2 # Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
3 # Angel Farguell (angel.farguell@gmail.com)
6 # conda install scikit-learn
7 # conda install scikit-image
9 from sklearn
import svm
10 from scipy
import interpolate
, spatial
11 import matplotlib
.pyplot
as plt
12 import matplotlib
.font_manager
13 import matplotlib
.colors
as colors
14 from mpl_toolkits
.mplot3d
import axes3d
15 from mpl_toolkits
.mplot3d
.art3d
import Poly3DCollection
18 from infrared_perimeters
import process_infrared_perimeters
22 def preprocess_data_svm(lons
, lats
, U
, L
, T
, scale
, time_num_granules
, C
=None):
24 Preprocess satellite data from JPSSD and setup to use in Support Vector Machine
26 :param lons: longitud grid
27 :param lats: latitde grid
28 :param U: upper bound grid
29 :param L: lower bound grid
31 :param scale: time scales
32 :param time_num_granules: times of the granules
33 :return X: matrix of features for SVM
34 :return y: vector of labels for SVM
36 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
37 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
41 lon
= np
.reshape(lons
,np
.prod(lons
.shape
)).astype(float)
42 lat
= np
.reshape(lats
,np
.prod(lats
.shape
)).astype(float)
44 # Temporal scale to days
49 # Ensuring U>=L always
50 print 'U>L: ',(U
>L
).sum()
51 print 'U<L: ',(U
<L
).sum()
52 print 'U==L: ',(U
==L
).sum()
55 uu
= np
.reshape(U
,np
.prod(U
.shape
))
56 ll
= np
.reshape(L
,np
.prod(L
.shape
))
57 tt
= np
.reshape(T
,np
.prod(T
.shape
))
59 # Maximum and minimums to NaN data
60 uu
[uu
==uu
.max()] = np
.nan
61 ll
[ll
==ll
.min()] = np
.nan
63 # Mask created during computation of lower and upper bounds
64 mk
= tt
==scale
[1]-scale
[0]
65 # Masking upper bounds outside the mask
67 # Creating maximum value considered of the upper bounds
68 nuu
= uu
[~np
.isnan(uu
)]
69 muu
= nuu
.max() # could be a different value like a mean value
70 # Create a mask with lower bound less than the previous maximum upper bound value
71 with np
.errstate(invalid
='ignore'):
74 # Create a mask with all False of low size
75 mask
= np
.repeat(False,len(low
[low
== True]))
76 # Take just a subset of the nodes
78 mask
[0::clear_level
] = True
80 low
[low
== True] = mask
81 # Eliminate all the previous elements from the mask
83 # Masking lower bounds outside the mask
86 # Values different than NaN in the upper and lower bounds
87 um
= np
.array(~np
.isnan(uu
))
88 lm
= np
.array(~np
.isnan(ll
))
89 # Define all the x, y, and z components of upper and lower bounds
97 # Create the data to call SVM3 function from svm3test.py
98 X
= np
.c_
[np
.concatenate((lx
,ux
)),np
.concatenate((ly
,uy
)),np
.concatenate((lz
,uz
))]
99 y
= np
.concatenate((-np
.ones(len(lx
)),np
.ones(len(ux
))))
100 # Print the shape of the data
101 print 'shape X: ', X
.shape
102 print 'shape y: ', y
.shape
105 c
= 80*np
.ones(y
.shape
)
107 c
= np
.concatenate((C
[0].ravel()[lm
],C
[1].ravel()[um
]))
109 # Clean data if not in bounding box
110 bbox
= (lon
.min(),lon
.max(),lat
.min(),lat
.max(),time_num_granules
)
111 geo_mask
= np
.logical_and(np
.logical_and(np
.logical_and(X
[:,0] >= bbox
[0],X
[:,0] <= bbox
[1]), X
[:,1] >= bbox
[2]), X
[:,1] <= bbox
[3])
112 btime
= (0,(scale
[1]-scale
[0])/tscale
)
113 time_mask
= np
.logical_and(X
[:,2] >= btime
[0], X
[:,2] <= btime
[1])
114 whole_mask
= np
.logical_and(geo_mask
