2 # Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
3 # Angel Farguell (angel.farguell@gmail.com)
6 # conda install scikit-learn
7 # conda install scikit-image
9 from sklearn
import svm
10 from sklearn
.model_selection
import GridSearchCV
11 from scipy
import interpolate
, spatial
12 import matplotlib
.pyplot
as plt
13 import matplotlib
.font_manager
14 import matplotlib
.colors
as colors
15 from mpl_toolkits
.mplot3d
import axes3d
16 from mpl_toolkits
.mplot3d
.art3d
import Poly3DCollection
19 from infrared_perimeters
import process_infrared_perimeters
23 def verify_inputs(params
):
24 required_args
= [("search", False), ("norm", True),
25 ("notnan", True), ("artil", False), ("hartil", 0.2),
26 ("artiu", True), ("hartiu", 0.1), ("downarti", True),
27 ("dminz", 0.1), ("confal", 100), ("toparti", False),
28 ("dmaxz", 0.1), ("confau", 100), ("plot_data", False),
29 ("plot_scaled", False), ("plot_decision", False),
30 ("plot_poly", False), ("plot_supports", False),
31 ("plot_result", False)]
32 # check each argument that should exist
33 for key
, default
in required_args
:
35 params
.update({key
: default
})
38 def preprocess_data_svm(data
, scale
, minconf
=80.):
40 Preprocess satellite data from JPSSD to use in Support Vector Machine directly
41 (without any interpolation as space-time 3D points)
43 :param data: dictionary of satellite data from JPSSD
44 :param scale: time scales
45 :param minconf: optional, minim fire confidence level to take into account
46 :return X: matrix of features for SVM
47 :return y: vector of labels for SVM
48 :return c: vector of confidence level for SVM
50 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
51 Angel Farguell (angel.farguell@gmail.com), 2019-09-24
54 # confidence of ground detections
57 # scale from seconds to days
60 detlon
= np
.concatenate([d
['lon_fire'] for d
in data
.itervalues()])
61 detlat
= np
.concatenate([d
['lat_fire'] for d
in data
.itervalues()])
62 confs
= np
.concatenate([d
['conf_fire'] for d
in data
.itervalues()])
63 bb
= (detlon
[confs
> minconf
].min(),detlon
[confs
> minconf
].max(),detlat
[confs
> minconf
].min(),detlat
[confs
> minconf
].max())
64 dc
= (bb
[1]-bb
[0],bb
[3]-bb
[2])
65 bf
= (bb
[0]-dc
[0]*.3,bb
[1]+dc
[0]*.3,bb
[2]-dc
[1]*.3,bb
[3]+dc
[1]*.3)
68 # process all the points as space-time 3D nodes
71 for gran
in data
.items():
72 print '> processing granule %s' % gran
[0]
73 tt
= (gran
[1]['time_num']-scale
[0])/tscale
74 conf
= gran
[1]['conf_fire']>=minconf
75 xf
= np
.c_
[(gran
[1]['lon_fire'][conf
],gran
[1]['lat_fire'][conf
],np
.repeat(tt
,conf
.sum()))]
76 print 'fire detections: %g' % len(xf
)
78 mask
= np
.logical_and(gran
[1]['lon_nofire'] >= bf
[0],
79 np
.logical_and(gran
[1]['lon_nofire'] <= bf
[1],
80 np
.logical_and(gran
[1]['lat_nofire'] >= bf
[2],
81 gran
[1]['lat_nofire'] <= bf
[3])))
82 xg
= np
.c_
[(gran
[1]['lon_nofire'][mask
],gran
[1]['lat_nofire'][mask
],np
.repeat(tt
,mask
.sum()))]
83 print 'no fire detections: %g' % len(xg
)
84 coarsening
= 1 #np.int(1+len(xg)/min(100,20*max(len(xf),1)))
85 print 'no fire coarsening: %d' % coarsening
86 print 'no fire detections reduction: %g' % len(xg
[::coarsening
])
87 XX
[1].append(xg
[::coarsening
])
88 cf
.append(gran
[1]['conf_fire'][conf
])
90 Xf
= np
.concatenate(tuple(XX
[0]))
91 Xg
= np
.concatenate(tuple(XX
[1]))
92 X
= np
.concatenate((Xg
,Xf
))
93 y
= np
.concatenate((-np
.ones(len(Xg
)),np
.ones(len(Xf
))))
94 c
= np
.concatenate((gconf
*np
.ones(len(Xg
)),np
.concatenate(tuple(cf
))))
95 print 'shape X: ', X
.shape
96 print 'shape y: ', y
.shape
97 print 'shape c: ', c
.shape
98 print 'len fire: ', len(X
[y
==1])
99 print 'len ground: ', len(X
[y
==-1])
103 def preprocess_result_svm(lons
, lats
, U
, L
, T
, scale
, time_num_granules
, C
=None):
105 Preprocess satellite data from JPSSD and setup to use in Support Vector Machine
107 :param lons: longitud grid
108 :param lats: latitde grid
109 :param U: upper bound grid
110 :param L: lower bound grid
112 :param scale: time scales
113 :param time_num_granules: times of the granules
