modified: myjupyterlab.sh
[GalaxyCodeBases.git] / c_cpp / etc / KaKs_Calculator / src / YN00.cpp
blob1f83af17de4051fe37a70b248ac1022eede9ecca
1 /************************************************************
2 * Copyright (C) 2005, BGI of Chinese Academy of Sciences
3 * All rights reserved.
5 * Filename: YN00.cpp
6 * Abstract: Defination of YN00 class.
8 * Version: 1.0
9 * Author: Zhang Zhang (zhanghzhang@genomics.org.cn)
10 * Date: Jan.31, 2005
12 * Modified Version:
13 * Modified Author:
14 * Modified Date:
16 Note: Source codes are adapted from yn00.c in PAML.
18 Reference:
19 Yang Z, Nielsen R (2000) Estimating Synonymous and
20 Nonsynonymous Substitution Rates Under Realistic
21 Evolutionary Models. Mol Biol Evol 17:32-43.
22 *************************************************************/
24 #include "YN00.h"
27 YN00::YN00() {
29 name = "YN";
30 initArray(f12pos, 12);
31 initArray(pi, 64);
32 iteration = 1;
35 void YN00::getFreqency(const string seq1, const string seq2) {
37 int i;
38 double fstop=0.0;
40 //Get A,C,G,T frequency at three positions
41 for(i=0; i<seq1.length(); i++) {
42 f12pos[(i%3)*4+convertChar(seq1[i])]++;
43 f12pos[(i%3)*4+convertChar(seq2[i])]++;
45 for(i=0; i<CODONFREQ; i++)
46 f12pos[i]/=(seq1.length()+seq2.length())/3;
48 //Get 64 amino acid probability
49 for(i=0; i<CODON; i++) {
50 pi[i] = f12pos[i/16] * f12pos[4+(i%16)/4] * f12pos[8+i%4];
51 if (getAminoAcid(i)=='!') {
52 fstop+=pi[i];
53 pi[i]=0;
56 //Scale the sum of pi[] to 1
57 for(i=0; i<CODON; i++)
58 pi[i]/=(1.0-fstop);
60 if (fabs(1-sumArray(pi,CODON))>1e-6)
61 cout<<"Warning: error in get codon freqency."<<endl;
63 for(i=0,npi0=0; i<CODON; i++)
64 if(pi[i])
65 pi_sqrt[npi0++]=sqrt(pi[i]);
67 npi0=CODON-npi0;
72 /* Estimate kappa using the fourfold degenerate sites at third codon positions and nondegenerate sites */
73 int YN00::GetKappa(const string seq1, const string seq2) {
75 int i,j,k,h,pos,c[2],aa[2],b[2][3],nondeg,fourdeg,by[3]={16,4,1};
76 double ka[2], F[2][XSIZE],S[2],wk[2], T,V, pi4[4];
77 double kdefault=2, nullValue=NULL, t;
79 for(k=0; k<2; k++)
80 initArray(F[k],16);
82 //Get Pi[] of A,C,G,T
83 for(h=0; h<seq1.length(); h+=3) {
85 //c[]: amino acid(0--63)
86 c[0]=getID(seq1.substr(h,3));
87 c[1]=getID(seq2.substr(h,3));
88 //aa[ ]: amino acid
89 aa[0]=getAminoAcid(c[0]);
90 aa[1]=getAminoAcid(c[1]);
91 //b[][]: 0--3
92 for(j=0; j<3; j++) {
93 b[0][j] = convertChar(seq1[h+j]);
94 b[1][j] = convertChar(seq2[h+j]);
97 //Find non-degenerate sites
98 for(pos=0; pos<3; pos++) {
99 for(k=0,nondeg=0; k<2; k++) {
100 for(i=0; i<4; i++) {
101 if(i!=b[k][pos])
102 if (getAminoAcid(c[k]+(i-b[k][pos])*by[pos])==aa[k])
