solving problem in creating contour lines
[JPSSData.git] / interpolation.py
blob8c90e89d77b395f4e42675eff8b9ff495eedb3cb
1 import warnings
2 warnings.filterwarnings("ignore")
3 import numpy as np
4 from time import time
5 from datetime import datetime
6 from scipy import spatial
7 import itertools
8 from random import randint
10 def sort_dates(data):
11 """
12 Sorting a dictionary depending on the time number in seconds from January 1, 1970
14 :param data: dictionary of granules where each granule has a time_num key
15 :return: an array of dictionaries ordered by time_num key (seconds from January 1, 1970)
17 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
18 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
19 """
20 return sorted(data.iteritems(), key=lambda x: x[1]['time_num'])
22 def nearest_euclidean(lon,lat,lons,lats,bounds):
23 """
24 Returns the longitude and latitude arrays interpolated using Euclidean distance
26 :param lon: 2D array of longitudes to look the nearest neighbours
27 :param lat: 2D array of latitudes to look the nearest neighbours
28 :param lons: 2D array of longitudes interpolating to
29 :param lats: 2D array of latitudes interpolating to
30 :param bounds: array of 4 bounding boundaries where to interpolate: [minlon maxlon minlat maxlat]
31 :return ret: tuple with a 2D array of longitudes and 2D array of latitudes interpolated from (lon,lat) to (lons,lats)
33 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
34 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
35 """
36 vlon=np.reshape(lon,np.prod(lon.shape))
37 vlat=np.reshape(lat,np.prod(lat.shape))
38 rlon=np.zeros(vlon.shape)
39 rlat=np.zeros(vlat.shape)
40 for k in range(0,len(vlon)):
41 if (vlon[k]>bounds[0]) and (vlon[k]<bounds[1]) and (vlat[k]>bounds[2]) and (vlat[k]<bounds[3]):
42 dist=np.square(lons-vlon[k])+np.square(lats-vlat[k])
43 ii,jj = np.unravel_index(dist.argmin(),dist.shape)
44 rlon[k]=lons[ii,jj]
45 rlat[k]=lats[ii,jj]
46 else:
47 rlon[k]=np.nan;
48 rlat[k]=np.nan;
49 ret=(np.reshape(rlon,lon.shape),np.reshape(rlat,lat.shape))
50 return ret
53 def nearest_scipy(lon,lat,stree,bounds):
54 """
55 Returns the coordinates interpolated from (lon,lat) to (lons,lats) and the value of the indices where NaN values
57 :param lon: 2D array of longitudes to look the nearest neighbours
58 :param lat: 2D array of latitudes to look the nearest neighbours
59 :param lons: 2D array of longitudes interpolating to
60 :param lats: 2D array of latitudes interpolating to
61 :param dub: optional, distance upper bound to look for the nearest neighbours
62 :return ret: A tuple with a 2D array of coordinates interpolated from (lon,lat) to (lons,lats) and the value of the indices where NaN values
64 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
65 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
66 """
67 vlon=np.reshape(lon,np.prod(lon.shape))
68 vlat=np.reshape(lat,np.prod(lat.shape))
69 vlonlat=np.column_stack((vlon,vlat))
70 M=(vlon>bounds[0])*(vlon<bounds[1])*(vlat>bounds[2])*(vlat<bounds[3])
71 vlonlat=vlonlat[M]
72 inds=np.array(stree.query(vlonlat)[1])
73 ret=(inds,M)
74 return ret
76 def distance_upper_bound(dx,dy):
77 """
78 Computes the distance upper bound
80 :param dx: array of two elements with fire mesh grid resolutions
81 :param dy: array of two elements with satellite grid resolutions
82 :return d: distance upper bound to look for the nearest neighbours
84 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
85 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
86 """
87 rx=np.sqrt(dx[0]**2+dx[1]**2)
88 ry=np.sqrt(dy[0]**2+dy[1]**2)
89 d=max(rx,ry)
90 return d
92 def neighbor_indices(indices,shape,d=2):
93 """
94 Computes all the neighbor indices from an indice list
96 :param indices: list of coordinates in a 1D array
97 :param shape: array of two elements with satellite grid size