, time_mask
)
121 def make_fire_mesh(fxlon
, fxlat
, it
, nt
):
123 Create a mesh of points to evaluate the decision function
125 :param fxlon: data to base x-axis meshgrid on
126 :param fxlat: data to base y-axis meshgrid on
127 :param it: data to base z-axis meshgrid on
128 :param nt: tuple of number of nodes at each direction, optional
129 :param coarse: coarsening of the fire mesh
130 :return xx, yy, zz: ndarray
132 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
133 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
136 xx
= np
.repeat(fxlon
[:, :, np
.newaxis
], nt
, axis
=2)
137 yy
= np
.repeat(fxlat
[:, :, np
.newaxis
], nt
, axis
=2)
138 tt
= np
.linspace(it
[0],it
[1],nt
)
139 zz
= np
.swapaxes(np
.swapaxes(np
.array([np
.ones(fxlon
.shape
)*t
for t
in tt
]),0,1),1,2)
143 def make_meshgrid(x
, y
, z
, s
=(50,50,50), exp
=.1):
145 Create a mesh of points to evaluate the decision function
147 :param x: data to base x-axis meshgrid on
148 :param y: data to base y-axis meshgrid on
149 :param z: data to base z-axis meshgrid on
150 :param s: tuple of number of nodes at each direction, optional
151 :param exp: extra percentage of time steps in each direction (between 0 and 1), optional
152 :return xx, yy, zz: ndarray
154 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
155 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
157 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
160 if not isinstance(s
, tuple):
162 print 'The number of nodes at each direction is not a tuple: ', s
164 # number of nodes in each direction
165 sx
, sy
, sz
= np
.array(s
).astype(int)
166 # extra step sizes in each direction
170 # grid lengths in each directon
171 lx
= x
.max() - x
.min()
172 ly
= y
.max() - y
.min()
173 lz
= z
.max() - z
.min()
174 # grid resolutions in each direction
175 hx
= lx
/ (sx
- 2*brx
- 1)
176 hy
= ly
/ (sy
- 2*bry
- 1)
177 hz
= lz
/ (sz
- 2*brz
- 1)
178 # extrem values for each dimension
179 x_min
, x_max
= x
.min() - brx
* hx
, x
.max() + brx
* hx
180 y_min
, y_max
= y
.min() - bry
* hy
, y
.max() + bry
* hy
181 z_min
, z_max
= z
.min() - brz
* hz
, z
.max() + brz
* hz
182 # generating the mesh grid
183 xx
, yy
, zz
= np
.meshgrid(np
.linspace(y_min
, y_max
, sy
),
184 np
.linspace(x_min
, x_max
, sx
),
185 np
.linspace(z_min
, z_max
, sz
))
188 def frontier(clf
, xx
, yy
, zz
, bal
=.5, plot_decision
= False, plot_poly
=False, using_weights
=False):
190 Compute the surface decision frontier for a classifier.
192 :param clf: a classifier
193 :param xx: meshgrid ndarray
194 :param yy: meshgrid ndarray
195 :param zz: meshgrid ndarray
196 :param bal: number between 0 and 1, balance between lower and upper bounds in decision function (in case not level 0)
197 :param plot_decision: boolean of plotting decision volume
198 :param plot_poly: boolean of plotting polynomial approximation
199 :return F: 2D meshes with xx, yy coordinates and the hyperplane z which gives decision functon 0
201 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
202 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
204 https://www.semipol.de/2015/10/29/SVM-separating-hyperplane-3d-matplotlib.html
207 # Creating the 3D grid
208 XX
= np
.c_
[xx
.ravel(), yy
.ravel(), zz
.ravel()]
210 # Evaluating the decision function
211 print '>> Evaluating the decision function...'