103 break;
105 if (i==4)
106 nondeg++;
108 //F[0][]: 0-fold
109 if(nondeg==2) {
110 F[0][b[0][pos]*4+b[1][pos]]+=.5;
111 F[0][b[1][pos]*4+b[0][pos]]+=.5;
115 //Find 4-fold degenerate sites at 3rd position
116 for(k=0,fourdeg=0;k<2;k++) {
117 for(j=0,i=c[k]-b[k][2]; j<4; j++)
118 if(j!=b[k][2] && getAminoAcid(i+j)!=aa[k])
119 break;
120 if(aa[0]==aa[1] && j==4)
121 fourdeg++;
123 //F[1][]: 4-fold
124 if (fourdeg==2) {
125 F[1][b[0][2]*4+b[1][2]]+=.5;
126 F[1][b[1][2]*4+b[0][2]]+=.5;
129 }//end of for(h)
131 for(k=0; k<2; k++) { /* two kinds of sites */
133 S[k] = sumArray(F[k],16);
134 if(S[k]<=0) {
135 wk[k] = 0;
136 continue;
138 for(j=0; j<16; j++)
139 F[k][j]/=S[k];
141 //Transition
142 T = (F[k][0*4+1]+F[k][2*4+3])*2;
143 //Tranversion
144 V = 1 - T - (F[k][0*4+0]+F[k][1*4+1]+F[k][2*4+2]+F[k][3*4+3]);
146 //pi[]: the sum probabilty of T, C, A, G, respectively
147 for(j=0; j<4; j++) {
148 pi4[j] = sumArray(F[k]+j*4,4);
151 //Correct kappa
152 DistanceF84(S[k],T,V,pi4, ka[k], t, nullValue);
153 wk[k]=(ka[k]>0?S[k]:0);
156 if(wk[0]+wk[1]==0) {
157 kappa=kdefault;
159 else {
160 kappa=(ka[0]*wk[0]+ka[1]*wk[1])/(wk[0]+wk[1]);
163 KAPPA[0] = KAPPA[1] = kappa;
165 return 0;
169 /* Correct for multiple substitutions */
170 int YN00::DistanceF84(double n, double P, double Q, double pi4[], double &k_HKY, double &t, double &SEt) {
172 int failF84=0,failK80=0,failJC69=0;
173 double tc,ag, Y,R, a=0,b=0, A,B,C, k_F84;
174 double Qsmall=min(1e-10,0.1/n), maxkappa=2,maxt=99;
176 k_HKY=-1;
178 Y=pi4[0]+pi4[1];
179 R=pi4[2]+pi4[3];
181 tc=pi4[0]*pi4[1];
182 ag=pi4[2]*pi4[3];
184 if (P+Q>1) {
185 t=maxt;
186 k_HKY=1;
187 return 3;
189 if (P<-1e-10 || Q<-1e-10 || fabs(Y+R-1)>1e-8) {
190 return 3;
193 //HKY85
194 if(Q<Qsmall)
195 failF84=failK80=1;
196 else if (Y<=0 || R<=0 || (tc<=0 && ag<=0))
197 failF84=1;
198 else {
199 A=tc/Y+ag/R; B=tc+ag; C=Y*R;
200 a=(2*B+2*(tc*R/Y+ag*Y/R)*(1-Q/(2*C)) - P) / (2*A);
201 b=1-Q/(2*C);
202 if (a<=0 || b<=0)
203 failF84=1;
206 if (!failF84) {
207 a=-.5*log(a); b=-.5*log(b);
208 if(b<=0)
209 failF84=1;
210 else {
211 k_F84=a/b-1;
212 t = 4*b*(tc*(1+ k_F84/Y)+ag*(1+ k_F84/R)+C);
213 k_HKY = (B + (tc/Y+ag/R)* k_F84)/B; /* k_F84=>k_HKY85 */
215 //Standard errors
216 a = A*C/(A*C-C*P/2-(A-B)*Q/2);
217 b = A*(A-B)/(A*C-C*P/2-(A-B)*Q/2) - (A-B-C)/(C-Q/2);
218 SEt = sqrt((a*a*P+b*b*Q-square(a*P+b*Q))/n);
222 //K80
223 if(failF84 && !failK80) { /* try K80 */
224 a=1-2*P-Q; b=1-2*Q;
225 if (a<=0 || b<=0)
226 failK80=1;
227 else {
228 a=-log(a); b=-log(b);
229 if(b<=0)
230 failK80=1;
231 else {
232 k_HKY=(.5*a-.25*b)/(.25*b);
233 t = .5*a+.25*b;
235 if(SEt) {
236 a=1/(1-2*P-Q); b=(a+1/(1-2*Q))/2;