98 :param d: optional, distance of the neighbours
99 :return ind: Returns a numpy array with the indices and the neighbor indices in 1D array
101 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
102 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
104 # Width and Length of the 2D grid
105 w=shape[0]
106 l=shape[1]
107 # 2D indices of the 1D indices
108 I=[[np.mod(ind,w),ind/w] for ind in indices]
109 # All the combinations (x,y) for all the neighbor points from x-d to x+d and y-d to y+d
110 N=np.concatenate([np.array(list(itertools.product(range(max(i[0]-d,0),min(i[0]+d+1,w)),range(max(i[1]-d,0),min(i[1]+d+1,l))))) for i in I])
111 # Recompute the 1D indices of the 2D coordinates inside the 2D domain
112 ret=np.array([x[0]+w*x[1] for x in N])
113 # Sort them and take each indice once
114 ind=sorted(np.unique(ret))
115 return ind
117 def neighbor_indices_pixel(lons,lats,lon,lat,scan,track):
119 Computes all the neighbor indices depending on the size of the pixel
121 :param lons: one dimensional array of the fire mesh longitud coordinates
122 :param lats: one dimensional array of the fire mesh latitude coordinates
123 :param lon: one dimensional array of the fire detection longitud coordinates
124 :param lat: one dimensional array of the fire detection latitude coordinates
125 :param scan: one dimensional array of the fire detection along-scan sizes
126 :param track: one dimensional array of the fire detection along-track sizes
127 :return ll: returns a one dimensional logical array with the indices in the fire mesh including pixel neighbours
129 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
130 Angel Farguell (angel.farguell@gmail.com), 2018-10-16
132 R=6378 # Earth radius
133 km_lat=180/(np.pi*R) # 1km in degrees latitude
134 km_lon=km_lat/np.cos(lat*np.pi/180) # 1 km in longitude
135 # pixel sizes in degrees
136 sqlat=km_lat*track/2
137 sqlon=km_lon*scan/2
138 # creating bounds for each fire detection (pixel vertexs)
139 bounds=[[lon[k]-sqlon[k],lon[k]+sqlon[k],lat[k]-sqlat[k],lat[k]+sqlat[k]] for k in range(len(lat))]
140 # creating a logical array of indices in the fire mesh with the intersection of all the cases
141 ll=np.sum([np.array(np.logical_and(np.logical_and(np.logical_and(lons>b[0],lons<b[1]),lats>b[2]),lats<b[3])) for b in bounds],axis=0).astype(bool)
142 if np.all(ll==False):
143 fll = np.array([False]*len(lons))
144 return fll
145 return ll
147 def neighbor_indices_ellipse(lons,lats,lon,lat,scan,track,mm=1):
149 Computes all the neighbor indices in an ellipse of radius the size of the pixel
151 :param lons: one dimensional array of the fire mesh longitud coordinates
152 :param lats: one dimensional array of the fire mesh latitude coordinates
153 :param lon: one dimensional array of the fire detection longitud coordinates
154 :param lat: one dimensional array of the fire detection latitude coordinates
155 :param scan: one dimensional array of the fire detection along-scan sizes
156 :param track: one dimensional array of the fire detection along-track sizes
157 :param mm: constant of magnitude of the ellipse, default mm=1 (ellipse inscribed in the pixel)
158 :return ll: returns a one dimensional logical array with the indices in the fire mesh including pixel neighbours
160 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
161 Angel Farguell (angel.farguell@gmail.com), 2018-10-18
163 R=6378 # Earth radius
164 km_lat=180/(np.pi*R) # 1km in degrees latitude
165 km_lon=km_lat/np.cos(lat*np.pi/180) # 1 km in longitude
166 # pixel sizes in degrees
167 sqlat=km_lat*track/2
168 sqlon=km_lon*scan/2
169 # creating the coordinates in the center of the ellipse
170 C=[[(np.array(lons)-lon[k])/sqlon[k],(np.array(lats)-lat[k])/sqlat[k]] for k in range(len(lat))]
171 # creating a logical array of indices in the fire mesh with the intersection of all the cases