114 :return X: matrix of features for SVM
115 :return y: vector of labels for SVM
116 :return c: vector of confidence level for SVM
118 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
119 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
122 # Flatten coordinates
123 lon
= np
.ravel(lons
).astype(float)
124 lat
= np
.ravel(lats
).astype(float)
126 # Temporal scale to days
131 # Ensuring U>=L always
132 print 'U>L: ',(U
>L
).sum()
133 print 'U<L: ',(U
<L
).sum()
134 print 'U==L: ',(U
==L
).sum()
141 # Maximum and minimums to NaN data
142 uu
[uu
==uu
.max()] = np
.nan
143 ll
[ll
==ll
.min()] = np
.nan
145 # Mask created during computation of lower and upper bounds
146 mk
= tt
==scale
[1]-scale
[0]
147 # Masking upper bounds outside the mask
150 # Creating minimum value for the upper bounds
151 muu
= uu
[~np
.isnan(uu
)].min()
152 # Creating maximum value for the lower bounds
153 mll
= ll
[~np
.isnan(ll
)].max()
155 ### Reduction of the density of lower bounds
156 # Creation of low bounds mask (True values are going to turn Nan's in lower bound data)
158 ## Reason: We do not care about lower bounds below the upper bounds which are far from the upper bounds
159 # temporary lower mask, all False (values of the mask where the mask is False, inside the fire mask)
161 # set to True all the bounds less than floor of minimum of upper bounds in fire mask
162 tlmk
[~np
.isnan(ll
[~mk
])] = (ll
[~mk
][~np
.isnan(ll
[~mk
])] < np
.floor(muu
))
163 # set lower mask from temporary mask
165 ## Reason: Coarsening of the lower bounds below the upper bounds to create balance
166 # create coarsening of the lower bound data below the upper bounds to be similar amount that upper bounds
167 kk
= (~np
.isnan(ll
[~lmk
])).sum()/(~np
.isnan(uu
)).sum()
169 # temporary lower mask, all True (values of the lower mask where the lower mask is False, set to True)
171 # only set a subset of the lower mask values to False (coarsening)
173 # set lower mask form temporary mask
175 ## Reason: We care about the maximum lower bounds which are not below upper bounds
176 # temporary lower mask, all True (values of the mask where the mask is True, outside the fire mask)
178 # temporary lower mask 2, all True (subset of the previous mask where the lower bounds is not Nan)
179 t2lmk
= tlmk
[~np
.isnan(ll
[mk
])]
180 # set to False in the temporary lower mask 2 where lower bounds have maximum value
181 t2lmk
[ll
[mk
][~np
.isnan(ll
[mk
])] == mll
] = False
182 # set temporary lower mask from temporary lower mask 2
183 tlmk
[~np
.isnan(ll
[mk
])] = t2lmk
184 # set lower mask from temporary lower mask
186 ## Reason: Coarsening of the not maximum lower bounds not below the upper bounds to create balance
187 # set subset outside of the fire mask for the rest
188 # create coarsening of the not maximum lower bounds not below the upper bounds to be similar amount that the current number of lower bounds
189 kk
= (ll
[mk
][~np
.isnan(ll
[mk
])] < mll
).sum()/(~np
.isnan(ll
[~lmk
])).sum()
191 # temporary lower mask, values of the current lower mask outside of the original fire mask
193 # temporary lower mask 2, subset of the previous mask where the lower bound is not Nan
194 t2lmk
= tlmk
[~np
.isnan(ll
[mk
])]
195 # temporary lower mask 3, subset of the previous mask where the lower bounds are not maximum
196 t3lmk
= t2lmk
[ll
[mk
][~np
.isnan(ll
[mk
])] < mll
]
197 # coarsening of the temporary lower mask 3
199 # set the temporary lower mask 2 from the temporary lower mask 3
200 t2lmk
[ll
[mk
][~np
.isnan(ll
[mk
])] < mll
] = t3lmk
201 # set the temporary lower mask from the temporary lower mask 2
202 tlmk
[~np
.isnan(ll
[mk
])] = t2lmk
203 # set the lower mask from the temporary lower mask
206 # Masking lower bounds from previous lower mask
209 # Values different than NaN in the upper and lower bounds
210 um
= np
.array(~np
.isnan(uu
))
211 lm
= np
.array(~np
.isnan(ll
))
212 # Define all the x, y, and z components of upper and lower bounds
220 # Create the data to call SVM3 function from svm.py
221 X
= np
.c_
[np
.concatenate((lx
,ux
)),np
.concatenate((ly