237 SEt = sqrt((a*a*P+b*b*Q-square(a*P+b*Q))/n);
242 if(failK80) {/* try JC69 */
243 if((P+=Q)>=.75) {
244 failJC69=1;
245 P=.75*(n-1.)/n;
247 t = -.75*log(1-P*4/3.);
249 if(t>99)
250 t=maxt;
251 if(SEt) {
252 SEt = sqrt(9*P*(1-P)/n) / (3-4*P);
256 if(k_HKY>99)
257 k_HKY=maxkappa;
259 return(failF84 + failK80 + failJC69);
262 int YN00::DistanceYN00(const string seq1, const string seq2, double &dS,double &dN, double &SEKs, double &SEKa) {
264 int j,k,ir,nround=10, status=0;
265 double fbS[4], fbN[4], fbSt[4], fbNt[4], St, Nt, Sdts, Sdtv, Ndts, Ndtv, k_HKY;
266 double w0=0, dS0=0, dN0=0, accu=5e-4, minomega=1e-5, maxomega=99;
267 double PMatrix[CODON*CODON];
269 if(t==0)
270 t=.5;
271 if(omega<=0)
272 omega=1;
273 for(k=0; k<4; k++)
274 fbS[k]=fbN[k]=0;
276 //Count sites of sequence 1
277 S=N=0;
278 CountSites(seq1, St, Nt, fbSt, fbNt);
279 S+=St/2;
280 N+=Nt/2;
281 for(j=0; j<4; j++) {
282 fbS[j]+=fbSt[j]/2;
283 fbN[j]+=fbNt[j]/2;
285 //Count sites of sequence 2
286 CountSites(seq2, St, Nt, fbSt, fbNt);
287 S+=St/2;
288 N+=Nt/2;
289 for(j=0; j<4; j++) {
290 fbS[j]+=fbSt[j]/2;
291 fbN[j]+=fbNt[j]/2;
294 if (t<0.001 || t>5)
295 t=0.5;
296 if (omega<0.01 || omega>5)
297 omega=.5;
300 for (ir=0; ir<(iteration?nround:1); ir++) { /* iteration */
301 if(iteration)
302 GetPMatCodon(PMatrix,kappa,omega);
303 else
304 for(j=0; j<CODON*CODON; j++) {
305 PMatrix[j]=1;
308 CountDiffs(seq1,seq2, Sdts, Sdtv, Ndts, Ndtv, PMatrix);
310 Sd = Sdts + Sdtv;
311 Nd = Ndts + Ndtv;
313 //synonymous
314 DistanceF84(S, Sdts/S, Sdtv/S, fbS, k_HKY, dS, SEKs);
315 //nonsynonymous
316 DistanceF84(N, Ndts/N, Ndtv/N, fbN, k_HKY, dN, SEKa);
318 if(dS<1e-9) {
319 status=-1;
320 omega=maxomega;
322 else {
323 omega= max(minomega, dN/dS);
326 t = dS * 3 * S/(S + N) + dN * 3 * N/(S + N);
328 if ( fabs(dS-dS0)<accu && fabs(dN-dN0)<accu && fabs(omega-w0)<accu )
329 break;
331 dS0=dS;
332 dN0=dN;
333 w0=omega;
335 } //end of for(ir) */
337 if(ir==nround)
338 status=-2;
340 return status;
343 //Count differences between two compared codons
344 int YN00::CountDiffs(const string seq1, const string seq2, double &Sdts,double &Sdtv,double &Ndts, double &Ndtv,double PMatrix[]) {
345 int h,i1,i2,i,k, transi, c[2],ct[2], by[3]={16,4,1};
346 char aa[2];
347 int dmark[3], step[3], b[2][3], bt1[3], bt2[3];
348 int ndiff, npath, nstop, stspath[6],stvpath[6],ntspath[6],ntvpath[6];
349 double sts,stv,nts,ntv; /* syn ts & tv, nonsyn ts & tv for 2 codons */
350 double ppath[6], sump,p;
352 snp = 0;
353 for (h=0,Sdts=Sdtv=Ndts=Ndtv=0; h<seq1.length(); h+=3) {
355 c[0]=getID(seq1.substr(h,3));
356 c[1]=getID(seq2.substr(h,3));
357 //Difference?
