0 <= x < 256
209 char popcnt[256] = {
210 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
211 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
212 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
213 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
214 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
215 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
216 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
217 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
218 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
219 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
220 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
221 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
222 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
223 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
224 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
225 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
230 #ifdef ALLOCTEST
231 STATIC long nalloc = 0;
232 STATIC long nfree = 0;
233 #endif
236 HALF *
237 alloc(LEN len)
239 HALF *hp;
241 if (_math_abort_) {
242 math_error("Calculation aborted");
243 /*NOTREACHED*/
245 hp = (HALF *) malloc((len+1) * sizeof(HALF));
246 if (hp == 0) {
247 math_error("Not enough memory");
248 /*NOTREACHED*/
250 #ifdef ALLOCTEST
251 ++nalloc;
252 #endif
253 return hp;
257 #ifdef ALLOCTEST
258 void
259 freeh(HALF *h)
261 if ((h != _zeroval_) && (h != _oneval_)) {
262 free(h);
263 ++nfree;
268 void
269 allocStat(void)
271 fprintf(stderr, "nalloc: %ld nfree: %ld kept: %ld\n",
272 nalloc, nfree, nalloc - nfree);
274 #endif
278 * Convert a normal integer to a number.
280 void
281 itoz(long i, ZVALUE *res)
283 long diddle, len;
285 res->len = 1;
286 res->sign = 0;
287 diddle = 0;
288 if (i == 0) {
289 res->v = _zeroval_;
290 return;
292 if (i < 0) {
293 res->sign = 1;
294 i = -i;
295 if (i < 0) { /* fix most negative number */
296 diddle = 1;
297 i--;
300 if (i == 1) {
301 res->v = _oneval_;
302 return;
304 len = 1 + (((FULL) i) >= BASE);
305 res->len = (LEN)len;
306 res->v = alloc((LEN)len);
307 res->v[0] = (HALF) (i + diddle);
308 if (len == 2)
309 res->v[1] = (HALF) (i / BASE);
314 * Convert a number to a normal integer, as far as possible.
315 * If the number is out of range, the largest number is returned.
317 long
318 ztoi(ZVALUE z)
320 long i;
322 if (zgtmaxlong(z)) {
323 i = MAXLONG;
324 return (z.sign ? -i : i);
326 i = ztolong(z);
327 return (z.sign ? -i : i);
332 * Convert a normal unsigned integer to a number.
334 void
335 utoz(FULL i, ZVALUE *res)
337 long len;
339 res->len = 1;
340 res->sign = 0;
341 if (i == 0) {
342 res->v = _zeroval_;
343 return;
345 if (i == 1) {
346 res->v = _oneval_;
347 return;
349 len = 1 + (((FULL) i) >= BASE);
350 res->len = (LEN)len;
351 res->v = alloc((LEN)len);
352 res->v[0] = (HALF)i;
353 if (len == 2)
354 res->v[1] = (HALF) (i / BASE);
359 * Convert a normal signed integer to a number.
361 void
362 stoz(SFULL i, ZVALUE *res)
364 long diddle, len;
366 res->len = 1;
367 res->sign = 0;
368 diddle = 0;
369 if (i == 0) {
370 res->v = _zeroval_;
371 return;
373 if (i < 0) {
374 res->sign = 1;
375 i = -i;
376 if (i < 0) { /* fix most negative number */
377 diddle = 1;
378 i--;
381 if (i == 1) {
382 res->v = _oneval_;
383 return;
385 len = 1 + (((FULL) i) >= BASE);
386 res->len = (LEN)len;
387 res->v = alloc((LEN)len);
388 res->v[0] = (HALF) (i + diddle);
389 if (len == 2)
390 res->v[1] = (HALF) (i / BASE);
395 * Convert a number to a unsigned normal integer, as far as possible.
396 * If the number is out of range, the largest number is returned.
397 * The absolute value of z is converted.
399 FULL
400 ztou(ZVALUE z)
402 if (z.len > 2) {
403 return MAXUFULL;
405 return ztofull(z);
410 * Convert a number to a signed normal integer, as far as possible.
412 * If the number is too large to fit into an integer, than the largest
413 * positive or largest negative integer is returned depending on the sign.
415 SFULL
416 ztos(ZVALUE z)
418 FULL val; /* absolute value of the return value */
420 /* negative value processing */
421 if (z.sign) {
422 if (z.len > 2) {
423 return MINSFULL;
425 val = ztofull(z);
426 if (val > TOPFULL) {
427 return MINSFULL;
429 return (SFULL)(-val);
432 /* positive value processing */
433 if (z.len > 2) {
434 return (SFULL)MAXFULL;
436 val = ztofull(z);
437 if (val > MAXFULL) {
438 return (SFULL)MAXFULL;
440 return (SFULL)val;
445 * Make a copy of an integer value
447 void
448 zcopy(ZVALUE z, ZVALUE *res)
450 res->sign = z.sign;
451 res->len = z.len;
452 if (zisabsleone(z)) { /* zero or plus or minus one are easy */
453 res->v = (z.v[0] ? _oneval_ : _zeroval_);
454 return;
456 res->v = alloc(z.len);
457 zcopyval(z, *res);
462 * Add together two integers.
