2 warnings
.filterwarnings("ignore")
12 from pyhdf
.SD
import SD
, SDC
14 import scipy
.io
as sio
18 import matplotlib
.colors
as colors
19 from itertools
import groupby
20 from subprocess
import check_output
, call
22 def search_api(sname
,bbox
,time
,maxg
=50,platform
="",version
=""):
24 API search of the different satellite granules
26 :param sname: short name
27 :param bbox: polygon with the search bounding box
28 :param time: time interval (init_time,final_time)
29 :param maxg: max number of granules to process
30 :param platform: string with the platform
31 :param version: string with the version
32 :return granules: dictionary with the metadata of the search
34 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
35 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
37 from cmr
import GranuleQuery
41 search
= api
.parameters(
48 search
= api
.parameters(
57 search
= api
.parameters(
65 search
= api
.parameters(
74 print "%s gets %s hits in this range" % (sname
,sh
)
76 print "The number of hits %s is larger than the limit %s." % (sh
,maxg
)
77 print "Use a reduced bounding box or a reduced time interval."
80 granules
= api
.get(sh
)
83 def search_archive(url
,prod
,time
,grans
):
85 Archive search of the different satellite granules
87 :param url: base url of the archive domain
88 :param prod: string of product with version, for instance: '5000/VNP09'
89 :param time: time interval (init_time,final_time)
90 :param grans: granules of the geolocation metadata
91 :return granules: dictionary with the metadata of the search
93 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
94 Angel Farguell (angel.farguell@gmail.com), 2018-01-03
96 ids
=['.'.join(k
['producer_granule_id'].split('.')[1:3]) for k
in grans
] # satellite ids in bounding box
98 dts
=[datetime
.datetime
.strptime(d
,'%Y-%m-%dT%H:%M:%SZ') for d
in time
]
100 nh
=int(delta
.total_seconds()/3600)
101 dates
=[dts
[0]+datetime
.timedelta(seconds
=3600*k
) for k
in range(1,nh
+1)]
102 fold
=np
.unique(['%d/%03d' % (date
.timetuple().tm_year
,date
.timetuple().tm_yday
) for date
in dates
])
103 urls
=[url
+'/'+prod
+'/'+f
for f
in fold
]
106 js
=requests
.get(u
+'.json').json()
108 arg
=np
.argwhere(np
.array(ids
)=='.'.join(j
['name'].split('.')[1:3]))
112 g
.links
=[{'href':u
+'/'+g
.name
}]
113 g
.time_start
=grans
[ar
]["time_start"]
114 g
.time_end
=grans
[ar
]["time_end"]
115 g
.dataset_id
='Archive download: unknown dataset id'
116 g
.producer_granule_id
=j
['name']
118 except Exception as e
:
119 "warning: some JSON request failed"
120 print "%s gets %s hits in this range" % (prod
.split('/')[-1],len(granules
))
123 def get_meta(bbox
,time
,maxg
=50,burned
=False,high
=False):
125 Get all the meta data from the API for all the necessary products
127 :param bbox: polygon with the search bounding box
128 :param time: time interval (init_time,final_time)
129 :param maxg: max number of granules to process
130 :return granules: dictionary with the metadata of all the products
132 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
133 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
136 #MOD14: MODIS Terra fire data
137 granules
.MOD14
=search_api("MOD14",bbox
,time
,maxg
,"Terra")
138 #MOD03: MODIS Terra geolocation data
139 granules
.MOD03
=search_api("MOD03",bbox
,time
,maxg
,"Terra","6")
140 #MOD09: MODIS Atmospherically corrected surface reflectance