,uy
)),np
.concatenate((lz
,uz
))]
222 y
= np
.concatenate((-np
.ones(len(lx
)),np
.ones(len(ux
))))
223 # Print the shape of the data
224 print 'shape X: ', X
.shape
225 print 'shape y: ', y
.shape
228 c
= 80*np
.ones(y
.shape
)
230 c
= np
.concatenate((np
.ravel(C
[0])[lm
],np
.ravel(C
[1])[um
]))
232 # Clean data if not in bounding box
233 bbox
= (lon
.min(),lon
.max(),lat
.min(),lat
.max(),time_num_granules
)
234 geo_mask
= np
.logical_and(np
.logical_and(np
.logical_and(X
[:,0] >= bbox
[0],X
[:,0] <= bbox
[1]), X
[:,1] >= bbox
[2]), X
[:,1] <= bbox
[3])
235 btime
= (0,(scale
[1]-scale
[0])/tscale
)
236 time_mask
= np
.logical_and(X
[:,2] >= btime
[0], X
[:,2] <= btime
[1])
237 whole_mask
= np
.logical_and(geo_mask
, time_mask
)
244 def make_fire_mesh(fxlon
, fxlat
, it
, nt
):
246 Create a mesh of points to evaluate the decision function
248 :param fxlon: data to base x-axis meshgrid on
249 :param fxlat: data to base y-axis meshgrid on
250 :param it: data to base z-axis meshgrid on
251 :param nt: tuple of number of nodes at each direction, optional
252 :param coarse: coarsening of the fire mesh
253 :return xx, yy, zz: ndarray
255 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
256 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
259 xx
= np
.repeat(fxlon
[:, :, np
.newaxis
], nt
, axis
=2)
260 yy
= np
.repeat(fxlat
[:, :, np
.newaxis
], nt
, axis
=2)
261 tt
= np
.linspace(it
[0],it
[1],nt
)
262 zz
= np
.swapaxes(np
.swapaxes(np
.array([np
.ones(fxlon
.shape
)*t
for t
in tt
]),0,1),1,2)
266 def make_meshgrid(x
, y
, z
, s
=(50,50,50), exp
=.1):
268 Create a mesh of points to evaluate the decision function
270 :param x: data to base x-axis meshgrid on
271 :param y: data to base y-axis meshgrid on
272 :param z: data to base z-axis meshgrid on
273 :param s: tuple of number of nodes at each direction, optional
274 :param exp: extra percentage of time steps in each direction (between 0 and 1), optional
275 :return xx, yy, zz: ndarray
277 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
278 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
280 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
283 if not isinstance(s
, tuple):
285 print 'The number of nodes at each direction is not a tuple: ', s
287 # number of nodes in each direction
288 sx
, sy
, sz
= np
.array(s
).astype(int)
289 # extra step sizes in each direction
293 # grid lengths in each directon
294 lx
= x
.max() - x
.min()
295 ly
= y
.max() - y
.min()
296 lz
= z
.max() - z
.min()
297 # grid resolutions in each direction
298 hx
= lx
/ (sx
- 2*brx
- 1)
299 hy
= ly
/ (sy
- 2*bry
- 1)
300 hz
= lz
/ (sz
- 2*brz
- 1)
301 # extrem values for each dimension
302 x_min
, x_max
= x
.min() - brx
* hx
, x
.max() + brx
* hx
303 y_min
, y_max
= y
.min() - bry
* hy
, y
.max() + bry
* hy
304 z_min
, z_max
= z
.min() - brz
* hz
, z
.max() + brz
* hz
305 # generating the mesh grid
306 xx
, yy
, zz
= np
.meshgrid(np
.linspace(y_min
, y_max
, sy
),
307 np
.linspace(x_min
, x_max
, sx
),
308 np
.linspace(z_min
, z_max
, sz
))
311 def frontier(clf
, xx
, yy
, zz
, bal
=.5, plot_decision
= False, plot_poly
=False, using_weights
=False):
313 Compute the surface decision frontier for a classifier.
315 :param clf: a classifier
316 :param xx: meshgrid ndarray
317 :param yy: meshgrid ndarray
318 :param zz: meshgrid ndarray
319 :param bal: number between 0 and 1, balance between lower and upper bounds in decision function (in case not level 0)
320 :param plot_decision: boolean of plotting decision volume
321 :param plot_poly: boolean of plotting polynomial approximation
322 :return F: 2D meshes with xx, yy coordinates and the hyperplane z which gives decision functon 0
324 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
325 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
327 https://www.semipol.de/2015/10/29/SVM-separating-hyperplane-3d-matplotlib.html
330 # Creating the 3D grid
331 XX
= np
.c_
[np
.ravel(xx
), np
.ravel(yy
), np
.ravel(zz
)]
333 # Evaluating the decision function
334 print '>> Evaluating the decision function...'
