4 # Driver python code to estimate fire arrival time using Active Fire Satellite Data
7 # In the existence of a 'data' satellite granules file and/or 'results.mat' bounds file, any input is necessary.
9 # wrfout - path to a simulation wrfout file (containing FXLON and FXLAT coordinates).
10 # start_time - date string with format: YYYYMMDDHHMMSS
11 # days - length of the simulation in decimal days
14 # 1) Methods from JPSSD.py and infrared_perimeters.py file:
15 # *) Find granules overlaping fire domain and time interval.
16 # *) Download Active Satellite Data.
17 # *) Read and process Active Satellite Data files.
18 # *) Process ignitions.
19 # *) Read and process infrared perimeters files.
20 # *) Save observed data information in 'data' file.
21 # 2) Methods from interpolation.py, JPSSD.py, and plot_pixels.py files:
22 # *) Write KML file 'fire_detections.kml' with fire detection pixels (satellite, ignitions and perimeters).
23 # *) Write KMZ file 'googlearth.kmz' with saved images and KML file of observed data.
24 # 3) Method process_detections from setup.py file:
25 # *) Sort all the granules from all the sources in time order.
26 # *) Construct upper and lower bounds using a mask to prevent ground after fire.
27 # *) Save results in 'results.mat' file.
28 # 4) Methods preprocess_data_svm and SVM3 from svm.py file:
29 # *) Preprocess bounds as an input of Support Vector Machine method.
30 # *) Run Support Vector Machine method.
31 # *) Save results in svm.mat file.
32 # 5) Methods from contline.py and contour2kml.py files:
33 # *) Construct a smooth contour line representation of the fire arrival time.
34 # *) Write the contour lines in a KML file called 'perimeters_svm.kml'.
37 # - 'data': binary file containing satellite granules information.
38 # - 'result.mat': matlab file containing upper and lower bounds (U and L) from satellite data.
39 # - 'svm.mat': matlab file containing the solution to the Support Vector Machine execution.
40 # Contains estimation of the fire arrival time in tign_g variable.
41 # - 'fire_detections.kml': KML file with fire detection pixels (satellite, ignitions and perimeters).
42 # - 'googlearth.kmz': KMZ file with saved images and KML file of observed data.
43 # - 'perimeters_svm.kml': KML file with perimeters from estimation of the fire arrival time using SVM.
45 # Developed in Python 2.7.15 :: Anaconda, Inc.
46 # Angel Farguell (angel.farguell@gmail.com), 2019-04-29
47 #---------------------------------------------------------------------------------------------------------------------
48 from JPSSD
import read_fire_mesh
, retrieve_af_data
, sdata2json
, json2kml
, time_iso2num
49 from interpolation
import sort_dates
50 from setup
import process_detections
51 from infrared_perimeters
import process_ignitions
, process_infrared_perimeters
52 from forecast
import process_forecast_wrfout
53 from svm
import preprocess_data_svm
, SVM3
54 from mpl_toolkits
.basemap
import Basemap
55 from plot_pixels
import basemap_scatter_mercator
, create_kml
56 from contline
import get_contour_verts
57 from contour2kml
import contour2kml
59 from utils
import Dict
60 from scipy
.io
import loadmat
, savemat
66 # plot observed information
68 # dynamic penalization term
71 # if ignitions are known: ([lons],[lats],[dates]) where lons and lats in degrees and dates in ESMF format
72 # examples: igns = ([100],[45],['2015-05-15T20:09:00']) or igns = ([100,105],[45,39],['2015-05-15T20:09:00','2015-05-15T23:09:00'])
74 # if infrared perimeters: path to KML files
75 # examples: perim_path = './pioneer/perim'
77 # if forecast wrfout: path to netcdf wrfout forecast file
78 # example: forecast_path = './patch/wrfout_patch'
81 satellite_file
= 'data'
82 fire_file
= 'fire_detections.kml'
83 gearth_file