464 void
465 zadd(ZVALUE z1, ZVALUE z2, ZVALUE *res)
467 ZVALUE dest;
468 HALF *p1, *p2, *pd;
469 long len;
470 FULL carry;
471 SIUNION sival;
473 if (z1.sign && !z2.sign) {
474 z1.sign = 0;
475 zsub(z2, z1, res);
476 return;
478 if (z2.sign && !z1.sign) {
479 z2.sign = 0;
480 zsub(z1, z2, res);
481 return;
483 if (z2.len > z1.len) {
484 pd = z1.v; z1.v = z2.v; z2.v = pd;
485 len = z1.len; z1.len = z2.len; z2.len = (LEN)len;
487 dest.len = z1.len + 1;
488 dest.v = alloc(dest.len);
489 dest.sign = z1.sign;
490 carry = 0;
491 pd = dest.v;
492 p1 = z1.v;
493 p2 = z2.v;
494 len = z2.len;
495 while (len--) {
496 sival.ivalue = ((FULL) *p1++) + ((FULL) *p2++) + carry;
497 /* ignore Saber-C warning #112 - get ushort from uint */
498 /* ok to ignore on name zadd`sival */
499 *pd++ = sival.silow;
500 carry = sival.sihigh;
502 len = z1.len - z2.len;
503 while (len--) {
504 sival.ivalue = ((FULL) *p1++) + carry;
505 *pd++ = sival.silow;
506 carry = sival.sihigh;
508 *pd = (HALF)carry;
509 zquicktrim(dest);
510 *res = dest;
515 * Subtract two integers.
517 void
518 zsub(ZVALUE z1, ZVALUE z2, ZVALUE *res)
520 register HALF *h1, *h2, *hd;
521 long len1, len2;
522 FULL carry;
523 SIUNION sival;
524 ZVALUE dest;
526 if (z1.sign != z2.sign) {
527 z2.sign = z1.sign;
528 zadd(z1, z2, res);
529 return;
531 len1 = z1.len;
532 len2 = z2.len;
533 if (len1 == len2) {
534 h1 = z1.v + len1;
535 h2 = z2.v + len2;
536 while ((len1 > 0) && ((FULL)*--h1 == (FULL)*--h2)) {
537 len1--;
539 if (len1 == 0) {
540 *res = _zero_;
541 return;
543 len2 = len1;
544 carry = ((FULL)*h1 < (FULL)*h2);
545 } else {
546 carry = (len1 < len2);
548 dest.sign = z1.sign;
549 h1 = z1.v;
550 h2 = z2.v;
551 if (carry) {
552 carry = len1;
553 len1 = len2;
554 len2 = (long)carry;
555 h1 = z2.v;
556 h2 = z1.v;
557 dest.sign = !dest.sign;
559 hd = alloc((LEN)len1);
560 dest.v = hd;
561 dest.len = (LEN)len1;
562 len1 -= len2;
563 carry = 0;
564 while (--len2 >= 0) {
565 /* ignore Saber-C warning #112 - get ushort from uint */
566 /* ok to ignore on name zsub`sival */
567 sival.ivalue = (BASE1 - ((FULL) *h1++)) + *h2++ + carry;
568 *hd++ = (HALF)(BASE1 - sival.silow);
569 carry = sival.sihigh;
571 while (--len1 >= 0) {
572 sival.ivalue = (BASE1 - ((FULL) *h1++)) + carry;
573 *hd++ = (HALF)(BASE1 - sival.silow);
574 carry = sival.sihigh;
576 if (hd[-1] == 0)
577 ztrim(&dest);
578 *res = dest;
583 * Multiply an integer by a small number.
585 void
586 zmuli(ZVALUE z, long n, ZVALUE *res)
588 register HALF *h1, *sd;
589 FULL low;
590 FULL high;
591 FULL carry;
592 long len;
593 SIUNION sival;
594 ZVALUE dest;
596 if ((n == 0) || ziszero(z)) {
597 *res = _zero_;
598 return;
600 if (n < 0) {
601 n = -n;
602 z.sign = !z.sign;
604 if (n == 1) {
605 zcopy(z, res);
606 return;
608 #if LONG_BITS > BASEB
609 low = ((FULL) n) & BASE1;
610 high = ((FULL) n) >> BASEB;
611 #else
612 low = (FULL)n;
613 high = 0;
614 #endif
615 dest.len = z.len + 2;
616 dest.v = alloc(dest.len);
617 dest.sign = z.sign;
619 * Multiply by the low digit.
621 h1 = z.v;
622 sd = dest.v;
623 len = z.len;
624 carry = 0;
625 while (len--) {
626 /* ignore Saber-C warning #112 - get ushort from uint */
627 /* ok to ignore on name zmuli`sival */
628 sival.ivalue = ((FULL) *h1++) * low + carry;
629 *sd++ = sival.silow;
630 carry = sival.sihigh;
632 *sd = (HALF)carry;
634 * If there was only one digit, then we are all done except
635 * for trimming the number if there was no last carry.
637 if (high == 0) {
638 dest.len--;
639 if (carry == 0)
640 dest.len--;
641 *res = dest;
642 return;
645 * Need to multiply by the high digit and add it into the
646 * previous value. Clear the final word of rubbish first.
648 *(++sd) = 0;
649 h1 = z.v;
650 sd = dest.v + 1;
651 len = z.len;
652 carry = 0;
653 while (len--) {
654 sival.ivalue = ((FULL) *h1++) * high + ((FULL) *sd) + carry;
655 *sd++ = sival.silow;
656 carry = sival.sihigh;
658 *sd = (HALF)carry;
659 zquicktrim(dest);
660 *res = dest;
665 * Divide two numbers by their greatest common divisor.
666 * This is useful for reducing the numerator and denominator of
667 * a fraction to its lowest terms.
669 void
670 zreduce(ZVALUE z1, ZVALUE z2, ZVALUE *z1res, ZVALUE *z2res)
672 ZVALUE tmp;
674 if (zisabsleone(z1) || zisabsleone(z2))
675 tmp = _one_;
676 else
677 zgcd(z1, z2, &tmp);
678 if (zisunit(tmp)) {
679 zcopy(z1, z1res);
680 zcopy(z2, z2res);
681 } else {
682 zequo(z1, tmp, z1res);
683 zequo(z2, tmp, z2res);
685 zfree(tmp);
691 * Compute the quotient and remainder for division of an integer by an
692 * integer, rounding criteria determined by rnd. Returns the sign of
693 * the remainder.