338 from libsvm_weights
.python
.svmutil
import svm_predict
339 _
, _
, p_vals
= svm_predict([], XX
, clf
, '-q')
340 ZZ
= np
.array([p
[0] for p
in p_vals
])
342 ZZ
= clf
.decision_function(XX
)
344 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
345 hist
= np
.histogram(ZZ
)
346 print 'counts: ', hist
[0]
347 print 'values: ', hist
[1]
348 print 'decision function range: ', ZZ
.min(), '~', ZZ
.max()
350 # Reshaping decision function volume
351 Z
= ZZ
.reshape(xx
.shape
)
352 print 'decision function shape: ', Z
.shape
353 sl
.save((xx
,yy
,zz
,Z
),'decision')
357 from skimage
import measure
358 from shiftcmap
import shiftedColorMap
359 verts
, faces
, normals
, values
= measure
.marching_cubes_lewiner(Z
, level
=0, allow_degenerate
=False)
360 # Scale and transform to actual size of the interesting volume
361 h
= np
.divide([xx
.max()-xx
.min(), yy
.max() - yy
.min(), zz
.max() - zz
.min()],np
.array(xx
.shape
)-1)
363 verts
= verts
+ [xx
.min(), yy
.min(), zz
.min()]
364 mesh
= Poly3DCollection(verts
[faces
], facecolor
='orange', alpha
=.9)
366 ax
= fig
.gca(projection
='3d')
367 fig
.suptitle("Decision volume")
368 col
= [(0, .5, 0), (.5, .5, .5), (.5, 0, 0)]
369 cm
= colors
.LinearSegmentedColormap
.from_list('GrRdD',col
,N
=50)
370 midpoint
= 1 - ZZ
.max() / (ZZ
.max() + abs(ZZ
.min()))
371 shiftedcmap
= shiftedColorMap(cm
, midpoint
=midpoint
, name
='shifted')
372 kk
= 1+np
.divide(xx
.shape
,50)
373 X
= np
.ravel(xx
[::kk
[0],::kk
[1],::kk
[2]])
374 Y
= np
.ravel(yy
[::kk
[0],::kk
[1],::kk
[2]])
375 T
= np
.ravel(zz
[::kk
[0],::kk
[1],::kk
[2]])
376 CC
= np
.ravel(Z
[::kk
[0],::kk
[1],::kk
[2]])
377 p
= ax
.scatter(X
, Y
, T
, c
=CC
, s
=.1, alpha
=.5, cmap
=shiftedcmap
)
378 cbar
= fig
.colorbar(p
)
379 cbar
.set_label('decision function value', rotation
=270, labelpad
=20)
380 ax
.add_collection3d(mesh
)
381 ax
.set_zlim([xx
.min(),xx
.max()])
382 ax
.set_ylim([yy
.min(),yy
.max()])
383 ax
.set_zlim([zz
.min(),zz
.max()])
384 ax
.set_xlabel("Longitude normalized")
385 ax
.set_ylabel("Latitude normalized")
386 ax
.set_zlabel("Time normalized")
387 plt
.savefig('decision.png')
388 except Exception as e
:
389 print 'Warning: something went wrong when plotting...'
394 # Computing fire arrival time from previous decision function
395 print '>> Computing fire arrival time...'
398 # xx 2-dimensional array
400 # yy 2-dimensional array
402 # zz 1-dimensional array
404 # Initializing fire arrival time
405 Fz
= np
.zeros(Fx
.shape
)
407 for k1
in range(Fx
.shape
[0]):
408 for k2
in range(Fx
.shape
[1]):
409 # Approximate the vertical decision function by a piecewise polynomial (cubic spline interpolation)
410 pz
= interpolate
.CubicSpline(zr
, Z
[k1
,k2
])
411 # Compute the real roots of the the piecewise polynomial
413 # Just take the real roots between min(zz) and max(zz)
414 realr
= rr
.real
[np
.logical_and(abs(rr
.imag
) < 1e-5, np
.logical_and(rr
.real
> zr
.min(), rr
.real
< zr
.max()))]
416 # Take the minimum root
417 Fz
[k1
,k2
] = realr
.min()
418 # Plotting the approximated polynomial with the decision function
423 plt
.plot(Z
[k1
,k2
],zr
,'+')
424 plt
.plot(np
.zeros(len(realr
)),realr
,'o',c
='g')
425 plt
.plot(0,Fz
[k1
,k2
],'o',markersize
=3,c
='r')
426 plt
.title('Polynomial approximation of decision_function(%f,%f,z)' % (Fx
[k1
,k2
],Fy
[k1
,k2
]))
427 plt
.xlabel('decision function value')
429 plt
.legend(['polynomial','decision values','roots','fire arrival time'])
430 plt
.xlim([Z
.min(),Z
.max()])
431 plt
.ylim([zz
.min(),zz
.max()])
435 except Exception as e
:
436 print 'Warning: something went wrong when plotting...'