215 from libsvm_weights
.python
.svmutil
import svm_predict
216 _
, _
, p_vals
= svm_predict([], XX
, clf
)
217 ZZ
= np
.array([p
[0] for p
in p_vals
])
219 ZZ
= clf
.decision_function(XX
)
221 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
222 hist
= np
.histogram(ZZ
)
223 print 'counts: ', hist
[0]
224 print 'values: ', hist
[1]
225 print 'decision function range: ', ZZ
.min(), '~', ZZ
.max()
227 # Reshaping decision function volume
228 Z
= ZZ
.reshape(xx
.shape
)
229 print 'decision function shape: ', Z
.shape
233 from skimage
import measure
234 from shiftcmap
import shiftedColorMap
235 verts
, faces
, normals
, values
= measure
.marching_cubes_lewiner(Z
, level
=0, allow_degenerate
=False)
236 # Scale and transform to actual size of the interesting volume
237 h
= np
.divide([xx
.max()-xx
.min(), yy
.max() - yy
.min(), zz
.max() - zz
.min()],np
.array(xx
.shape
)-1)
239 verts
= verts
+ [xx
.min(), yy
.min(), zz
.min()]
240 mesh
= Poly3DCollection(verts
[faces
], facecolor
='orange', alpha
=.9)
242 ax
= fig
.gca(projection
='3d')
243 fig
.suptitle("Decision volume")
244 col
= [(0, 0, 1), (.5, .5, .5), (1, 0, 0)]
245 cm
= colors
.LinearSegmentedColormap
.from_list('BuRd',col
,N
=100)
246 midpoint
= 1 - ZZ
.max() / (ZZ
.max() + abs(ZZ
.min()))
247 shiftedcmap
= shiftedColorMap(cm
, midpoint
=midpoint
, name
='shifted')
252 p
= ax
.scatter(X
[0::kk
], Y
[0::kk
], T
[0::kk
], c
=ZZ
[0::kk
], s
=.1, alpha
=.4, cmap
=shiftedcmap
)
253 cbar
= fig
.colorbar(p
)
254 cbar
.set_label('decision function value', rotation
=270, labelpad
=20)
255 ax
.add_collection3d(mesh
)
256 ax
.set_zlim([xx
.min(),xx
.max()])
257 ax
.set_ylim([yy
.min(),yy
.max()])
258 ax
.set_zlim([zz
.min(),zz
.max()])
259 ax
.set_xlabel("Longitude normalized")
260 ax
.set_ylabel("Latitude normalized")
261 ax
.set_zlabel("Time normalized")
262 plt
.savefig('decision.png')
263 except Exception as e
:
264 print 'Warning: something went wrong when plotting...'
269 # Computing fire arrival time from previous decision function
270 print '>> Computing fire arrival time...'
273 # xx 2-dimensional array
275 # yy 2-dimensional array
277 # zz 1-dimensional array
279 # Initializing fire arrival time
280 Fz
= np
.zeros(Fx
.shape
)
282 for k1
in range(Fx
.shape
[0]):
283 for k2
in range(Fx
.shape
[1]):
284 # Approximate the vertical decision function by a piecewise polynomial (cubic spline interpolation)
285 pz
= interpolate
.CubicSpline(zr
, Z
[k1
,k2
])
286 # Compute the real roots of the the piecewise polynomial
288 # Just take the real roots between min(zz) and max(zz)
289 realr
= rr
.real
[np
.logical_and(abs(rr
.imag
) < 1e-5, np
.logical_and(rr
.real
> zr
.min(), rr
.real
< zr
.max()))]
291 # Take the minimum root
292 Fz
[k1
,k2
] = realr
.min()
293 # Plotting the approximated polynomial with the decision function
298 plt
.plot(Z
[k1
,k2
],zr
,'+')
299 plt
.plot(np
.zeros(len(realr
)),realr
,'o',c
='g')
300 plt
.plot(0,Fz
[k1
,k2
],'o',markersize
=3,c
='r')
301 plt
.title('Polynomial approximation of decision_function(%f,%f,z)' % (Fx
[k1
,k2
],Fy
[k1
,k2
]))
302 plt
.xlabel('decision function value')
304 plt
.legend(['polynomial','decision values','roots','fire arrival time'])
305 plt
.xlim([Z
.min(),Z
.max()])
306 plt
.ylim([zz
.min(),zz
.max()])
310 except Exception as e
:
311 print 'Warning: something went wrong when plotting...'
314 # If there is not a real root of the polynomial between zz.min() and zz.max(), just define as a Nan
317 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
322 def SVM3(X
, y
, C
=1., kgam
=1., norm
=True, fire_grid
=None, weights
=None):
324 3D SuperVector Machine analysis and plot
326 :param X: Training vectors, where n_samples is the number of samples and n_features is the number of features.
