1 package edu
.ufl
.cise
.klu
.tdouble
.demo
;
3 import edu
.ufl
.cise
.klu
.tdouble
.Dklu_solve
;
5 public class Dklu_simple
{
8 * a simple KLU demo; solution is x = (1,2,3,4,5)
10 public static void main(String
[] args
) {
12 int[] Ap
= {0, 2, 5, 9, 10, 12};
13 int[] Ai
= { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4};
14 double[] Ax
= {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.};
15 double[] b
= {8., 45., -3., 3., 19.};
17 Dklu_symbolic Symbolic
;
22 Dklu_defaults
.klu_defaults(Common
);
23 Symbolic
= Dklu_analyze
.klu_analyze(n
, Ap
, Ai
, Common
);
24 Numeric
= Dklu_factor
.klu_factor(Ap
, Ai
, Ax
, Symbolic
, Common
);
25 Dklu_solve
.klu_solve(Symbolic
, Numeric
, 5, 1, b
, Common
);
26 Dklu_free_symbolic
.klu_free_symbolic(Symbolic
, Common
);
27 Dklu_free_numeric
.klu_free_numeric(Numeric
, Common
);
28 for (i
= 0; i
< n
; i
++)
29 System
.out
.printf("x [%d] = %g\n", i
, b
[i
]);