439 # If there is not a real root of the polynomial between zz.min() and zz.max(), just define as a Nan
442 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
447 def SVM3(X
, y
, C
=1., kgam
=1., fire_grid
=None, it
=None, **params
):
449 3D SuperVector Machine analysis and plot
451 :param X: Training vectors, where n_samples is the number of samples and n_features is the number of features.
452 :param y: Target values
453 :param C: Penalization (argument of svm.SVC class), optional
454 :param kgam: Scalar multiplier for gamma (capture more details increasing it), optional
455 :param fire_grid: The longitud and latitude grid where to have the fire arrival time, optional
456 :return F: tuple with (longitude grid, latitude grid, fire arrival time grid)
458 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
459 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
461 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
463 # add default values for parameters not specified
464 params
= verify_inputs(params
)
465 print 'svm params: ',params
469 col
= [(0, .5, 0), (.5, 0, 0)]
470 cm_GR
= colors
.LinearSegmentedColormap
.from_list('GrRd',col
,N
=2)
471 col
= [(1, 0, 0), (.25, 0, 0)]
472 cm_Rds
= colors
.LinearSegmentedColormap
.from_list('Rds',col
,N
=100)
474 # if fire_grid==None: creation of the grid options
475 # number of vertical nodes per observation
477 # number of horizontal nodes per observation
480 # using different weights for the data
481 if isinstance(C
,(list,tuple,np
.ndarray
)):
483 from libsvm_weights
.python
.svm
import svm_problem
, svm_parameter
484 from libsvm_weights
.python
.svmutil
import svm_train
485 from sklearn
.utils
import compute_class_weight
487 using_weights
= False
490 X
= np
.array(X
).astype(float)
494 oX
= np
.array(X
).astype(float)
497 # Visualization of the data
498 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
499 if params
['plot_data']:
502 ax
= fig
.gca(projection
='3d')
503 fig
.suptitle("Plotting the original data to fit")
504 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=cm_GR
, s
=1, alpha
=.5, vmin
=y
.min(), vmax
=y
.max())
505 ax
.set_xlabel("Longitude")
506 ax
.set_ylabel("Latitude")
507 ax
.set_zlabel("Time (days)")
508 plt
.savefig('original_data.png')
509 except Exception as e
:
510 print 'Warning: something went wrong when plotting...'
513 # Normalization of the data into [0,1]^3
516 xlen
= X0
.max() - X0
.min()
517 x0
= np
.divide(X0
- xmin
, xlen
)
519 ylen
= X1
.max() - X1
.min()
520 x1
= np
.divide(X1
- ymin
, ylen
)
522 zlen
= X2
.max() - X2
.min()
523 x2
= np
.divide(X2
- zmin
, zlen
)
524 X0
, X1
, X2
= x0
, x1
, x2
529 # Creation of fire and ground artificial detections
530 if params
['artil'] or params
['artiu'] or params
['toparti'] or params
['downarti']:
531 # Extreme values at z direction
534 # Division of lower and upper bounds for data and confidence level
535 fl
= X
[y
==np
.unique(y
)[0]]
536 fu
= X
[y
==np
.unique(y
)[1]]
538 # Artifitial extensions of the lower bounds
540 # Create artificial lower bounds
541 flz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],minz
,-params
['hartil']),f
[2])) for f
in fl
])
542 # Definition of new ground detections after artificial detections added
543 Xg
= np
.concatenate([ np
.c_
[(np
.repeat(fl
[k
][0],len(flz
[k
])),np
.repeat(fl
[k
][1],len(flz
[k
])),flz
[k
])] for k
in range(len(flz
)) ])
545 cl
= C
[y
==np
.unique(y
)[0]]
546 Cg
= np
.concatenate([ np
.repeat(cl
[k
],len(flz
[k
])) for k
in range(len(flz
)) ])
550 cl
= C
[y
==np
.unique(y
)[0]]
553 # Artifitial extensions of the upper bounds
555 # Create artificial upper bounds
556 fuz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],maxz
,params
['hartiu']),f
[2])) for f
in fu
])
557 # Definition of new fire detections after artificial detections added
