modified: diffout.py
[GalaxyCodeBases.git] / c_cpp / lib / htslib / errmod.c
blobee4823b63d3660b5907cd028161146bf997698e9
1 /* errmod.c -- revised MAQ error model.
3 Copyright (C) 2010 Broad Institute.
4 Copyright (C) 2012, 2013, 2016 Genome Research Ltd.
6 Author: Heng Li <lh3@sanger.ac.uk>
8 Permission is hereby granted, free of charge, to any person obtaining a copy
9 of this software and associated documentation files (the "Software"), to deal
10 in the Software without restriction, including without limitation the rights
11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 copies of the Software, and to permit persons to whom the Software is
13 furnished to do so, subject to the following conditions:
15 The above copyright notice and this permission notice shall be included in
16 all copies or substantial portions of the Software.
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 DEALINGS IN THE SOFTWARE. */
26 #include <config.h>
28 #include <math.h>
29 #include "htslib/hts.h"
30 #include "htslib/ksort.h"
31 KSORT_INIT_GENERIC(uint16_t)
33 struct errmod_t {
34 double depcorr;
35 /* table of constants generated for given depcorr and eta */
36 double *fk, *beta, *lhet;
39 typedef struct {
40 double fsum[16], bsum[16];
41 uint32_t c[16];
42 } call_aux_t;
44 /* \Gamma(n) = (n-1)! */
45 #define lfact(n) lgamma(n+1)
47 /* generates a success * trials table of bionomial probability densities (log transformed) */
48 static double* logbinomial_table( const int n_size )
50 /* prob distribution for binom var is p(k) = {n! \over k! (n-k)! } p^k (1-p)^{n-k} */
51 /* this calcs p(k) = {log(n!) - log(k!) - log((n-k)!) */
52 int k, n;
53 double *logbinom = (double*)calloc(n_size * n_size, sizeof(double));
54 for (n = 1; n < n_size; ++n) {
55 double lfn = lfact(n);
56 for (k = 1; k <= n; ++k)
57 logbinom[n<<8|k] = lfn - lfact(k) - lfact(n-k);
59 return logbinom;
62 static void cal_coef(errmod_t *em, double depcorr, double eta)
64 int k, n, q;
65 long double sum, sum1;
66 double *lC;
68 // initialize ->fk
69 em->fk = (double*)calloc(256, sizeof(double));
70 em->fk[0] = 1.0;
71 for (n = 1; n < 256; ++n)
72 em->fk[n] = pow(1. - depcorr, n) * (1.0 - eta) + eta;
74 // initialize ->beta
75 em->beta = (double*)calloc(256 * 256 * 64, sizeof(double));
77 lC = logbinomial_table( 256 );
79 for (q = 1; q < 64; ++q) {
80 double e = pow(10.0, -q/10.0);
81 double le = log(e);
82 double le1 = log(1.0 - e);
83 for (n = 1; n <= 255; ++n) {
84 double *beta = em->beta + (q<<16|n<<8);
85 sum1 = sum = 0.0;
86 for (k = n; k >= 0; --k, sum1 = sum) {
87 sum = sum1 + expl(lC[n<<8|k] + k*le + (n-k)*le1);
88 beta[k] = -10. / M_LN10 * logl(sum1 / sum);
93 // initialize ->lhet
94 em->lhet = (double*)calloc(256 * 256, sizeof(double));
95 for (n = 0; n < 256; ++n)
96 for (k = 0; k < 256; ++k)
97 em->lhet[n<<8|k] = lC[n<<8|k] - M_LN2 * n;
98 free(lC);
102 * Create errmod_t object with obj.depcorr set to depcorr and initialise
104 errmod_t *errmod_init(double depcorr)
106 errmod_t *em;
107 em = (errmod_t*)calloc(1, sizeof(errmod_t));
108 em->depcorr = depcorr;
109 cal_coef(em, depcorr, 0.03);
110 return em;
114 * Deallocate an errmod_t object
116 void errmod_destroy(errmod_t *em)
118 if (em == 0) return;
119 free(em->lhet); free(em->fk); free(em->beta);
120 free(em);
124 // em: error model to fit to data
125 // m: number of alleles across all samples
126 // n: number of bases observed in sample
127 // bases[i]: bases observed in pileup [6 bit quality|1 bit strand|4 bit base]
128 // q[i*m+j]: (Output) phred-scaled likelihood of each genotype (i,j)
129 int errmod_cal(const errmod_t *em, int n, int m, uint16_t *bases, float *q)
131 // Aux
132 // aux.c is total count of each base observed (ignoring strand)
133 call_aux_t aux;
134 // Loop variables
135 int i, j, k;
136 // The total count of each base observed per strand
137 int w[32];
139 memset(q, 0, m * m * sizeof(float)); // initialise q to 0
140 if (n == 0) return 0;
141 // This section randomly downsamples to 255 depth so as not to go beyond our precalculated matrix
142 if (n > 255) { // if we exceed 255 bases observed then shuffle them to sample and only keep the first 255
143 ks_shuffle(uint16_t, n, bases);
144 n = 255;
146 ks_introsort(uint16_t, n, bases);
147 /* zero out w and aux */
148 memset(w, 0, 32 * sizeof(int));
149 memset(&aux, 0, sizeof(call_aux_t));
151 for (j = n - 1; j >= 0; --j) { // calculate esum and fsum
152 uint16_t b = bases[j];
153 /* extract quality and cap at 63 */
154 int qual = b>>5 < 4? 4 : b>>5;
155 if (qual > 63) qual = 63;
156 /* extract base ORed with strand */
157 int basestrand = b&0x1f;
158 /* extract base */
159 int base = b&0xf;
160 aux.fsum[base] += em->fk[w[basestrand]];
161 aux.bsum[base] += em->fk[w[basestrand]] * em->beta[qual<<16|n<<8|aux.c[base]];
162 ++aux.c[base];
163 ++w[basestrand];
166 // generate likelihood
167 for (j = 0; j < m; ++j) {
168 float tmp1, tmp3;
169 int tmp2;
170 // homozygous
171 for (k = 0, tmp1 = tmp3 = 0.0, tmp2 = 0; k < m; ++k) {
172 if (k == j) continue;
173 tmp1 += aux.bsum[k]; tmp2 += aux.c[k]; tmp3 += aux.fsum[k];
175 if (tmp2) {
176 q[j*m+j] = tmp1;
178 // heterozygous
179 for (k = j + 1; k < m; ++k) {
180 int cjk = aux.c[j] + aux.c[k];
181 for (i = 0, tmp2 = 0, tmp1 = tmp3 = 0.0; i < m; ++i) {
182 if (i == j || i == k) continue;
183 tmp1 += aux.bsum[i]; tmp2 += aux.c[i]; tmp3 += aux.fsum[i];
185 if (tmp2) {
186 q[j*m+k] = q[k*m+j] = -4.343 * em->lhet[cjk<<8|aux.c[k]] + tmp1;
187 } else q[j*m+k] = q[k*m+j] = -4.343 * em->lhet[cjk<<8|aux.c[k]]; // all the bases are either j or k
189 /* clamp to greater than 0 */
190 for (k = 0; k < m; ++k) if (q[j*m+k] < 0.0) q[j*m+k] = 0.0;
193 return 0;