172 ll=np.sum([np.array((np.square(c[0])+np.square(c[1]))<=mm) for c in C],axis=0).astype(bool)
173 if np.all(ll==False):
174 fll = np.array([False]*len(lons))
175 return fll
176 return ll
178 def neighbor_indices_ball(tree,indices,shape,d=2):
180 Computes all the neighbor indices from an indice list in a grid of indices defined through a cKDTree
182 :param indices: list of coordinates in a 1D array
183 :param shape: array of two elements with satellite grid size
184 :param d: optional, distance of the neighbours computed as: sqrt(2*d**2)
185 :return ind: returns a numpy array with the indices and the neighbor indices in 1D array respect to the grid used in the tree
187 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
188 Angel Farguell (angel.farguell@gmail.com), 2018-09-20
190 # Width of the 2D grid
191 w=shape[0]
192 # 2D indices of the 1D indices
193 I=[[np.mod(ind,w),ind/w] for ind in indices]
194 # Radius to look for
195 radius=np.sqrt(2*d**2)
196 # Request all the neighbors in a radius "radius"
197 N=tree.query_ball_point(I,r=radius)
198 # Return an unique and sorted array of 1D indices (indices pointing to the grid used for the tree)
199 ind=sorted(np.unique(np.concatenate(N)))
200 return ind
202 if __name__ == "__main__":
203 t_init = time()
204 # Initialization of grids
205 N=100
206 (dx1,dx2)=(1,1)
207 (dy1,dy2)=(3,3)
208 x=np.arange(0,N,dx1)
209 lons=np.repeat(x[np.newaxis,:],x.shape[0], axis=0)
210 x=np.arange(0,N,dx2)
211 lats=np.repeat(x[np.newaxis,:],x.shape[0], axis=0).T
212 bounds=[lons.min(),lons.max(),lats.min(),lats.max()]
213 print 'bounds'
214 print bounds
215 print 'dim_mesh=(%d,%d)' % lons.shape
216 y=np.arange(-N*1.432,2.432*N,dy1)
217 lon=np.repeat(y[np.newaxis,:],y.shape[0], axis=0)
218 y=np.arange(-N*1.432,2.432*N,dy2)
219 lat=np.repeat(y[np.newaxis,:],y.shape[0], axis=0)
220 print 'dim_data=(%d,%d)' % (lon.shape[0], lat.shape[0])
222 # Result by Euclidean distance
223 print '>>Euclidean approax<<'
224 (rlon,rlat)=nearest_euclidean(lon,lat,lons,lats,bounds)
225 rlon=np.reshape(rlon,np.prod(lon.shape))
226 rlat=np.reshape(rlat,np.prod(lat.shape))
227 vlonlatm=np.column_stack((rlon,rlat))
228 print vlonlatm
229 t_final = time()
230 print 'Elapsed time: %ss.' % str(t_final-t_init)
232 # Result by scipy.spatial.cKDTree function
233 vlons=np.reshape(lons,np.prod(lons.shape))
234 vlats=np.reshape(lats,np.prod(lats.shape))
235 vlonlats=np.column_stack((vlons,vlats))
236 print vlonlats
237 stree=spatial.cKDTree(vlonlats)
238 (inds,K)=nearest_scipy(lon,lat,stree,bounds)
239 vlonlatm2=np.empty((np.prod(lon.shape),2))
240 vlonlatm2[:]=np.nan
241 vlons=np.reshape(lons,np.prod(lons.shape))
242 vlats=np.reshape(lats,np.prod(lats.shape))
243 vlonlats=np.column_stack((vlons,vlats))
244 vlonlatm2[K]=vlonlats[inds]
245 print '>>cKDTree<<'
246 print vlonlatm2
247 t_ffinal = time()
248 print 'Elapsed time: %ss.' % str(t_ffinal-t_final)
250 # Comparison
251 print 'Same results?'
252 print (np.isclose(vlonlatm,vlonlatm2) | np.isnan(vlonlatm) | np.isnan(vlonlatm2)).all()
254 # Testing neighbor indices
255 N=100
256 shape=(250,250)
257 ind=sorted(np.unique([randint(0,np.prod(shape)-1) for i in range(0,N)]))
258 #ind=[0,3,shape[0]/2+shape[1]/2*shape[0],np.prod(shape)-1]
259 t_init = time()
260 ne=neighbor_indices(ind,shape,d=8)
261 t_final = time()
262 print '1D neighbors:'
263 print 'elapsed time: %ss.' % str(t_final-t_init)
264 grid=np.array(list(itertools.product(np.array(range(0,shape[0])),np.array(range(0,shape[1])))))
265 tree=spatial.cKDTree(grid)
266 t_init = time()
267 kk=neighbor_indices_ball(tree,ind,shape,d=8)
268 t_final = time()
269 nse=[x[0]+x[1]*shape[0] for x in grid[kk]]
270 print '1D neighbors scipy:'
271 print 'elapsed time: %ss.' % str(t_final-t_init)
272 print 'Difference'
273 print np.setdiff1d(ne,nse)
274 print np.setdiff1d(nse,ne)