358 if (c[0]==c[1])
359 continue;
361 for(i=0; i<2; i++) {
362 b[i][0]=c[i]/16;
363 b[i][1]=(c[i]%16)/4;
364 b[i][2]=c[i]%4;
365 aa[i]=getAminoAcid(c[i]);
368 //ndiff: differences of two codons
369 ndiff=0;
370 sts=stv=nts=ntv=0;
371 //dmark[]: position of different codon
372 for(k=0; k<3; k++) {
373 dmark[k] = -1;
374 if (b[0][k]!=b[1][k])
375 dmark[ndiff++]=k;
378 snp+=ndiff;
380 npath=1;
381 if(ndiff>1)
382 npath=(ndiff==2)?2:6;
384 if (ndiff==1) {
385 transi=b[0][dmark[0]]+b[1][dmark[0]];
386 transi=(transi==1 || transi==5);
387 if (aa[0]==aa[1]) {
388 if (transi)
389 sts++;
390 else
391 stv++;
393 else {
394 if (transi)
395 nts++;
396 else
397 ntv++;
400 else { /* ndiff=2 or 3 */
402 nstop=0;
403 for(k=0; k<npath; k++) {
405 //set the step[]
406 for(i1=0; i1<3; i1++)
407 step[i1]=-1;
408 if (ndiff==2) {
409 step[0]=dmark[k];
410 step[1]=dmark[1-k];
412 else {
413 step[0]=k/2;
414 step[1]=k%2;
415 if (step[0]<=step[1])
416 step[1]++;
417 step[2]=3-step[0]-step[1];
418 }//end of set the step[]
420 for(i1=0; i1<3; i1++)
421 bt1[i1]=bt2[i1]=b[0][i1];
423 stspath[k]=stvpath[k]=ntspath[k]=ntvpath[k]=0;
425 //ppath[]: probabilty of each path
426 for (i1=0,ppath[k]=1; i1<ndiff; i1++) {
427 bt2[step[i1]] = b[1][step[i1]];
429 //ct[]: mutated codon's ID(0--63)
430 for (i2=0,ct[0]=ct[1]=0; i2<3; i2++) {
431 ct[0]+=bt1[i2]*by[i2];
432 ct[1]+=bt2[i2]*by[i2];
434 //ppath[k]: probabilty of path k
435 ppath[k]*=PMatrix[ct[0]*CODON+ct[1]];
436 for(i2=0; i2<2; i2++)
437 aa[i2]=getAminoAcid(ct[i2]);
439 if (aa[1]=='!') {
440 nstop++;
441 ppath[k]=0;
442 break;
445 transi=b[0][step[i1]]+b[1][step[i1]];
446 transi=(transi==1 || transi==5); /* transition? */
448 //ts & tr when syn & nonsyn in path k
449 if(aa[0]==aa[1]) {
450 if(transi)
451 stspath[k]++;
452 else
453 stvpath[k]++;
455 else {
456 if(transi)
457 ntspath[k]++;
458 else
459 ntvpath[k]++;
462 for(i2=0; i2<3; i2++)
463 bt1[i2]=bt2[i2];
466 } /* for(k,npath) */
467 if (npath==nstop) { /* all paths through stop codons */
468 if (ndiff==2) {
469 nts=.5;
470 ntv=1.5;
472 else {
473 nts=.5;
474 ntv=2.5;
477 else {
478 //sum probabilty of all path
479 sump=sumArray(ppath,npath);
480 if(sump>1e-20) {
481 for(k=0;k<npath;k++) { //p: the probabilty of path k
482 p=ppath[k]/sump;
483 sts+=stspath[k]*p; stv+=stvpath[k]*p;
484 nts+=ntspath[k]*p; ntv+=ntvpath[k]*p;
489 }//end of if(ndiff)
490 Sdts+=sts;
491 Sdtv+=stv;
492 Ndts+=nts;
493 Ndtv+=ntv;
495 }//end of for(h)
497 return (0);
500 /* Calculate transition probability matrix(64*64) */
501 int YN00::GetPMatCodon(double PMatrix[], double kappa, double omega)
503 /* Get PMat=exp(Q*t) for weighting pathways
505 int i,j,k, ndiff,pos=0,from[3],to[3];
506 double mr;
507 char c[2];