695 long
696 zdiv(ZVALUE z1, ZVALUE z2, ZVALUE *quo, ZVALUE *rem, long rnd)
698 register HALF *a, *b;
699 HALF s, u;
700 HALF *A, *B, *a1, *b0;
701 FULL f, g, h, x;
702 BOOL adjust, onebit;
703 LEN m, n, len, i, p, j1, j2, k;
704 long t, val;
706 if (ziszero(z2)) {
707 math_error("Division by zero in zdiv");
708 /*NOTREACHED*/
710 m = z1.len;
711 n = z2.len;
712 B = z2.v;
713 s = 0;
714 if (m < n) {
715 A = alloc(n + 1);
716 memcpy(A, z1.v, m * sizeof(HALF));
717 for (i = m; i <= n; i++)
718 A[i] = 0;
719 a1 = A + n;
720 len = 1;
721 goto done;
723 A = alloc(m + 2);
724 memcpy(A, z1.v, m * sizeof(HALF));
725 A[m] = 0;
726 A[m + 1] = 0;
727 len = m - n + 1; /* quotient length will be len or len +/- 1 */
728 a1 = A + n; /* start of digits for quotient */
729 b0 = B;
730 p = n;
731 while (!*b0) { /* b0: working start for divisor */
732 ++b0;
733 --p;
735 if (p == 1) {
736 u = *b0;
737 if (u == 1) {
738 for (; m >= n; m--)
739 A[m] = A[m - 1];
740 A[m] = 0;
741 goto done;
743 f = 0;
744 a = A + m;
745 i = len;
746 while (i--) {
747 f = f << BASEB | *--a;
748 a[1] = (HALF)(f / u);
749 f = f % u;
751 *a = (HALF)f;
752 m = n;
753 goto done;
755 f = B[n - 1];
756 k = 1;
757 while (f >>= 1)
758 k++; /* k: number of bits in top divisor digit */
759 j1 = BASEB - k;
760 j2 = BASEB + j1;
761 h = j1 ? ((FULL) B[n - 1] << j1 | B[n - 2] >> k) : B[n-1];
762 onebit = (BOOL)((B[n - 2] >> (k - 1)) & 1);
763 m++;
764 while (m > n) {
765 m--;
766 f = (FULL) A[m] << j2 | (FULL) A[m - 1] << j1;
767 if (j1) f |= A[m - 2] >> k;
768 if (s) f = ~f;
769 x = f / h;
770 if (x) {
771 if (onebit && x > TOPHALF + f % h)
772 x--;
773 a = A + m - p;
774 b = b0;
775 u = 0;
776 i = p;
777 if (s) {
778 while (i--) {
779 f = (FULL) *a + u + x * *b++;
780 *a++ = (HALF) f;
781 u = (HALF) (f >> BASEB);
783 s = *a + u;
784 A[m] = (HALF) (~x + !s);
785 } else {
786 while (i--) {
787 f = (FULL) *a - u - x * *b++;
788 *a++ = (HALF) f;
789 u = -(HALF)(f >> BASEB);
791 s = *a - u;
792 A[m] = (HALF)(x + s);
795 else
796 A[m] = s;
798 done: while (m > 0 && A[m - 1] == 0)
799 m--;
800 if (m == 0 && s == 0) {
801 *rem = _zero_;
802 val = 0;
803 if (a1[len - 1] == 0)
804 len--;
805 if (len == 0) {
806 *quo = _zero_;
807 } else {
808 quo->len = len;
809 quo->v = alloc(len);
810 memcpy(quo->v, a1, len * sizeof(HALF));
811 quo->sign = z1.sign ^ z2.sign;
813 freeh(A);
814 return val;
816 if (rnd & 8)
817 adjust = (((*a1 ^ rnd) & 1) ? TRUE : FALSE);
818 else
819 adjust = (((rnd & 1) ^ z1.sign ^ z2.sign) ? TRUE : FALSE);
820 if (rnd & 2)
821 adjust ^= z1.sign ^ z2.sign;
822 if (rnd & 4)
823 adjust ^= z2.sign;
824 if (rnd & 16) { /* round-off case */
825 a = A + n;
826 b = B + n;
827 i = n + 1;
828 f = g = 0;
829 t = -1;
830 if (s) {
831 while (--i > 0) {
832 g = (FULL) *--a + (*--b >> 1 | f);
833 f = *b & 1 ? TOPHALF : 0;
834 if (g != BASE1)
835 break;
837 if (g == BASE && f == 0) {
838 while ((--i > 0) && ((*--a | *--b) == 0));
839 t = (i > 0);
840 } else if (g >= BASE) {
841 t = 1;
843 } else {
844 while (--i > 0) {
845 g = (FULL) *--a - (*--b >> 1 | f);
846 f = *b & 1 ? TOPHALF : 0;
847 if (g != 0)
848 break;
850 if (g > 0 && g < BASE)
851 t = 1;
852 else if (g == 0 && f == 0)
853 t = 0;
855 if (t)
856 adjust = (t > 0);
858 if (adjust) {
859 i = len;
860 a = a1;
861 while (i > 0 && *a == BASE1) {
862 i--;
863 *a++ = 0;
865 (*a)++;
866 if (i == 0)
867 len++;
869 if (s && adjust) {
870 i = 0;
871 while (A[i] == 0)
872 i++;
873 A[i] = -A[i];
874 while (++i < n)
875 A[i] = ~A[i];
876 m = n;
877 while (A[m - 1] == 0)
878 m--;
880 if (!s && adjust) {
881 a = A;
882 b = B;
883 i = n;
884 u = 0;
885 while (i--) {
886 f = (FULL) *b++ - *a - (FULL) u;
887 *a++ = (HALF) f;
888 u = -(HALF)(f >> BASEB);
890 m = n;
891 while (A[m - 1] == 0)
892 m--;
894 if (s && !adjust) {
895 a = A;
896 b = B;
897 i = n;
898 f = 0;
899 while (i--) {
900 f = (FULL) *b++ + *a + (f >> BASEB);
901 *a++ = (HALF) f;
903 m = n;
904 while (A[m-1] == 0)
905 m--;
907 rem->len = m;
908 rem->v = alloc(m);
909 memcpy(rem->v, A, m * sizeof(HALF));
910 rem->sign = z1.sign ^ adjust;
911 val = rem->sign ? -1 : 1;
912 if (a1[len - 1] == 0)
913 len--;
914 if (len == 0) {
915 *quo = _zero_;
916 } else {
917 quo->len = len;
918 quo->v = alloc(len);
919 memcpy(quo->v, a1, len * sizeof(HALF));
920 quo->sign = z1.sign ^ z2.sign;
922 freeh(A);
923 return val;
928 * Compute and store at a specified location the integer quotient
929 * of two integers, the type of rounding being determined by rnd.