558 Xf
= np
.concatenate([ np
.c_
[(np
.repeat(fu
[k
][0],len(fuz
[k
])),np
.repeat(fu
[k
][1],len(fuz
[k
])),fuz
[k
])] for k
in range(len(fuz
)) ])
559 # Define new confidence levels
561 cu
= C
[y
==np
.unique(y
)[1]]
562 Cf
= np
.concatenate([ np
.repeat(cu
[k
],len(fuz
[k
])) for k
in range(len(fuz
)) ])
566 cu
= C
[y
==np
.unique(y
)[1]]
569 # Bottom artificial lower bounds
570 if params
['downarti']:
571 # Creation of the x,y new mesh of artificial lower bounds
572 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
573 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
574 # All the artificial new mesh are going to be below the data
575 zng
= np
.repeat(minz
-params
['dminz'],len(np
.ravel(xn
)))
576 # Artifitial lower bounds
577 Xga
= np
.c_
[np
.ravel(xn
),np
.ravel(yn
),np
.ravel(zng
)]
578 # Definition of new ground detections after down artificial lower detections
579 Xgn
= np
.concatenate((Xg
,Xga
))
580 # Definition of new confidence level
582 Cga
= np
.ones(len(Xga
))*params
['confal']
583 Cgn
= np
.concatenate((Cg
,Cga
))
589 # Top artificial upper bounds
590 if params
['toparti']:
591 # Creation of the x,y new mesh of artificial upper bounds
592 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
593 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
594 # All the artificial new mesh are going to be over the data
595 znf
= np
.repeat(maxz
+params
['dmaxz'],len(np
.ravel(xn
)))
596 # Artifitial upper bounds
597 Xfa
= np
.c_
[np
.ravel(xn
),np
.ravel(yn
),np
.ravel(znf
)]
598 # Definition of new fire detections after top artificial upper detections
599 Xfn
= np
.concatenate((Xf
,Xfa
))
600 # Definition of new confidence level
602 Cfa
= np
.ones(len(Xfa
))*params
['confau']
603 Cfn
= np
.concatenate((Cf
,Cfa
))
609 # New definition of the training vectors
610 X
= np
.concatenate((Xgn
, Xfn
))
611 # New definition of the target values
612 y
= np
.concatenate((np
.repeat(np
.unique(y
)[0],len(Xgn
)),np
.repeat(np
.unique(y
)[1],len(Xfn
))))
613 # New definition of the confidence level
615 C
= np
.concatenate((Cgn
, Cfn
))
616 # New definition of each feature vector
617 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
619 # Printing number of samples and features
620 n0
= (y
==np
.unique(y
)[0]).sum().astype(float)
621 n1
= (y
==np
.unique(y
)[1]).sum().astype(float)
622 n_samples
, n_features
= X
.shape
623 print 'n_samples =', n_samples
624 print 'n_samples_{-1} =', int(n0
)
625 print 'n_samples_{+1} =', int(n1
)
626 print 'n_features =', n_features
628 # Visualization of scaled data
629 if params
['plot_scaled']:
632 ax
= fig
.gca(projection
='3d')
633 fig
.suptitle("Plotting the data scaled to fit")
634 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=cm_GR
, s
=1, alpha
=.5, vmin
=y
.min(), vmax
=y
.max())
635 ax
.set_xlabel("Longitude normalized")
636 ax
.set_ylabel("Latitude normalized")
637 ax
.set_zlabel("Time normalized")
638 plt
.savefig('scaled_data.png')
639 except Exception as e
:
640 print 'Warning: something went wrong when plotting...'
643 # Reescaling gamma to include more detailed results
644 gamma
= 1. / (n_features
* X
.std())
645 print 'gamma =', gamma
647 # Creating the SVM model and fitting the data using Super Vector Machine technique
648 print '>> Creating the SVM model...'
652 # Compute class balanced weights
653 cls
, _
= np
.unique(y
, return_inverse
=True)
654 class_weight
= compute_class_weight("balanced", cls
, y
)
655 prob
= svm_problem(C
,y
,X
)
656 arg
= '-g %.15g -w%01d %.15g -w%01d %.15g -m 1000 -h 0' % (gamma
, cls
[0], class_weight
[0],
657 cls
[1], class_weight
[1])
658 param
= svm_parameter(arg
)
659 print '>> Fitting the SVM model...'
661 clf
= svm_train(prob
,param
)
666 print '>> Searching for best value of C and gamma...'