327 :param y: Target values
328 :param C: Weight to not having outliers (argument of svm.SVC class), optional
329 :param kgam: Scalar multiplier for gamma (capture more details increasing it)
330 :param norm: Normalize the data in the interval (0,1) in all the directions, optional
331 :param fire_grid: The longitud and latitude grid where to have the fire arrival time
332 :return F: tuple with (longitude grid, latitude grid, fire arrival time grid)
334 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
335 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
337 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
345 # plot scaled data with artificial data
347 # plot decision volume
348 plot_decision
= False
349 # plot polynomial approximation
351 # plot full hyperplane vs detections with support vectors
353 # plot resulting fire arrival time vs detections
357 # number of vertical nodes per observation
359 # interpolate into the original fire mesh
361 # if not Nans in the data are wanted (all Nans are going to be replaced by the maximum value)
364 # Options better to not change
365 # number of horizontal nodes per observation (if fire_grid==None)
367 # creation of under artificial lower bounds in the pre-processing
369 # if artil = True: resolution of artificial upper bounds vertical to the fire detections
371 # creation of over artificial upper bounds in the pre-processing
373 # if artiu = True: resolution of artificial lower bounds vertical to the ground detections
375 # creation of an artifitial mesh of down lower bounds
377 # if downarti = True: below min of z direction for lower bound artifitial creation
379 # if downarti = True: confidence level of the artificial lower bounds
381 # creation of an artifitial mesh of top upper bounds
383 # if toparti = True: proportion over max of z direction for upper bound artifitial creation
385 # if toparti = True: confidence level of the artificial upper bounds
388 # using different weights for the data
389 if isinstance(C
,(list,tuple,np
.ndarray
)):
391 from libsvm_weights
.python
.svm
import svm_problem
, svm_parameter
392 from libsvm_weights
.python
.svmutil
import svm_train
393 from sklearn
.utils
import compute_class_weight
395 using_weights
= False
398 X
= np
.array(X
).astype(float)
402 oX
= np
.array(X
).astype(float)
405 # Visualization of the data
406 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
410 ax
= fig
.gca(projection
='3d')
411 fig
.suptitle("Plotting the original data to fit")
412 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=plt
.cm
.coolwarm
, s
=20, edgecolors
='k', vmin
=y
.min(), vmax
=y
.max())
413 ax
.set_xlabel("Longitude")
414 ax
.set_ylabel("Latitude")
415 ax
.set_zlabel("Time (days)")
416 plt
.savefig('original_data.png')
417 except Exception as e
:
418 print 'Warning: something went wrong when plotting...'
421 # Normalization of the data into [0,1]^3
424 xlen
= X0
.max() - X0
.min()
425 x0
= np
.divide(X0
- xmin
, xlen
)
427 ylen
= X1
.max() - X1
.min()
428 x1
= np
.divide(X1
- ymin
, ylen
)
430 zlen
= X2
.max() - X2
.min()
431 x2
= np
.divide(X2
- zmin
, zlen
)
432 X0
, X1
, X2
= x0
, x1
, x2
437 # Creation of fire and ground artificial detections
438 if artil
or artiu
or toparti
or downarti
:
439 # Extreme values at z direction
442 # Division of lower and upper bounds for data and confidence level
443 fl
= X
[y
==np
.unique(y
)[0]]
444 fu
= X
[y
==np
.unique(y
)[1]]
446 # Artifitial extensions of the lower bounds
448 # Create artificial lower bounds
449 flz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],minz
,-hartil
),f
[2])) for f
in fl
])
450 # Definition of new ground detections after artificial detections added
451 Xg
= np
.concatenate([ np
.c_
[(np
.repeat(fl
[k
][0],len(flz
[k
])),np
.repeat(fl
[k
][1],len(flz
[k
])),flz
[k
])] for k
in range(len(flz
)) ])
453 cl
= C
[y
==np
.unique(y
)[0]]
454 Cg
= np
.concatenate([ np
.repeat(cl
[k
],len(flz
[k
])) for k
in range(len(flz
)) ])
458 cl
= C
[y
==np
.unique(y
)[0]]
461 # Artifitial extensions of the upper bounds
463 # Create artificial upper bounds
464 fuz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],maxz
,hartiu
),f
[2])) for f
in fu
])