930 * Returns the sign of z1/z2 - calculated quotient.
932 long
933 zquo(ZVALUE z1, ZVALUE z2, ZVALUE *res, long rnd)
935 ZVALUE tmp;
936 long val;
938 val = zdiv(z1, z2, res, &tmp, rnd);
939 if (z2.sign)
940 val = -val;
941 zfree(tmp);
942 return val;
947 * Compute and store at a specified location the remainder for
948 * division of an integer by an integer, the type of rounding
949 * used being determined by rnd. Returns the sign of the remainder.
951 long
952 zmod(ZVALUE z1, ZVALUE z2, ZVALUE *res, long rnd)
954 ZVALUE tmp;
955 long val;
957 val = zdiv(z1, z2, &tmp, res, rnd);
958 zfree(tmp);
959 return val;
964 * Computes the quotient z1/z2 on the assumption that this is exact.
965 * There is no thorough check on the exactness of the division
966 * so this should not be called unless z1/z2 is an integer.
968 void
969 zequo(ZVALUE z1, ZVALUE z2, ZVALUE *res)
971 LEN i, j, k, len, m, n, o, p;
972 HALF *a, *a0, *A, *b, *B, u, v, w, x;
973 FULL f, g;
975 if (ziszero(z1)) {
976 *res = _zero_;
977 return;
979 if (ziszero(z2)) {
980 math_error("Division by zero");
981 /*NOTREACHED*/
983 if (zisone(z2)) {
984 zcopy(z1, res);
985 return;
987 if (zhighbit(z1) < zhighbit(z2)) {
988 math_error("Bad call to zequo");
989 /*NOTREACHED*/
991 B = z2.v;
992 o = 0;
993 while (!*B) {
994 ++B;
995 ++o;
997 m = z1.len - o;
998 n = z2.len - o;
999 len = m - n + 1; /* Maximum length of quotient */
1000 v = *B;
1001 A = alloc(len+1);
1002 memcpy(A, z1.v + o, len * sizeof(HALF));
1003 A[len] = 0;
1004 if (n == 1) {
1005 if (v > 1) {
1006 a = A + len;
1007 i = len;
1008 f = 0;
1009 while (i--) {
1010 f = f << BASEB | *--a;
1011 *a = (HALF)(f / v);
1012 f %= v;
1015 } else {
1016 k = 0;
1017 while (!(v & 1)) {
1018 k++;
1019 v >>= 1;
1021 j = BASEB - k;
1022 if (n > 1 && k > 0)
1023 v |= B[1] << j;
1024 u = v - 1;
1025 w = x = 1;
1026 while (u) { /* To find w = inverse of v modulo BASE */
1027 do {
1028 v <<= 1;
1029 x <<= 1;
1031 while (!(u & x));
1032 u += v;
1033 w |= x;
1035 a0 = A;
1036 p = len;
1037 while (p > 1) {
1038 if (!*a0) {
1039 while (!*++a0 && p > 1)
1040 p--;
1041 --a0;
1043 if (p == 1)
1044 break;
1045 x = k ? w * (*a0 >> k | a0[1] << j) : w * *a0;
1046 g = x;
1047 if (x) {
1048 a = a0;
1049 b = B;
1050 u = 0;
1051 i = n;
1052 if (i > p)
1053 i = p;
1054 while (i--) {
1055 f = (FULL) *a - g * *b++ - (FULL) u;
1056 *a++ = (HALF)f;
1057 u = -(HALF)(f >> BASEB);
1059 if (u && p > n) {
1060 i = p - n;
1061 while (u && i--) {
1062 f = (FULL) *a - u;
1063 *a++ = (HALF) f;
1064 u = -(HALF)(f >> BASEB);
1068 *a0++ = x;
1069 p--;
1071 if (k == 0) {
1072 *a0 = w * *a0;
1073 } else {
1074 u = (HALF)(w * *a0) >> k;
1075 x = (HALF)(((FULL) z1.v[z1.len - 1] << BASEB
1076 | z1.v[z1.len - 2])
1077 /((FULL) B[n-1] << BASEB | B[n-2]));
1078 if ((x ^ u) & 1) x--;
1079 *a0 = x;
1082 if (!A[len - 1]) len--;
1083 res->v = A;
1084 res->len = len;
1085 res->sign = z1.sign != z2.sign;
1091 * Return the quotient and remainder of an integer divided by a small
1092 * number. A nonzero remainder is only meaningful when both numbers
1093 * are positive.