= 'googlearth.kmz'
84 bounds_file
= 'result.mat'
86 contour_file
= 'perimeters_svm.kml'
89 return (os
.path
.isfile(path
) and os
.access(path
,os
.R_OK
))
91 satellite_exists
= exist(satellite_file
)
92 fire_exists
= exist(fire_file
)
93 gearth_exists
= exist(gearth_file
)
94 bounds_exists
= exist(bounds_file
)
96 if len(sys
.argv
) != 4 and (not bounds_exists
) and (not satellite_exists
):
97 print 'Error: python %s wrfout start_time days' % sys
.argv
[0]
98 print ' * wrfout - string, wrfout file of WRF-SFIRE simulation'
99 print ' * start_time - string, YYYYMMDDHHMMSS where: '
106 print ' * days - float, number of days of simulation (can be less than a day)'
107 print 'or link an existent file %s or %s' % (satellite_file
,bounds_file
)
114 print '>> File %s already created! Skipping all satellite processing <<' % bounds_file
115 print 'Loading from %s...' % bounds_file
116 result
= loadmat(bounds_file
)
117 # Taking necessary variables from result dictionary
118 scale
= result
['time_scale_num'][0]
119 time_num_granules
= result
['time_num_granules'][0]
120 time_num_interval
= result
['time_num'][0]
121 lon
= np
.array(result
['fxlon']).astype(float)
122 lat
= np
.array(result
['fxlat']).astype(float)
125 print '>> File %s already created! Skipping satellite retrieval <<' % satellite_file
126 print 'Loading from %s...' % satellite_file
127 data
,fxlon
,fxlat
,time_num
= sl
.load(satellite_file
)
128 bbox
= [fxlon
.min(),fxlon
.max(),fxlat
.min(),fxlat
.max()]
130 print '>> Reading the fire mesh <<'
132 fxlon
,fxlat
,bbox
,time_esmf
= read_fire_mesh(sys
.argv
[1])
133 # converting times to ISO
134 dti
= dt
.datetime
.strptime(sys
.argv
[2],'%Y%m%d%H%M%S')
135 time_start_iso
= '%d-%02d-%02dT%02d:%02d:%02dZ' % (dti
.year
,dti
.month
,dti
.day
,dti
.hour
,dti
.minute
,dti
.second
)
136 dtf
= dti
+dt
.timedelta(days
=float(sys
.argv
[3]))
137 time_final_iso
= '%d-%02d-%02dT%02d:%02d:%02dZ' % (dtf
.year
,dtf
.month
,dtf
.day
,dtf
.hour
,dtf
.minute
,dtf
.second
)
138 time_iso
= (time_start_iso
,time_final_iso
)
141 print '>> Retrieving satellite data <<'
143 data
= retrieve_af_data(bbox
,time_iso
)
145 data
.update(process_ignitions(igns
,bbox
,time
=time_iso
))
147 data
.update(process_infrared_perimeters(perim_path
,bbox
,time
=time_iso
))
149 data
.update(process_forecast_wrfout(forecast_path
,bbox
,time
=time_iso
))
153 print '>> Saving satellite data file (data) <<'
155 time_num
= map(time_iso2num
,time_iso
)
156 sl
.save((data
,fxlon
,fxlat
,time_num
),satellite_file
)
157 print 'data file saved correctly!'
160 print 'ERROR: No data obtained...'
164 if (not fire_exists
) or (not gearth_exists
and plot_observed
):
165 print '>> Generating KML of fire and ground detections <<'
167 # sort the granules by dates
168 sdata
=sort_dates(data
)
170 print '>> File %s already created! <<' % fire_file
172 # writting fire detections file
173 print 'writting KML with fire detections'
174 keys
= ['latitude','longitude','brightness','scan','track','acq_date','acq_time','satellite','instrument','confidence','bright_t31','frp','scan_angle']
175 dkeys
= ['lat_fire','lon_fire','brig_fire','scan_fire','track_fire','acq_date','acq_time','sat_fire','instrument','conf_fire','t31_fire','frp_fire','scan_angle_fire']
176 prods
= {'AF':'Active Fires','FRP':'Fire Radiative Power','TF':'Temporal Fire coloring'}
177 # filter out perimeter, ignition, and forecast information (too many pixels)
178 regex
= re
.compile(r
'^((?!(PER_A|IGN_A|FOR_A)).)*$')
179 nsdata
= [d
for d
in sdata
if regex
.match(d
[0])]
180 # compute number of elements for each granule
181 N
= [len(d
[1]['lat_fire']) if 'lat_fire' in d
[1] else 0 for d
in nsdata
]
182 # transform dictionary notation to json notation
183 json
= sdata2json(nsdata
,keys
,dkeys
,N
)