669 param_grid
= {'C': np
.logspace(0,5,6), 'gamma': gamma
*np
.logspace(0,5,6)}
670 # Make grid search classifier
671 grid_search
= GridSearchCV(svm
.SVC(cache_size
=2000,class_weight
="balanced",probability
=True), param_grid
, n_jobs
=-1, verbose
=1, cv
=5, iid
=False)
672 print '>> Fitting the SVM model...'
673 # Train the classifier
674 grid_search
.fit(X
, y
)
675 print "Best Parameters:\n", grid_search
.best_params_
676 clf
= grid_search
.best_estimator_
677 print "Best Estimators:\n", clf
680 clf
= svm
.SVC(C
=C
, kernel
="rbf", gamma
=gamma
, cache_size
=2000, class_weight
="balanced") # default kernel: exp(-gamma||x-x'||^2)
682 print '>> Fitting the SVM model...'
683 # Fitting the data using Super Vector Machine technique
686 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
688 if not using_weights
:
689 # Check if the classification failed
692 print 'Failed fitting the data'
694 print 'number of support vectors: ', clf
.n_support_
695 print 'score of trained data: ', clf
.score(X
,y
)
697 # Creating the mesh grid to evaluate the classification
698 print '>> Creating mesh grid to evaluate the classification...'
699 nnodes
= np
.ceil(np
.power(n_samples
,1./n_features
))
700 if fire_grid
is None:
701 # Number of necessary nodes
704 print 'number of horizontal nodes (%d meshgrid nodes for each observation): %d' % (hN
,hnodes
)
705 print 'number of vertical nodes (%d meshgrid nodes for each observation): %d' % (vN
,vnodes
)
706 # Computing resolution of the mesh to evaluate
707 sdim
= (hnodes
,hnodes
,vnodes
)
708 print 'grid_size = %dx%dx%d = %d' % (sdim
[0],sdim
[1],sdim
[2],np
.prod(sdim
))
710 xx
, yy
, zz
= make_meshgrid(X0
, X1
, X2
, s
=sdim
)
713 fxlon
= np
.divide(fire_grid
[0] - xmin
, xlen
)
714 fxlat
= np
.divide(fire_grid
[1] - ymin
, ylen
)
716 it
= (X2
.min(),X2
.max())
718 it
= np
.divide(np
.array(it
) - zmin
, zlen
)
720 sdim
= (fxlon
.shape
[0],fxlon
.shape
[1],vnodes
)
721 print 'fire_grid_size = %dx%dx%d = %d' % (sdim
+ (np
.prod(sdim
),))
723 xx
, yy
, zz
= make_fire_mesh(fxlon
, fxlat
, it
, sdim
[2])
725 print 'grid_created = %dx%dx%d = %d' % (zz
.shape
+ (np
.prod(zz
.shape
),))
726 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
728 # Computing the 2D fire arrival time, F
729 print '>> Computing the 2D fire arrival time, F...'
731 F
= frontier(clf
, xx
, yy
, zz
, plot_decision
=params
['plot_decision'], plot_poly
=params
['plot_poly'], using_weights
=using_weights
)
733 print '>> Creating final results...'
735 # Plotting the Separating Hyperplane of the SVM classification with the support vectors
736 if params
['plot_supports']:
739 supp_ind
= np
.sort(clf
.get_sv_indices())-1
740 supp_vec
= X
[supp_ind
]
742 supp_ind
= clf
.support_
743 supp_vec
= clf
.support_vectors_
745 ax
= fig
.gca(projection
='3d')
746 fig
.suptitle("Plotting the 3D Separating Hyperplane of an SVM")
747 # plotting the separating hyperplane
748 ax
.plot_surface(F
[0], F
[1], F
[2], color
='orange', alpha
=.3)
749 # computing the indeces where no support vectors
750 rr
= np
.array(range(len(y
)))
751 ms
= np
.isin(rr
,supp_ind
)
753 # plotting no-support vectors (smaller)
754 ax
.scatter(X0
[nsupp
], X1
[nsupp
], X2
[nsupp
], c
=y
[nsupp
], cmap
=cm_GR
, s
=.5, vmin
=y
.min(), vmax
=y
.max(), alpha
=.1)
755 # plotting support vectors (bigger)
756 ax
.scatter(supp_vec
[:, 0], supp_vec
[:, 1], supp_vec
[:, 2], c
=y
[supp_ind
], cmap
=cm_GR
, s
=10, edgecolors
='k', linewidth
=.5, alpha
=.5);
757 ax
.set_xlim(xx
.min(),xx
.max())
758 ax
.set_ylim(yy
.min(),yy
.max())
759 ax
.set_zlim(zz
.min(),zz
.max())
760 ax
.set_xlabel("Longitude normalized")
761 ax
.set_ylabel("Latitude normalized")
762 ax
.set_zlabel("Time normalized")
763 plt
.savefig('support.png')
764 except Exception as e
:
765 print 'Warning: something went wrong when plotting...'