508 double U[CODON*CODON], V[CODON*CODON], Root[CODON*CODON];
510 initArray(PMatrix, CODON*CODON);
511 initArray(U, CODON*CODON);
512 initArray(V, CODON*CODON);
513 initArray(Root, CODON*CODON);
515 for(i=0; i<CODON; i++) {
516 for(j=0; j<i; j++) {
518 //codon 'from'
519 from[0]=i/16; from[1]=(i/4)%4; from[2]=i%4;
520 //codon 'to'
521 to[0]=j/16; to[1]=(j/4)%4; to[2]=j%4;
522 //amino acid of 'from' and 'to'
523 c[0]=getAminoAcid(i);
524 c[1]=getAminoAcid(j);
525 //stop codon
526 if (c[0]=='!' || c[1]=='!')
527 continue;
529 //whether two codons only have one difference
530 for (k=0,ndiff=0; k<3; k++) {
531 if (from[k]!=to[k]) {
532 ndiff++;
533 pos=k;
536 if (ndiff==1) {
537 //only have one difference
538 PMatrix[i*CODON+j]=1;
539 //transition
540 if ((from[pos]+to[pos]-1)*(from[pos]+to[pos]-5)==0)
541 PMatrix[i*CODON+j]*=kappa;
543 //nonsynonymous
544 if(c[0]!=c[1])
545 PMatrix[i*CODON+j]*=omega;
547 //diagonal element is equal
548 PMatrix[j*CODON+i]=PMatrix[i*CODON+j];
553 //PMatrix[](*Q): transition probability matrix
554 for(i=0; i<CODON; i++)
555 for(j=0; j<CODON; j++)
556 PMatrix[i*CODON+j]*=pi[j];
558 //scale the sum of PMat[][j](j=0-63) to zero
559 for (i=0,mr=0; i<CODON; i++) {
560 PMatrix[i*CODON+i]=-sumArray(PMatrix+i*CODON,CODON);
561 //The sum of transition probability of main diagnoal elements
562 mr-=pi[i]*PMatrix[i*CODON+i];
565 //calculate exp(PMatrix*t)
566 eigenQREV(PMatrix, pi, pi_sqrt, CODON, npi0, Root, U, V);
567 for(i=0; i<CODON; i++)
568 Root[i]/=mr;
569 PMatUVRoot(PMatrix, t, CODON, U, V, Root);
571 return 0;
576 /* P(t) = U * exp{Root*t} * V */
577 int YN00::PMatUVRoot (double P[], double t, int n, double U[], double V[], double Root[]) {
579 int i,j,k;
580 double expt, uexpt, *pP;
581 double smallp = 0;
584 for (k=0,initArray(P,n*n); k<n; k++)
585 for (i=0,pP=P,expt=exp(t*Root[k]); i<n; i++)
586 for (j=0,uexpt=U[i*n+k]*expt; j<n; j++)
587 *pP++ += uexpt*V[k*n+j];
589 for(i=0;i<n*n;i++)
590 if(P[i]<smallp)
591 P[i]=0;
593 return (0);
597 /* Count the synonymous and nonsynonymous sites of two sequences */
598 int YN00::CountSites(const string seq, double &Stot, double &Ntot,double fbS[],double fbN[]) {
599 int h,i,j,k, c[2],aa[2], b[3], by[3]={16,4,1};
600 double r, S,N;
602 Stot=Ntot=0;
603 initArray(fbS, 4);
604 initArray(fbN, 4);
606 for (h=0; h<seq.length(); h+=3) {
608 //Get codon id and amino acid
609 c[0]=getID(seq.substr(h,3));
610 aa[0]=getAminoAcid(c[0]);
611 for(i=0; i<3; i++) {
612 b[i]=convertChar(seq[h+i]);
615 for (j=0,S=N=0; j<3; j++) {
616 for(k=0; k<4; k++) { /* b[j] changes to k */
617 if (k==b[j])
618 continue;
619 //c[0] change at position j
620 c[1] = c[0]+(k-b[j])*by[j];
621 aa[1] = getAminoAcid(c[1]);
623 if(aa[1]=='!')