1095 long
1096 zdivi(ZVALUE z, long n, ZVALUE *res)
1098 HALF *h1, *sd;
1099 FULL val;
1100 HALF divval[2];
1101 ZVALUE div;
1102 ZVALUE dest;
1103 LEN len;
1105 if (n == 0) {
1106 math_error("Division by zero");
1107 /*NOTREACHED*/
1109 if (ziszero(z)) {
1110 *res = _zero_;
1111 return 0;
1113 if (n < 0) {
1114 n = -n;
1115 z.sign = !z.sign;
1117 if (n == 1) {
1118 zcopy(z, res);
1119 return 0;
1122 * If the division is by a large number, then call the normal
1123 * divide routine.
1125 if (n & ~BASE1) {
1126 div.sign = 0;
1127 div.v = divval;
1128 divval[0] = (HALF) n;
1129 #if LONG_BITS > BASEB
1130 divval[1] = (HALF)(((FULL) n) >> BASEB);
1131 div.len = 2;
1132 #else
1133 div.len = 1;
1134 #endif
1135 zdiv(z, div, res, &dest, 0);
1136 n = ztolong(dest);
1137 zfree(dest);
1138 return n;
1141 * Division is by a small number, so we can be quick about it.
1143 len = z.len;
1144 dest.sign = z.sign;
1145 dest.len = len;
1146 dest.v = alloc(len);
1147 h1 = z.v + len;
1148 sd = dest.v + len;
1149 val = 0;
1150 while (len--) {
1151 val = ((val << BASEB) + ((FULL) *--h1));
1152 *--sd = (HALF)(val / n);
1153 val %= n;
1155 zquicktrim(dest);
1156 *res = dest;
1157 return (long)val;
1163 * Calculate the mod of an integer by a small number.
1164 * This is only defined for positive moduli.
1166 long
1167 zmodi(ZVALUE z, long n)
1169 register HALF *h1;
1170 FULL val;
1171 HALF divval[2];
1172 ZVALUE div;
1173 ZVALUE temp;
1174 long len;
1176 if (n == 0) {
1177 math_error("Division by zero");
1178 /*NOTREACHED*/
1180 if (n < 0) {
1181 math_error("Non-positive modulus");
1182 /*NOTREACHED*/
1184 if (ziszero(z) || (n == 1))
1185 return 0;
1186 if (zisone(z))
1187 return 1;
1189 * If the modulus is by a large number, then call the normal
1190 * modulo routine.
1192 if (n & ~BASE1) {
1193 div.sign = 0;
1194 div.v = divval;
1195 divval[0] = (HALF) n;
1196 #if LONG_BITS > BASEB
1197 divval[1] = (HALF)(((FULL) n) >> BASEB);
1198 div.len = 2;
1199 #else
1200 div.len = 1;
1201 #endif
1202 zmod(z, div, &temp, 0);
1203 n = ztolong(temp);
1204 zfree(temp);
1205 return n;
1208 * The modulus is by a small number, so we can do this quickly.
1210 len = z.len;
1211 h1 = z.v + len;
1212 val = 0;
1213 while (len-- > 0)
1214 val = ((val << BASEB) + ((FULL) *--h1)) % n;
1215 if (val && z.sign)
1216 val = n - val;
1217 return (long)val;
1222 * Return whether or not one number exactly divides another one.
1223 * Returns TRUE if division occurs with no remainder.
1224 * z1 is the number to be divided by z2.
1227 BOOL
1228 zdivides(ZVALUE z1, ZVALUE z2)
1230 LEN i, j, k, m, n;
1231 HALF u, v, w, x;
1232 HALF *a, *a0, *A, *b, *B, *c, *d;
1233 FULL f;
1234 BOOL ans;
1236 if (zisunit(z2) || ziszero(z1)) return TRUE;
1237 if (ziszero(z2)) return FALSE;
1239 m = z1.len;
1240 n = z2.len;
1241 if (m < n) return FALSE;
1243 c = z1.v;
1244 d = z2.v;
1246 while (!*d) {
1247 if (*c++) return FALSE;
1248 d++;
1249 m--;
1250 n--;
1253 j = 0;
1254 u = *c;
1255 v = *d;
1256 while (!(v & 1)) { /* Counting and checking zero bits */
1257 if (u & 1) return FALSE;
1258 u >>= 1;
1259 v >>= 1;
1260 j++;
1263 if (n == 1 && v == 1) return TRUE;
1264 if (!*c) { /* Removing any further zeros */
1265 while(!*++c)
1266 m--;
1267 c--;
1270 if (m < n) return FALSE;
1272 if (j) {
1273 B = alloc((LEN)n); /* Array for shifted z2 */
1274 d += n;
1275 b = B + n;
1276 i = n;
1277 f = 0;
1278 while(i--) {
1279 f = f << BASEB | *--d;
1280 *--b = (HALF)(f >> j);
1282 if (!B[n - 1]) n--;
1284 else B = d;
1285 u = *B;
1286 v = x = 1;
1287 w = 0;
1288 while (x) { /* Finding minv(*B, BASE) */
1289 if (v & x) {
1290 v -= x * u;
1291 w |= x;
1293 x <<= 1;
1296 A = alloc((LEN)(m + 2)); /* Main working array */
1297 memcpy(A, c, m * sizeof(HALF));
1298 A[m + 1] = 1;
1299 A[m] = 0;
1301 k = m - n + 1; /* Length of presumed quotient */
1303 a0 = A;
1305 while (k--) {
1306 if (*a0) {
1307 x = w * *a0;