141 #granules.MOD09=search_api("MOD09",bbox,time,maxg,"Terra","6")
142 #MYD14: MODIS Aqua fire data
143 granules
.MYD14
=search_api("MYD14",bbox
,time
,maxg
,"Aqua")
144 #MYD03: MODIS Aqua geolocation data
145 granules
.MYD03
=search_api("MYD03",bbox
,time
,maxg
,"Aqua","6")
146 #MOD09: MODIS Atmospherically corrected surface reflectance
147 #granules.MYD09=search_api("MYD09",bbox,time,maxg,"Terra","6")
148 #VNP14: VIIRS fire data, res 750m
149 granules
.VNP14
=search_api("VNP14",bbox
,time
,maxg
)
150 #VNP03MODLL: VIIRS geolocation data, res 750m
151 granules
.VNP03
=search_api("VNP03MODLL",bbox
,time
,maxg
)
152 #VNP14HR: VIIRS fire data, res 375m
153 #granules.VNP14HR=search_api("VNP14IMGTDL_NRT",bbox,time,maxg) # any results in API
155 url
="https://ladsweb.modaps.eosdis.nasa.gov/archive/allData" # base url
156 prod
="5000/NPP_IMFTS_L1"
157 granules
.VNP03HR
=search_archive(url
,prod
,time
,granules
.VNP03
)
158 prod
="5000/VNP14IMG" # product
159 granules
.VNP14HR
=search_archive(url
,prod
,time
,granules
.VNP03HR
)
161 #VNP09: VIIRS Atmospherically corrected surface reflectance
162 url
="https://ladsweb.modaps.eosdis.nasa.gov/archive/allData" # base url
163 prod
="5000/VNP09" # product
164 granules
.VNP09
=search_archive(url
,prod
,time
,granules
.VNP03
)
167 def group_files(path
,reg
):
169 Agrupate the geolocation (03) and fire (14) files of a specific product in a path
171 :param path: path to the geolocation (03) and fire (14) files
172 :param reg: string with the first 3 characters specifying the product (MOD, MYD or VNP)
173 :return files: list of pairs with geolocation (03) and fire (14) file names in the path of the specific product
175 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
176 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
178 files
=[Dict({'geo':k
}) for k
in glob
.glob(path
+'/'+reg
+'03*')]
179 filesf
=glob
.glob(path
+'/'+reg
+'14*')
180 filesr
=glob
.glob(path
+'/'+reg
+'09*')
187 for k
,g
in enumerate(files
):
188 mmf
=re
.split("/",g
.geo
)
189 mm
=mmf
[-1].split('.')
190 if mm
[0][1]==m
[0][1] and mm
[1]+'.'+mm
[2]==m
[1]+'.'+m
[2]:
198 for k
,g
in enumerate(files
):
199 mmf
=re
.split("/",g
.geo
)
200 mm
=mmf
[-1].split('.')
201 if mm
[0][1]==m
[0][1] and mm
[1]+'.'+mm
[2]==m
[1]+'.'+m
[2]:
207 Combine all the geolocation (03) and fire (14) files in a path
209 :param path: path to the geolocation (03) and fire (14) files
210 :return files: dictionary of products with a list of pairs with geolocation (03) and fire (14) file names in the path
212 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
213 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
217 modf
=group_files(path
,'MOD')
219 mydf
=group_files(path
,'MYD')
221 vif
=group_files(path
,'VNP')
227 def read_modis_files(files
,bounds
):
229 Read the geolocation (03) and fire (14) files for MODIS products (MOD or MYD)
231 :param files: pair with geolocation (03) and fire (14) file names for MODIS products (MOD or MYD)
232 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
233 :return ret: dictionary with Latitude, Longitude and fire mask arrays read
235 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
236 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
239 # Satellite information
240 N
=1354 # Number of columns (maxim number of sample)
241 h
=705. # Altitude of the satellite in km