624 continue;
626 r=pi[c[1]];
627 if (k+b[j]==1 || k+b[j]==5) //transition
628 r*=kappa;
630 if (aa[0]==aa[1]) { //synonymous
631 S+=r;
632 fbS[b[j]]+=r; //syn probability of A,C,G,T
634 else { //nonsynonymous
635 N+=r;
636 fbN[b[j]]+=r; //nonsyn probability of A,C,G,T
640 Stot+=S;
641 Ntot+=N;
644 //Scale Stot+Ntot to seq.length()
645 r=seq.length()/(Stot+Ntot);
646 Stot*=r;
647 Ntot*=r;
649 //get probablity of syn of four nul.
650 r=sumArray(fbS,4);
651 for(k=0; k<4; k++)
652 fbS[k]/=r;
654 //get probablity of nonsyn of four nul.
655 r=sumArray(fbN,4);
656 for(k=0; k<4; k++)
657 fbN[k]/=r;
659 return 0;
663 string YN00::Run(string seq1, string seq2) {
665 t=0.4;
666 kappa = NA;
667 omega = 1;
668 Ks = Ka = 0.1;
670 getFreqency(seq1, seq2);
671 GetKappa(seq1, seq2);
672 DistanceYN00(seq1, seq2, Ks, Ka, SEKs, SEKa);
674 t = (S*Ks+N*Ka)/(S+N);
676 return parseOutput();
681 //The following functions are used to calculate PMatrix by Taylor.
683 int YN00::eigenQREV (double Q[], double pi[], double pi_sqrt[], int n, int npi0,
684 double Root[], double U[], double V[])
687 This finds the eigen solution of the rate matrix Q for a time-reversible
688 Markov process, using the algorithm for a real symmetric matrix.
689 Rate matrix Q = S * diag{pi} = U * diag{Root} * V,
690 where S is symmetrical, all elements of pi are positive, and U*V = I.
691 pi_sqrt[n-npi0] has to be calculated before calling this routine.