1308 a = a0;
1309 b = B;
1310 i = n;
1311 u = 0;
1312 while (i--) {
1313 f = (FULL) *a - (FULL) x * *b++ - u;
1314 *a++ = (HALF)f;
1315 u = -(HALF)(f >> BASEB);
1317 f = (FULL) *a - u;
1318 *a++ = (HALF)f;
1319 u = -(HALF)(f >> BASEB);
1320 if (u) {
1321 while (*a == 0) *a++ = BASE1;
1322 (*a)--;
1325 a0++;
1327 ans = FALSE;
1328 if (A[m + 1]) {
1329 a = A + m;
1330 while (--n && !*--a);
1331 if (!n) ans = TRUE;
1333 freeh(A);
1334 if (j) freeh(B);
1335 return ans;
1340 * Compute the bitwise OR of two integers
1342 void
1343 zor(ZVALUE z1, ZVALUE z2, ZVALUE *res)
1345 register HALF *sp, *dp;
1346 long len;
1347 ZVALUE bz, lz, dest;
1349 if (z1.len >= z2.len) {
1350 bz = z1;
1351 lz = z2;
1352 } else {
1353 bz = z2;
1354 lz = z1;
1356 dest.len = bz.len;
1357 dest.v = alloc(dest.len);
1358 dest.sign = 0;
1359 zcopyval(bz, dest);
1360 len = lz.len;
1361 sp = lz.v;
1362 dp = dest.v;
1363 while (len--)
1364 *dp++ |= *sp++;
1365 *res = dest;
1370 * Compute the bitwise AND of two integers
1372 void
1373 zand(ZVALUE z1, ZVALUE z2, ZVALUE *res)
1375 HALF *h1, *h2, *hd;
1376 LEN len;
1377 ZVALUE dest;
1379 len = ((z1.len <= z2.len) ? z1.len : z2.len);
1380 h1 = &z1.v[len-1];
1381 h2 = &z2.v[len-1];
1382 while ((len > 1) && ((*h1 & *h2) == 0)) {
1383 h1--;
1384 h2--;
1385 len--;
1387 dest.len = len;
1388 dest.v = alloc(len);
1389 dest.sign = 0;
1390 h1 = z1.v;
1391 h2 = z2.v;
1392 hd = dest.v;
1393 while (len--)
1394 *hd++ = (*h1++ & *h2++);
1395 *res = dest;
1400 * Compute the bitwise XOR of two integers.
1402 void
1403 zxor(ZVALUE z1, ZVALUE z2, ZVALUE *res)
1405 HALF *dp, *h1, *h2;
1406 LEN len, j, k;
1407 ZVALUE dest;
1409 h1 = z1.v;
1410 h2 = z2.v;
1411 len = z1.len;
1412 j = z2.len;
1413 if (z1.len < z2.len) {
1414 len = z2.len;
1415 j = z1.len;
1416 h1 = z2.v;
1417 h2 = z1.v;
1418 } else if (z1.len == z2.len) {
1419 while (len > 1 && z1.v[len-1] == z2.v[len-1])
1420 len--;
1421 j = len;
1423 k = len - j;
1424 dest.len = len;
1425 dest.v = alloc(len);
1426 dest.sign = 0;
1427 dp = dest.v;
1428 while (j-- > 0)
1429 *dp++ = *h1++ ^ *h2++;
1430 while (k-- > 0)
1431 *dp++ = *h1++;
1432 *res = dest;
1437 * Compute the bitwise ANDNOT of two integers.
1439 void
1440 zandnot(ZVALUE z1, ZVALUE z2, ZVALUE *res)
1442 HALF *dp, *h1, *h2;
1443 LEN len, j, k;
1444 ZVALUE dest;
1446 len = z1.len;
1447 if (z2.len >= len) {
1448 while (len > 1 && (z1.v[len-1] & ~z2.v[len-1]) == 0)
1449 len--;
1450 j = len;
1451 k = 0;
1452 } else {
1453 j = z2.len;
1454 k = len - z2.len;
1456 dest.len = len;
1457 dest.v = alloc(len);
1458 dest.sign = 0;
1459 dp = dest.v;
1460 h1 = z1.v;
1461 h2 = z2.v;
1462 while (j-- > 0)
1463 *dp++ = *h1++ & ~*h2++;
1464 while (k-- > 0)
1465 *dp++ = *h1++;
1466 *res = dest;
1471 * Shift a number left (or right) by the specified number of bits.
1472 * Positive shift means to the left. When shifting right, rightmost
1473 * bits are lost. The sign of the number is preserved.
1475 void
1476 zshift(ZVALUE z, long n, ZVALUE *res)
1478 ZVALUE ans;
1479 LEN hc; /* number of halfwords shift is by */
1481 if (ziszero(z)) {
1482 *res = _zero_;
1483 return;
1485 if (n == 0) {
1486 zcopy(z, res);
1487 return;
1490 * If shift value is negative, then shift right.
1491 * Check for large shifts, and handle word-sized shifts quickly.
1493 if (n < 0) {
1494 n = -n;
1495 if ((n < 0) || (n >= (z.len * BASEB))) {
1496 *res = _zero_;
1497 return;
1499 hc = (LEN)(n / BASEB);
1500 n %= BASEB;
1501 z.v += hc;
1502 z.len -= hc;
1503 ans.len = z.len;
1504 ans.v = alloc(ans.len);
1505 ans.sign = z.sign;
1506 zcopyval(z, ans);
1507 if (n > 0) {
1508 zshiftr(ans, n);
1509 ztrim(&ans);
1511 if (ziszero(ans)) {
1512 zfree(ans);
1513 ans = _zero_;
1515 *res = ans;
1516 return;
1519 * Shift value is positive, so shift leftwards.
1520 * Check specially for a shift of the value 1, since this is common.
1521 * Also handle word-sized shifts quickly.