465 # Definition of new fire detections after artificial detections added
466 Xf
= np
.concatenate([ np
.c_
[(np
.repeat(fu
[k
][0],len(fuz
[k
])),np
.repeat(fu
[k
][1],len(fuz
[k
])),fuz
[k
])] for k
in range(len(fuz
)) ])
467 # Define new confidence levels
469 cu
= C
[y
==np
.unique(y
)[1]]
470 Cf
= np
.concatenate([ np
.repeat(cu
[k
],len(fuz
[k
])) for k
in range(len(fuz
)) ])
474 cu
= C
[y
==np
.unique(y
)[1]]
477 # Bottom artificial lower bounds
479 # Creation of the x,y new mesh of artificial lower bounds
480 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
481 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
482 # All the artificial new mesh are going to be below the data
483 zng
= np
.repeat(minz
-dminz
,len(xn
.ravel()))
484 # Artifitial lower bounds
485 Xga
= np
.c_
[(xn
.ravel(),yn
.ravel(),zng
.ravel())]
486 # Definition of new ground detections after down artificial lower detections
487 Xgn
= np
.concatenate((Xg
,Xga
))
488 # Definition of new confidence level
490 Cga
= np
.ones(len(Xga
))*confal
491 Cgn
= np
.concatenate((Cg
,Cga
))
497 # Top artificial upper bounds
499 # Creation of the x,y new mesh of artificial upper bounds
500 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
501 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
502 # All the artificial new mesh are going to be over the data
503 znf
= np
.repeat(maxz
+dmaxz
,len(xn
.ravel()))
504 # Artifitial upper bounds
505 Xfa
= np
.c_
[(xn
.ravel(),yn
.ravel(),znf
.ravel())]
506 # Definition of new fire detections after top artificial upper detections
507 Xfn
= np
.concatenate((Xf
,Xfa
))
508 # Definition of new confidence level
510 Cfa
= np
.ones(len(Xfa
))*confau
511 Cfn
= np
.concatenate((Cf
,Cfa
))
517 # New definition of the training vectors
518 X
= np
.concatenate((Xgn
, Xfn
))
519 # New definition of the target values
520 y
= np
.concatenate((np
.repeat(np
.unique(y
)[0],len(Xgn
)),np
.repeat(np
.unique(y
)[1],len(Xfn
))))
521 # New definition of the confidence level
523 C
= np
.concatenate((Cgn
, Cfn
))
524 # New definition of each feature vector
525 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
527 # Printing number of samples and features
528 n0
= (y
==np
.unique(y
)[0]).sum().astype(float)
529 n1
= (y
==np
.unique(y
)[1]).sum().astype(float)
530 n_samples
, n_features
= X
.shape
531 print 'n_samples =', n_samples
532 print 'n_samples_{-1} =', int(n0
)
533 print 'n_samples_{+1} =', int(n1
)
534 print 'n_features =', n_features
536 # Visualization of scaled data
540 ax
= fig
.gca(projection
='3d')
541 fig
.suptitle("Plotting the data scaled to fit")
542 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=plt
.cm
.coolwarm
, s
=20, edgecolors
='k', vmin
=y
.min(), vmax
=y
.max())
543 ax
.set_xlabel("Longitude normalized")
544 ax
.set_ylabel("Latitude normalized")
545 ax
.set_zlabel("Time normalized")
546 plt
.savefig('scaled_data.png')
547 except Exception as e
:
548 print 'Warning: something went wrong when plotting...'
551 # Reescaling gamma to include more detailed results
552 gamma
= kgam
/ (n_features
* X
.std())
553 print 'gamma =', gamma
555 # Creating the SVM model
556 print '>> Creating the SVM model...'
559 # Compute class balanced weights
560 cls
, _
= np
.unique(y
, return_inverse
=True)
561 class_weight
= compute_class_weight("balanced", cls
, y
)
562 prob
= svm_problem(C
,y
,X
)
563 arg
= '-g %.15g -w%01d %.15g -w%01d %.15g -m 1000 -h 0' % (gamma
, cls
[0], class_weight
[0],
564 cls
[1], class_weight
[1])
565 param
= svm_parameter(arg
)
567 clf
= svm
.SVC(C
=C
, kernel
="rbf", gamma
=gamma
, cache_size
=1000, class_weight
="balanced") # default kernel: exp(-gamma||x-x'||^2)
570 # Fitting the data using Super Vector Machine technique
571 print '>> Fitting the SVM model...'
575 clf
= svm_train(prob
,param
)
579 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
581 if not using_weights
:
582 # Check if the classification failed
585 print 'Failed fitting the data'
587 print 'number of support vectors: ', clf
.n_support_
588 print 'score of trained data: ', clf
.score(X
,y
)
590 # Creating the mesh grid to evaluate the classification
591 print '>> Creating mesh grid to evaluate the classification...'