693 [U 0] [Q_0 0] [U^-1 0] [Root 0]
694 [0 I] [0 0] [0 I] = [0 0]
696 Ziheng Yang, 25 December 2001 (ref is CME/eigenQ.pdf)
698 int i,j, inew,jnew, nnew=n-npi0, status;
700 //npi0 is the number of stop codons in selected genetic table
702 if(npi0==0) { //seldom occur
704 //Set U[64*64]
705 for(i=0; i<n; i++) {
706 for(j=0,U[i*n+i] = Q[i*n+i]; j<i; j++)
707 U[i*n+j] = U[j*n+i] = (Q[i*n+j] * pi_sqrt[i]/pi_sqrt[j]);
710 //Set U[64*64]
711 status=eigenRealSym(U, n, Root, V);
713 for(i=0;i<n;i++)
714 for(j=0;j<n;j++)
715 V[i*n+j] = U[j*n+i] * pi_sqrt[j];
717 for(i=0;i<n;i++)
718 for(j=0;j<n;j++)
719 U[i*n+j] /= pi_sqrt[i];
721 else {
722 for(i=0,inew=0; i<n; i++) {
723 if(pi[i]) {
724 for(j=0,jnew=0; j<i; j++)
725 if(pi[j]) {
726 U[inew*nnew+jnew] = U[jnew*nnew+inew] = Q[i*n+j] * pi_sqrt[inew]/pi_sqrt[jnew];
727 jnew++;
729 U[inew*nnew+inew] = Q[i*n+i];
730 inew++;
733 status=eigenRealSym(U, nnew, Root, V);
735 for(i=n-1,inew=nnew-1; i>=0; i--) /* construct Root */
736 Root[i] = (pi[i] ? Root[inew--] : 0);
738 for(i=n-1,inew=nnew-1; i>=0; i--) { /* construct V */
739 if(pi[i]) {
740 for(j=n-1,jnew=nnew-1; j>=0; j--)
741 if(pi[j]) {
742 V[i*n+j] = U[jnew*nnew+inew]*pi_sqrt[jnew];
743 jnew--;
745 else
746 V[i*n+j] = (i==j);
747 inew--;
749 else
750 for(j=0; j<n; j++)
751 V[i*n+j] = (i==j);
754 for(i=n-1,inew=nnew-1; i>=0; i--) { /* construct U */
755 if(pi[i]) {
756 for(j=n-1,jnew=nnew-1;j>=0;j--)
757 if(pi[j]) {
758 U[i*n+j] = U[inew*nnew+jnew]/pi_sqrt[inew];
759 jnew--;
761 else
762 U[i*n+j] = (i==j);
763 inew--;
765 else
766 for(j=0;j<n;j++)
767 U[i*n+j] = (i==j);
771 return(status);
774 void YN00::HouseholderRealSym(double a[], int n, double d[], double e[]) {
775 /* This uses HouseholderRealSym transformation to reduce a real symmetrical matrix
776 a[n*n] into a tridiagonal matrix represented by d and e.
777 d[] is the diagonal (eigends), and e[] the off-diagonal.
779 int m,k,j,i;
780 double scale,hh,h,g,f;
782 for (i=n-1;i>=1;i--) {
783 m=i-1;
784 h=scale=0;
785 if (m > 0) {
786 for (k=0;k<=m;k++)
787 scale += fabs(a[i*n+k]);
788 if (scale == 0)
789 e[i]=a[i*n+m];
790 else {
791 for (k=0;k<=m;k++) {
792 a[i*n+k] /= scale;
793 h += a[i*n+k]*a[i*n+k];
795 f=a[i*n+m];
796 g=(f >= 0 ? -sqrt(h) : sqrt(h));
797 e[i]=scale*g;
798 h -= f*g;
799 a[i*n+m]=f-g;
800 f=0;
801 for (j=0;j<=m;j++) {
802 a[j*n+i]=a[i*n+j]/h;
803 g=0;
804 for (k=0;k<=j;k++)
805 g += a[j*n+k]*a[i*n+k];
806 for (k=j+1;k<=m;k++)
807 g += a[k*n+j]*a[i*n+k];
808 e[j]=g/h;
809 f += e[j]*a[i*n+j];
811 hh=f/(h*2);
812 for (j=0;j<=m;j++) {
813 f=a[i*n+j];
814 e[j]=g=e[j]-hh*f;
815 for (k=0;k<=j;k++)
816 a[j*n+k] -= (f*e[k]+g*a[i*n+k]);
820 else
821 e[i]=a[i*n+m];
822 d[i]=h;
824 d[0]=e[0]=0;
826 /* Get eigenvectors */
827 for (i=0;i<n;i++) {
828 m=i-1;
829 if (d[i]) {
830 for (j=0;j<=m;j++) {
831 g=0;
832 for (k=0;k<=m;k++)
833 g += a[i*n+k]*a[k*n+j];
834 for (k=0;k<=m;k++)
835 a[k*n+j] -= g*a[k*n+i];
838 d[i]=a[i*n+i];
839 a[i*n+i]=1;
840 for (j=0;j<=m;j++) a[j*n+i]=a[i*n+j]=0;
846 int YN00::EigenTridagQLImplicit(double d[], double e[], int n, double z[])
848 /* This finds the eigen solution of a tridiagonal matrix represented by d and e.