1523 if (zisunit(z)) {
1524 zbitvalue(n, res);
1525 res->sign = z.sign;
1526 return;
1528 hc = (LEN)(n / BASEB);
1529 n %= BASEB;
1530 ans.len = z.len + hc + 1;
1531 ans.v = alloc(ans.len);
1532 ans.sign = z.sign;
1533 if (hc > 0)
1534 memset((char *) ans.v, 0, hc * sizeof(HALF));
1535 memcpy((char *) (ans.v + hc),
1536 (char *) z.v, z.len * sizeof(HALF));
1537 ans.v[ans.len - 1] = 0;
1538 if (n > 0) {
1539 ans.v += hc;
1540 ans.len -= hc;
1541 zshiftl(ans, n);
1542 ans.v -= hc;
1543 ans.len += hc;
1545 ztrim(&ans);
1546 *res = ans;
1551 * Return the position of the lowest bit which is set in the binary
1552 * representation of a number (counting from zero). This is the highest
1553 * power of two which evenly divides the number.
1555 long
1556 zlowbit(ZVALUE z)
1558 register HALF *zp;
1559 long n;
1560 HALF dataval;
1561 HALF *bitval;
1563 n = 0;
1564 for (zp = z.v; *zp == 0; zp++)
1565 if (++n >= z.len)
1566 return 0;
1567 dataval = *zp;
1568 bitval = bitmask;
1569 /* ignore Saber-C warning #530 about empty while statement */
1570 /* ok to ignore in proc zlowbit */
1571 while ((*(bitval++) & dataval) == 0) {
1573 return (n*BASEB)+(bitval-bitmask-1);
1578 * Return the position of the highest bit which is set in the binary
1579 * representation of a number (counting from zero). This is the highest power
1580 * of two which is less than or equal to the number (which is assumed nonzero).
1583 zhighbit(ZVALUE z)
1585 HALF dataval;
1586 HALF *bitval;
1588 dataval = z.v[z.len-1];
1589 if (dataval == 0) {
1590 return 0;
1592 bitval = bitmask+BASEB;
1593 if (dataval) {
1594 /* ignore Saber-C warning #530 about empty while statement */
1595 /* ok to ignore in proc zhighbit */
1596 while ((*(--bitval) & dataval) == 0) {
1599 return (z.len*BASEB)+(LEN)(bitval-bitmask-BASEB);
1604 * Return whether or not the specifed bit number is set in a number.
1605 * Rightmost bit of a number is bit 0.
1607 BOOL
1608 zisset(ZVALUE z, long n)
1610 if ((n < 0) || ((n / BASEB) >= z.len))
1611 return FALSE;
1612 return ((z.v[n / BASEB] & (((HALF) 1) << (n % BASEB))) != 0);
1617 * Check whether or not a number has exactly one bit set, and
1618 * thus is an exact power of two. Returns TRUE if so.
1620 BOOL
1621 zisonebit(ZVALUE z)
1623 register HALF *hp;
1624 register LEN len;
1626 if (ziszero(z) || zisneg(z))
1627 return FALSE;
1628 hp = z.v;
1629 len = z.len;
1630 while (len > 4) {
1631 len -= 4;
1632 if (*hp++ || *hp++ || *hp++ || *hp++)
1633 return FALSE;
1635 while (--len > 0) {
1636 if (*hp++)
1637 return FALSE;
1639 return ((*hp & -*hp) == *hp); /* NEEDS 2'S COMPLEMENT */
1644 * Check whether or not a number has all of its bits set below some
1645 * bit position, and thus is one less than an exact power of two.
1646 * Returns TRUE if so.
1648 BOOL
1649 zisallbits(ZVALUE z)
1651 register HALF *hp;
1652 register LEN len;
1653 HALF digit;
1655 if (ziszero(z) || zisneg(z))
1656 return FALSE;
1657 hp = z.v;
1658 len = z.len;
1659 while (len > 4) {
1660 len -= 4;
1661 if ((*hp++ != BASE1) || (*hp++ != BASE1) ||
1662 (*hp++ != BASE1) || (*hp++ != BASE1))
1663 return FALSE;
1665 while (--len > 0) {
1666 if (*hp++ != BASE1)
1667 return FALSE;
1669 digit = (HALF)(*hp + 1);
1670 return ((digit & -digit) == digit); /* NEEDS 2'S COMPLEMENT */
1675 * Return the number whose binary representation contains only one bit which
1676 * is in the specified position (counting from zero). This is equivilant
1677 * to raising two to the given power.
1679 void
1680 zbitvalue(long n, ZVALUE *res)
1682 ZVALUE z;
1684 if (n < 0) n = 0;
1685 z.sign = 0;
1686 z.len = (LEN)((n / BASEB) + 1);
1687 z.v = alloc(z.len);
1688 zclearval(z);
1689 z.v[z.len-1] = (((HALF) 1) << (n % BASEB));
1690 *res = z;
1695 * Compare a number against zero.
1696 * Returns the sgn function of the number (-1, 0, or 1).
1698 FLAG
1699 ztest(ZVALUE z)
1701 register int sign;
1702 register HALF *h;
1703 register long len;
1705 sign = 1;
1706 if (z.sign)
1707 sign = -sign;
1708 h = z.v;
1709 len = z.len;
1710 while (len--)
1711 if (*h++)
1712 return sign;
1713 return 0;
1718 * Return the sign of z1 - z2, i.e. 1 if the first integer is greater,
1719 * 0 if they are equal, -1 otherwise.
1721 FLAG
1722 zrel(ZVALUE z1, ZVALUE z2)
1724 HALF *h1, *h2;
1725 LEN len;
1726 int sign;
1728 sign = 1;
1729 if (z1.sign < z2.sign)
1730 return 1;
1731 if (z2.sign < z1.sign)
1732 return -1;
1733 if (z2.sign)
1734 sign = -1;
1735 if (z1.len != z2.len)
1736 return (z1.len > z2.len) ? sign : -sign;
1737 len = z1.len;
1738 h1 = z1.v + len;
1739 h2 = z2.v + len;
1741 while (len > 0) {
1742 if (*--h1 != *--h2)
1743 break;
1744 len--;
1746 if (len > 0)
1747 return (*h1 > *h2) ? sign : -sign;
1748 return 0;
1753 * Return the sign of abs(z1) - abs(z2), i.e. 1 if the first integer
1754 * has greater absolute value, 0 is they have equal absolute value,
1755 * -1 otherwise.