242 p
=1. # Nadir pixel resolution in km
243 # Reading MODIS files
244 hdfg
=SD(files
.geo
,SDC
.READ
)
245 hdff
=SD(files
.fire
,SDC
.READ
)
246 # Creating all the objects
247 lat_obj
=hdfg
.select('Latitude')
248 lon_obj
=hdfg
.select('Longitude')
249 fire_obj
=hdff
.select('fire mask')
250 lat_fire_obj
=hdff
.select('FP_latitude')
251 lon_fire_obj
=hdff
.select('FP_longitude')
252 brig_fire_obj
=hdff
.select('FP_T21')
253 sample_fire_obj
=hdff
.select('FP_sample')
254 conf_fire_obj
=hdff
.select('FP_confidence')
255 t31_fire_obj
=hdff
.select('FP_T31')
256 frp_fire_obj
=hdff
.select('FP_power')
257 # Geolocation and mask information
258 ret
.lat
=lat_obj
.get()
259 ret
.lon
=lon_obj
.get()
260 ret
.fire
=fire_obj
.get()
261 # Fire detected information
263 flats
=lat_fire_obj
.get()
267 flons
=lon_fire_obj
.get()
270 fll
=np
.logical_and(np
.logical_and(np
.logical_and(flons
>= bounds
[0], flons
<= bounds
[1]), flats
>= bounds
[2]), flats
<= bounds
[3])
271 ret
.lat_fire
=flats
[fll
]
272 ret
.lon_fire
=flons
[fll
]
274 ret
.brig_fire
=brig_fire_obj
.get()[fll
]
276 ret
.brig_fire
=np
.array([])
277 ret
.sat_fire
=hdff
.Satellite
279 ret
.conf_fire
=conf_fire_obj
.get()[fll
]
281 ret
.conf_fire
=np
.array([])
283 ret
.t31_fire
=t31_fire_obj
.get()[fll
]
285 ret
.t31_fire
=np
.array([])
287 ret
.frp_fire
=frp_fire_obj
.get()[fll
]
289 ret
.frp_fire
=np
.array([])
291 sf
=sample_fire_obj
.get()[fll
]
294 ret
.scan_angle_fire
,ret
.scan_fire
,ret
.track_fire
=pixel_dim(sf
,N
,h
,p
)
296 lats
=np
.ravel(ret
.lat
)
297 lons
=np
.ravel(ret
.lon
)
298 ll
=np
.logical_and(np
.logical_and(np
.logical_and(lons
>= bounds
[0], lons
<= bounds
[1]), lats
>= bounds
[2]), lats
<= bounds
[3])
301 fire
=np
.ravel(ret
.fire
)
303 nf
=np
.logical_or(fire
== 3, fire
== 5)
304 ret
.lat_nofire
=lats
[nf
]
305 ret
.lon_nofire
=lons
[nf
]
306 sample
=np
.array([range(0,ret
.lat
.shape
[1])]*ret
.lat
.shape
[0])
307 sample
=np
.ravel(sample
)
310 ret
.scan_angle_nofire
,ret
.scan_nofire
,ret
.track_nofire
=pixel_dim(sfn
,N
,h
,p
)
316 def read_viirs_files(files
,bounds
):
318 Read the geolocation (03) and fire (14) files for VIIRS products (VNP)
320 :param files: pair with geolocation (03) and fire (14) file names for VIIRS products (VNP)
321 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
322 :return ret: dictionary with Latitude, Longitude and fire mask arrays read
324 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
325 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
328 # Satellite information
329 N
=3200 # Number of columns (maxim number of sample)
330 h
=828. # Altitude of the satellite in km
331 alpha
=np
.array([0,31.59,44.68,56.06])/180*np
.pi
332 #p=(0.75+0.75/2+0.75/3)/3 # Nadir pixel resolution in km (mean in 3 different sections)
333 p
=np
.array([0.75,0.75/2,0.75/3])
334 # Reading VIIRS files
335 h5g
=h5py
.File(files
.geo
,'r')
336 ncf
=nc
.Dataset(files
.fire
,'r')
337 # Geolocation and mask information
338 ret
.lat
=np
.array(h5g
['HDFEOS']['SWATHS']['VNP_750M_GEOLOCATION']['Geolocation Fields']['Latitude'])
339 ret
.lon
=np
.array(h5g
['HDFEOS']['SWATHS']['VNP_750M_GEOLOCATION']['Geolocation Fields']['Longitude'])
340 ret
.fire
=np
.array(ncf
.variables
['fire mask'][:])
341 # Fire detected information
342 flats
=np
.array(ncf
.variables
['FP_latitude'][:])
343 flons
=np
.array(ncf
.variables