849 d[] is the diagonal (eigenvalues), e[] is the off-diagonal
850 z[n*n]: as input should have the identity matrix to get the eigen solution of the
851 tridiagonal matrix, or the output from HouseholderRealSym() to get the
852 eigen solution to the original real symmetric matrix.
853 z[n*n]: has the orthogonal matrix as output
855 Adapted from routine tqli in Numerical Recipes in C, with reference to
856 LAPACK fortran code.
857 Ziheng Yang, May 2001
859 int m,j,iter,niter=30, status=0, i,k;
860 double s,r,p,g,f,dd,c,b, aa,bb;
862 for (i=1;i<n;i++) e[i-1]=e[i]; e[n-1]=0;
863 for (j=0;j<n;j++) {
864 iter=0;
865 do {
866 for (m=j;m<n-1;m++) {
867 dd=fabs(d[m])+fabs(d[m+1]);
868 if (fabs(e[m])+dd == dd) break; /* ??? */
870 if (m != j) {
871 if (iter++ == niter) {
872 status=-1;
873 break;
875 g=(d[j+1]-d[j])/(2*e[j]);
877 /* r=pythag(g,1); */
879 if((aa=fabs(g))>1) r=aa*sqrt(1+1/(g*g));
880 else r=sqrt(1+g*g);
882 g=d[m]-d[j]+e[j]/(g+SIGN(r,g));
883 s=c=1;
884 p=0;
885 for (i=m-1;i>=j;i--) {
886 f=s*e[i];
887 b=c*e[i];
889 /* r=pythag(f,g); */
890 aa=fabs(f); bb=fabs(g);
891 if(aa>bb) { bb/=aa; r=aa*sqrt(1+bb*bb); }
892 else if(bb==0) r=0;
893 else { aa/=bb; r=bb*sqrt(1+aa*aa); }
895 e[i+1]=r;
896 if (r == 0) {
897 d[i+1] -= p;
898 e[m]=0;
899 break;
901 s=f/r;
902 c=g/r;
903 g=d[i+1]-p;
904 r=(d[i]-g)*s+2*c*b;
905 d[i+1]=g+(p=s*r);
906 g=c*r-b;
907 for (k=0;k<n;k++) {
908 f=z[k*n+i+1];
909 z[k*n+i+1]=s*z[k*n+i]+c*f;
910 z[k*n+i]=c*z[k*n+i]-s*f;
913 if (r == 0 && i >= j) continue;
914 d[j]-=p; e[j]=g; e[m]=0;
916 } while (m != j);
918 return(status);
921 void YN00::EigenSort(double d[], double U[], int n)
923 /* this sorts the eigen values d[] and rearrange the (right) eigen vectors U[]
925 int k,j,i;
926 double p;
928 for (i=0;i<n-1;i++) {
929 p=d[k=i];
930 for (j=i+1;j<n;j++)
931 if (d[j] >= p) p=d[k=j];
932 if (k != i) {
933 d[k]=d[i];
934 d[i]=p;
935 for (j=0;j<n;j++) {
936 p=U[j*n+i];
937 U[j*n+i]=U[j*n+k];
938 U[j*n+k]=p;
944 int YN00::eigenRealSym(double A[], int n, double Root[], double work[])
946 /* This finds the eigen solution of a real symmetrical matrix A[n*n]. In return,
947 A has the right vectors and Root has the eigenvalues. work[n] is the working space.
948 The matrix is first reduced to a tridiagonal matrix using HouseholderRealSym(),
949 and then using the QL algorithm with implicit shifts.
951 Adapted from routine tqli in Numerical Recipes in C, with reference to LAPACK
952 Ziheng Yang, 23 May 2001
954 int status=0;
955 HouseholderRealSym(A, n, Root, work);
956 status=EigenTridagQLImplicit(Root, work, n, A);
957 EigenSort(Root, A, n);
959 return(status);