1757 FLAG
1758 zabsrel(ZVALUE z1, ZVALUE z2)
1760 HALF *h1, *h2;
1761 LEN len;
1763 if (z1.len != z2.len)
1764 return (z1.len > z2.len) ? 1 : -1;
1766 len = z1.len;
1767 h1 = z1.v + len;
1768 h2 = z2.v + len;
1769 while (len > 0) {
1770 if (*--h1 != *--h2)
1771 break;
1772 len--;
1774 if (len > 0)
1775 return (*h1 > *h2) ? 1 : -1;
1776 return 0;
1781 * Compare two numbers to see if they are equal or not.
1782 * Returns TRUE if they differ.
1784 BOOL
1785 zcmp(ZVALUE z1, ZVALUE z2)
1787 register HALF *h1, *h2;
1788 register long len;
1790 if ((z1.sign != z2.sign) || (z1.len != z2.len) || (*z1.v != *z2.v))
1791 return TRUE;
1792 len = z1.len;
1793 h1 = z1.v;
1794 h2 = z2.v;
1795 while (--len > 0) {
1796 if (*++h1 != *++h2)
1797 return TRUE;
1799 return FALSE;
1804 * Utility to calculate the gcd of two FULL integers.
1806 FULL
1807 uugcd(FULL f1, FULL f2)
1809 FULL temp;
1811 while (f1) {
1812 temp = f2 % f1;
1813 f2 = f1;
1814 f1 = temp;
1816 return (FULL) f2;
1821 * Utility to calculate the gcd of two small integers.
1823 long
1824 iigcd(long i1, long i2)
1826 FULL f1, f2, temp;
1828 f1 = (FULL) ((i1 >= 0) ? i1 : -i1);
1829 f2 = (FULL) ((i2 >= 0) ? i2 : -i2);
1830 while (f1) {
1831 temp = f2 % f1;
1832 f2 = f1;
1833 f1 = temp;
1835 return (long) f2;
1839 void
1840 ztrim(ZVALUE *z)
1842 HALF *h;
1843 LEN len;
1845 h = z->v + z->len - 1;
1846 len = z->len;
1847 while (*h == 0 && len > 1) {
1848 --h;
1849 --len;
1851 z->len = len;
1856 * Utility routine to shift right.
1858 * NOTE: The ZVALUE length is not adjusted instead, the value is
1859 * zero padded from the left. One may need to call ztrim()
1860 * or use zshift() instead.
1862 void
1863 zshiftr(ZVALUE z, long n)
1865 register HALF *h, *lim;
1866 FULL mask, maskt;
1867 long len;
1869 if (n >= BASEB) {
1870 len = n / BASEB;
1871 h = z.v;
1872 lim = z.v + z.len - len;
1873 while (h < lim) {
1874 h[0] = h[len];
1875 ++h;
1877 n -= BASEB * len;
1878 lim = z.v + z.len;
1879 while (h < lim)
1880 *h++ = 0;
1882 if (n) {
1883 len = z.len;
1884 h = z.v + len;
1885 mask = 0;
1886 while (len--) {
1887 maskt = (((FULL) *--h) << (BASEB - n)) & BASE1;
1888 *h = ((*h >> n) | (HALF)mask);
1889 mask = maskt;
1896 * Utility routine to shift left.
1898 * NOTE: The ZVALUE length is not adjusted. The bits in the upper
1899 * HALF are simply tossed. You may want to use zshift() instead.
1901 void
1902 zshiftl(ZVALUE z, long n)
1904 register HALF *h;
1905 FULL mask, i;
1906 long len;
1908 if (n >= BASEB) {
1909 len = n / BASEB;
1910 h = z.v + z.len - 1;
1911 while (!*h)
1912 --h;
1913 while (h >= z.v) {
1914 h[len] = h[0];
1915 --h;
1917 n -= BASEB * len;
1918 while (len)
1919 h[len--] = 0;
1921 if (n > 0) {
1922 len = z.len;
1923 h = z.v;
1924 mask = 0;
1925 while (len--) {
1926 i = (((FULL) *h) << n) | mask;
1927 if (i > BASE1) {
1928 mask = i >> BASEB;
1929 i &= BASE1;
1930 } else {
1931 mask = 0;
1933 *h = (HALF) i;
1934 ++h;
1941 * popcnt - count the number of 0 or 1 bits in an integer
1943 * We ignore all 0 bits above the highest bit.
1945 long
1946 zpopcnt(ZVALUE z, int bitval)
1948 long cnt = 0; /* number of times found */
1949 HALF h; /* HALF to count */
1950 int i;
1953 * count 1's
1955 if (bitval) {
1958 * count each HALF
1960 for (i=0; i < z.len; ++i) {
1961 /* count each octet */
1962 for (h = z.v[i]; h; h >>= 8) {
1963 cnt += (long)popcnt[h & 0xff];
1968 * count 0's
1970 } else {
1973 * count each HALF up until the last
1975 for (i=0; i < z.len-1; ++i) {
1977 /* count each octet */
1978 cnt += BASEB;
1979 for (h = z.v[i]; h; h >>= 8) {
1980 cnt -= (long)popcnt[h & 0xff];
1985 * count the last octet up until the highest 1 bit
1987 for (h = z.v[z.len-1]; h; h>>=1) {
1988 /* count each 0 bit */
1989 if ((h & 0x1) == 0) {
1990 ++cnt;
1996 * return count
1998 return cnt;