768 # Plot the fire arrival time resulting from the SVM classification normalized
769 if params
['plot_result']:
771 Fx
, Fy
, Fz
= np
.array(F
[0]), np
.array(F
[1]), np
.array(F
[2])
772 with np
.errstate(invalid
='ignore'):
773 Fz
[Fz
> X2
.max()] = np
.nan
775 Fz
[np
.isnan(Fz
)] = X2
.max()
776 Fz
= np
.minimum(Fz
, X2
.max())
778 ax
= fig
.gca(projection
='3d')
779 fig
.suptitle("Fire arrival time normalized")
780 # plotting fire arrival time
781 p
= ax
.plot_surface(Fx
, Fy
, Fz
, cmap
=cm_Rds
,
782 linewidth
=0, antialiased
=False)
783 ax
.set_xlim(xx
.min(),xx
.max())
784 ax
.set_ylim(yy
.min(),yy
.max())
785 ax
.set_zlim(zz
.min(),zz
.max())
786 cbar
= fig
.colorbar(p
)
787 cbar
.set_label('Fire arrival time normalized', labelpad
=20, rotation
=270)
788 ax
.set_xlabel("Longitude normalized")
789 ax
.set_ylabel("Latitude normalized")
790 ax
.set_zlabel("Time normalized")
791 plt
.savefig('tign_g.png')
792 except Exception as e
:
793 print 'Warning: something went wrong when plotting...'
796 # Translate the result again into initial data scale
798 f0
= F
[0] * xlen
+ xmin
799 f1
= F
[1] * ylen
+ ymin
800 f2
= F
[2] * zlen
+ zmin
803 # Set all the larger values at the end to be the same maximum value
804 oX0
, oX1
, oX2
= oX
[:, 0], oX
[:, 1], oX
[:, 2]
805 FFx
, FFy
, FFz
= FF
[0], FF
[1], FF
[2]
808 with np
.errstate(invalid
='ignore'):
809 FFz
[np
.isnan(FFz
)] = np
.nanmax(FFz
)
812 # Plot the fire arrival time resulting from the SVM classification
813 if params
['plot_result']:
815 # Plotting the result
817 ax
= fig
.gca(projection
='3d')
818 fig
.suptitle("Plotting the 3D graph function of a SVM")
819 FFx
, FFy
, FFz
= np
.array(FF
[0]), np
.array(FF
[1]), np
.array(FF
[2])
820 # plotting original data
821 ax
.scatter(oX0
, oX1
, oX2
, c
=oy
, cmap
=cm_GR
, s
=1, alpha
=.5, vmin
=y
.min(), vmax
=y
.max())
822 # plotting fire arrival time
823 ax
.plot_wireframe(FFx
, FFy
, FFz
, color
='orange', alpha
=.5)
824 ax
.set_xlabel("Longitude")
825 ax
.set_ylabel("Latitude")
826 ax
.set_zlabel("Time (days)")
827 plt
.savefig('result.png')
828 except Exception as e
:
829 print 'Warning: something went wrong when plotting...'
832 print '>> SUCCESS <<'
834 print 'TOTAL elapsed time: %ss.' % str(abs(t_final
-t_init
))
840 if __name__
== "__main__":
845 # Defining ground and fire detections
847 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0]]
848 Xf
= [[0, 0, 1], [1, 1, 0], [2, 2, 1], [2, 0, 1], [0, 2, 1]]
851 return Xg
, Xf
, C
, kgam
853 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0],
854 [4, 2, 0], [4, 0, 0], [2, 1, .5], [0, 1, .5],
855 [4, 1, .5], [2, 0, .5], [2, 2, .5]]
856 Xf
= [[0, 0, 1], [1, 1, 0.25], [2, 2, 1], [2, 0, 1], [0, 2, 1], [3, 1, 0.25], [4, 2, 1], [4, 0, 1]]
857 C
= np
.concatenate((np
.array([50.,50.,50.,50.,50.,50.,
858 1000.,100.,100.,100.,100.]), 100.*np
.ones(len(Xf
))))
860 return Xg
, Xf
, C
, kgam
862 # Creating the options
863 options
= {1 : exp1
, 2 : exp2
}
865 # Defining the option depending on the experiment
866 Xg
, Xf
, C
, kgam
= options
[exp
]()
868 # Creating the data necessary to run SVM3 function
869 X
= np
.concatenate((Xg
, Xf
))
870 y
= np
.concatenate((-np
.ones(len(Xg
)), np
.ones(len(Xf
))))
872 # Running SVM classification
873 SVM3(X
,y
,C
=C
,kgam
=kgam
,search
=search
,plot_result
=True)