592 nnodes
= np
.ceil(np
.power(n_samples
,1./n_features
))
593 if fire_grid
is None:
594 # Number of necessary nodes
597 print 'number of horizontal nodes (%d meshgrid nodes for each observation): %d' % (hN
,hnodes
)
598 print 'number of vertical nodes (%d meshgrid nodes for each observation): %d' % (vN
,vnodes
)
599 # Computing resolution of the mesh to evaluate
600 sdim
= (hnodes
,hnodes
,vnodes
)
601 print 'grid_size = %dx%dx%d = %d' % (sdim
[0],sdim
[1],sdim
[2],np
.prod(sdim
))
603 xx
, yy
, zz
= make_meshgrid(X0
, X1
, X2
, s
=sdim
)
606 fxlon
= np
.divide(fire_grid
[0] - xmin
, xlen
)
607 fxlat
= np
.divide(fire_grid
[1] - ymin
, ylen
)
608 it
= (X2
.min(),X2
.max())
610 sdim
= (fxlon
.shape
[0],fxlon
.shape
[1],vnodes
)
611 print 'fire_grid_size = %dx%dx%d = %d' % (sdim
+ (np
.prod(sdim
),))
613 xx
, yy
, zz
= make_fire_mesh(fxlon
, fxlat
, it
, sdim
[2])
615 print 'grid_created = %dx%dx%d = %d' % (zz
.shape
+ (np
.prod(zz
.shape
),))
616 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
618 # Computing the 2D fire arrival time, F
619 print '>> Computing the 2D fire arrival time, F...'
621 F
= frontier(clf
, xx
, yy
, zz
, plot_decision
=plot_decision
, plot_poly
=plot_poly
, using_weights
=using_weights
)
623 print '>> Creating final results...'
625 # Plotting the Separating Hyperplane of the SVM classification with the support vectors
629 supp_ind
= np
.sort(clf
.get_sv_indices())-1
630 supp_vec
= X
[supp_ind
]
632 supp_ind
= clf
.support_
633 supp_vec
= clf
.support_vectors_
635 ax
= fig
.gca(projection
='3d')
636 fig
.suptitle("Plotting the 3D Separating Hyperplane of an SVM")
637 # plotting the separating hyperplane
638 ax
.plot_wireframe(F
[0], F
[1], F
[2], color
='orange')
639 # computing the indeces where no support vectors
640 rr
= np
.array(range(len(y
)))
641 ms
= np
.isin(rr
,supp_ind
)
643 # plotting no-support vectors (smaller)
644 ax
.scatter(X0
[nsupp
], X1
[nsupp
], X2
[nsupp
], c
=y
[nsupp
], cmap
=plt
.cm
.coolwarm
, s
=.5, vmin
=y
.min(), vmax
=y
.max(), alpha
=.1)
645 # plotting support vectors (bigger)
646 ax
.scatter(supp_vec
[:, 0], supp_vec
[:, 1], supp_vec
[:, 2], c
=y
[supp_ind
], cmap
=plt
.cm
.coolwarm
, s
=20, edgecolors
='k', alpha
=.2);
647 ax
.set_xlim(xx
.min(),xx
.max())
648 ax
.set_ylim(yy
.min(),yy
.max())
649 ax
.set_zlim(zz
.min(),zz
.max())
650 ax
.set_xlabel("Longitude normalized")
651 ax
.set_ylabel("Latitude normalized")
652 ax
.set_zlabel("Time normalized")
653 plt
.savefig('support.png')
654 except Exception as e
:
655 print 'Warning: something went wrong when plotting...'
658 # Plot the fire arrival time resulting from the SVM classification normalized
661 Fx
, Fy
, Fz
= np
.array(F
[0]), np
.array(F
[1]), np
.array(F
[2])
662 with np
.errstate(invalid
='ignore'):
663 Fz
[Fz
> X2
.max()] = np
.nan
665 Fz
[np
.isnan(Fz
)] = X2
.max()
666 Fz
= np
.minimum(Fz
, X2
.max())
668 ax
= fig
.gca(projection
='3d')
669 fig
.suptitle("Fire arrival time normalized")
670 # plotting fire arrival time
671 p
= ax
.plot_surface(Fx
, Fy
, Fz
, cmap
=plt
.cm
.coolwarm
,
672 linewidth
=0, antialiased
=False)
673 ax
.set_xlim(xx
.min(),xx
.max())
674 ax
.set_ylim(yy
.min(),yy
.max())
675 ax
.set_zlim(zz
.min(),zz
.max())
676 cbar
= fig
.colorbar(p
)
677 cbar
.set_label('Fire arrival time normalized', labelpad
=20, rotation
=270)
678 ax
.set_xlabel("Longitude normalized")
679 ax
.set_ylabel("Latitude normalized")
680 ax
.set_zlabel("Time normalized")
681 plt
.savefig('tign_g.png')
682 except Exception as e
:
683 print 'Warning: something went wrong when plotting...'