184 # write KML file from json notation
185 json2kml(json
,fire_file
,bbox
,prods
)
186 if gearth_exists
or not plot_observed
:
188 print '>> File %s already created! <<' % gearth_file
190 # creating KMZ overlay of each information
191 # create the Basemap to plot into
192 bmap
= Basemap(projection
='merc',llcrnrlat
=bbox
[2], urcrnrlat
=bbox
[3], llcrnrlon
=bbox
[0], urcrnrlon
=bbox
[1])
195 # for each observed information
196 for idx
, g
in enumerate(sdata
):
198 pngfile
= g
[0]+'.png'
199 # create timestamp for KML
200 timestamp
= g
[1].acq_date
+ 'T' + g
[1].acq_time
[0:2] + ':' + g
[1].acq_time
[2:4] + 'Z'
201 if not exist(pngfile
):
202 # plot a scatter basemap
203 raster_png_data
,corner_coords
= basemap_scatter_mercator(g
[1],bbox
,bmap
)
205 bounds
= (corner_coords
[0][0],corner_coords
[1][0],corner_coords
[0][1],corner_coords
[2][1])
207 with
open(pngfile
, 'w') as f
:
208 f
.write(raster_png_data
)
209 print '> File %s saved.' % g
[0]
211 print '> File %s already created.' % g
[0]
212 # append dictionary information for the KML creation
213 kmld
.append(Dict({'name': g
[0], 'png_file': pngfile
, 'bounds': bbox
, 'time': timestamp
}))
215 create_kml(kmld
,'./doc.kml')
216 # create KMZ with all the PNGs included
217 os
.system('zip -r %s doc.kml *_A*_*.png' % gearth_file
)
218 print 'Created file %s' % gearth_file
219 # eliminate images and KML after creation of KMZ
220 os
.system('rm doc.kml *_A*_*.png')
223 print '>> Processing satellite data <<'
225 result
= process_detections(data
,fxlon
,fxlat
,time_num
)
226 # Taking necessary variables from result dictionary
227 scale
= result
['time_scale_num']
228 time_num_granules
= result
['time_num_granules']
229 time_num_interval
= result
['time_num']
230 lon
= np
.array(result
['fxlon']).astype(float)
231 lat
= np
.array(result
['fxlat']).astype(float)
233 U
= np
.array(result
['U']).astype(float)
234 L
= np
.array(result
['L']).astype(float)
235 T
= np
.array(result
['T']).astype(float)
237 if 'C' in result
.keys():
238 conf
= np
.array(result
['C'])
242 if 'Cg' in result
.keys():
243 conf
= (np
.array(result
['Cg']),conf
)
245 conf
= (10*np
.ones(L
.shape
),conf
)
248 print '>> Preprocessing the data <<'
250 X
,y
,c
= preprocess_data_svm(lon
,lat
,U
,L
,T
,scale
,time_num_granules
,C
=conf
)
253 print '>> Running Support Vector Machine <<'
255 if conf
is None or not dyn_pen
:
258 C
= np
.power(c
,3)/1000.
260 F
= SVM3(X
,y
,C
=C
,kgam
=kgam
,fire_grid
=(lon
,lat
))
263 print '>> Saving the results <<'
265 tscale
= 24*3600 # scale from seconds to days
266 # Fire arrival time in seconds from the begining of the simulation
267 tign_g
= np
.array(F
[2])*float(tscale
)+scale
[0]-time_num_interval
[0]
268 # Creating the dictionary with the results
269 svm
= {'dxlon': lon
, 'dxlat': lat
, 'U': U
/tscale
, 'L': L
/tscale
,
270 'fxlon': F
[0], 'fxlat': F
[1], 'Z': F
[2],
272 'tscale': tscale
, 'time_num_granules': time_num_granules
,
273 'time_scale_num': scale
, 'time_num': time_num_interval
}
274 # Save resulting file
275 savemat(svm_file
, mdict
=svm
)
276 print 'The results are saved in svm.mat file'
279 print '>> Computing contour lines of the fire arrival time <<'
280 print 'Computing the contours...'
282 # Granules numeric times
283 Z
= F
[2]*tscale
+scale
[0]
284 # Creating contour lines
285 contour_data
= get_contour_verts(F
[0], F
[1], Z
, time_num_granules
, contour_dt_hours
=6, contour_dt_init
=6, contour_dt_final
=6)
286 print 'Creating the KML file...'
287 # Creating the KML file
288 contour2kml(contour_data
,contour_file
)
289 print 'The resulting contour lines are saved in perimeters_svm.kml file'
291 print 'Warning: contour creation problem'
292 print 'Run: python contlinesvm.py'
297 print 'Elapsed time for all the process: %ss.' % str(abs(t_final
-t_init
))