686 # Translate the result again into initial data scale
688 f0
= F
[0] * xlen
+ xmin
689 f1
= F
[1] * ylen
+ ymin
690 f2
= F
[2] * zlen
+ zmin
693 # Set all the larger values at the end to be the same maximum value
694 oX0
, oX1
, oX2
= oX
[:, 0], oX
[:, 1], oX
[:, 2]
695 FFx
, FFy
, FFz
= FF
[0], FF
[1], FF
[2]
697 with np
.errstate(invalid
='ignore'):
698 FFz
[FFz
> oX2
.max()] = np
.nan
701 FFz
[np
.isnan(FFz
)] = oX2
.max()
702 FFz
= np
.minimum(FFz
, oX2
.max())
704 if (not fire_grid
is None) and (interp
):
705 print '>> Interpolating the results in the fire mesh'
708 points
= np
.c_
[Fx
.ravel(),Fy
.ravel()]
710 Ffire
= interpolate
.griddata(points
,values
,(Flon
,Flat
))
711 FF
= [Flon
,Flat
,Ffire
]
715 # Plot the fire arrival time resulting from the SVM classification
718 # Plotting the result
720 ax
= fig
.gca(projection
='3d')
721 fig
.suptitle("Plotting the 3D graph function of a SVM")
722 FFx
, FFy
, FFz
= np
.array(FF
[0]), np
.array(FF
[1]), np
.array(FF
[2])
723 # plotting original data
724 ax
.scatter(oX0
, oX1
, oX2
, c
=oy
, cmap
=plt
.cm
.coolwarm
, s
=2, vmin
=y
.min(), vmax
=y
.max())
725 # plotting fire arrival time
726 ax
.plot_wireframe(FFx
, FFy
, FFz
, color
='orange', alpha
=.5)
727 ax
.set_xlabel("Longitude")
728 ax
.set_ylabel("Latitude")
729 ax
.set_zlabel("Time (days)")
730 plt
.savefig('result.png')
731 except Exception as e
:
732 print 'Warning: something went wrong when plotting...'
735 print '>> SUCCESS <<'
737 print 'TOTAL elapsed time: %ss.' % str(abs(t_final
-t_init
))
743 if __name__
== "__main__":
747 # Defining ground and fire detections
749 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0]]
750 Xf
= [[0, 0, 1], [1, 1, 0], [2, 2, 1], [2, 0, 1], [0, 2, 1]]
751 C
= np
.concatenate((10.*np
.ones(len(Xg
)),100.*np
.ones(len(Xf
))))
753 return Xg
, Xf
, C
, kgam
755 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0],
756 [4, 2, 0], [4, 0, 0], [2, 1, .5], [0, 1, .5],
757 [4, 1, .5], [2, 0, .5], [2, 2, .5]]
758 Xf
= [[0, 0, 1], [1, 1, 0.25], [2, 2, 1], [2, 0, 1], [0, 2, 1], [3, 1, 0.25], [4, 2, 1], [4, 0, 1]]
759 C
= np
.concatenate((np
.array([50.,50.,50.,50.,50.,50.,
760 1000.,100.,100.,100.,100.]), 100.*np
.ones(len(Xf
))))
762 return Xg
, Xf
, C
, kgam
764 # Creating the options
765 options
= {1 : exp1
, 2 : exp2
}
767 # Defining the option depending on the experiment
768 Xg
, Xf
, C
, kgam
= options
[exp
]()
770 # Creating the data necessary to run SVM3 function
771 X
= np
.concatenate((Xg
, Xf
))
772 y
= np
.concatenate((-np
.ones(len(Xg
)), np
.ones(len(Xf
))))
774 # Running SVM classification
775 SVM3(X
,y
,C
=C
,kgam
=kgam
)