['FP_longitude'][:])
344 fll
=np
.logical_and(np
.logical_and(np
.logical_and(flons
>= bounds
[0], flons
<= bounds
[1]), flats
>= bounds
[2]),flats
<= bounds
[3])
345 ret
.lat_fire
=flats
[fll
]
346 ret
.lon_fire
=flons
[fll
]
347 ret
.brig_fire
=np
.array(ncf
.variables
['FP_T13'][:])[fll
]
348 ret
.sat_fire
=ncf
.SatelliteInstrument
349 ret
.conf_fire
=np
.array(ncf
.variables
['FP_confidence'][:])[fll
]
350 ret
.t31_fire
=np
.array(ncf
.variables
['FP_T15'][:])[fll
]
351 ret
.frp_fire
=np
.array(ncf
.variables
['FP_power'][:])[fll
]
352 sf
=np
.array(ncf
.variables
['FP_sample'][:])[fll
]
353 ret
.scan_angle_fire
,ret
.scan_fire
,ret
.track_fire
=pixel_dim(sf
,N
,h
,p
,alpha
)
355 lats
=np
.ravel(ret
.lat
)
356 lons
=np
.ravel(ret
.lon
)
357 ll
=np
.logical_and(np
.logical_and(np
.logical_and(lons
>= bounds
[0], lons
<= bounds
[1]), lats
>= bounds
[2]), lats
<= bounds
[3])
360 fire
=np
.ravel(ret
.fire
)
362 nf
=np
.logical_or(fire
== 3, fire
== 5)
363 ret
.lat_nofire
=lats
[nf
]
364 ret
.lon_nofire
=lons
[nf
]
365 sample
=np
.array([range(0,ret
.lat
.shape
[1])]*ret
.lat
.shape
[0])
366 sample
=np
.ravel(sample
)
369 ret
.scan_angle_nofire
,ret
.scan_nofire
,ret
.track_nofire
=pixel_dim(sfn
,N
,h
,p
,alpha
)
370 # Reflectance data for burned scar algorithm
371 if 'ref' in files
.keys():
372 # Read reflectance data
373 hdf
=SD(files
.ref
,SDC
.READ
)
375 M7
=hdf
.select('750m Surface Reflectance Band M7') # 0.86 nm
376 M8
=hdf
.select('750m Surface Reflectance Band M8') # 1.24 nm
377 M10
=hdf
.select('750m Surface Reflectance Band M10') # 1.61 nm
378 M11
=hdf
.select('750m Surface Reflectance Band M11') # 2.25 nm
380 bands
.M7
=M7
.get()*1e-4
381 bands
.M8
=M8
.get()*1e-4
382 bands
.M10
=M10
.get()*1e-4
383 bands
.M11
=M11
.get()*1e-4
384 # Burned scar mask using the burned scar granule algorithm
385 ret
.burned
=burned_algorithm(bands
)
386 # Close reflectance file
393 def read_viirs375_files(path
,bounds
):
395 Read the geolocation and fire information from VIIRS CSV files (fire_archive_*.csv and/or fire_nrt_*.csv)
397 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
398 :return ret: dictionary with Latitude, Longitude and fire mask arrays read
400 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
401 Angel Farguell (angel.farguell@gmail.com), 2018-10-23
404 # Opening files if they exist
405 f1
=glob
.glob(path
+'/fire_archive_*.csv')
406 f2
=glob
.glob(path
+'/fire_nrt_*.csv')
408 df1
=pd
.read_csv(f1
[0])
410 df2
=pd
.read_csv(f2
[0])
411 dfs
=pd
.concat([df1
,df2
],sort
=True,ignore_index
=True)
416 dfs
=pd
.read_csv(f2
[0])
421 # In the case something exists, read all the information from the CSV files
422 dfs
=dfs
[(dfs
['longitude']>bounds
[0]) & (dfs
['longitude']<bounds
[1]) & (dfs
['latitude']>bounds
[2]) & (dfs
['latitude']<bounds
[3])]
423 date
=np
.array(dfs
['acq_date'])
424 time
=np
.array(dfs
['acq_time'])
425 dfs
['time']=np
.array(['%s_%04d' % (date
[k
],time
[k
]) for k
in range(len(date
))])
426 dfs
['time']=pd
.to_datetime(dfs
['time'], format
='%Y-%m-%d_%H%M')
427 dfs
['datetime']=dfs
['time']
428 dfs
=dfs
.set_index('time')
429 for group_name
, df
in dfs
.groupby(pd
.TimeGrouper("D")):
431 items
.lat
=np
.array(df
['latitude'])
432 items
.lon
=np
.array(df
['longitude'])
433 conf
=np
.array(df
['confidence'])
434 firemask
=np
.zeros(conf
.shape
)
435 conf_fire
=np
.zeros(conf
.shape
)
436 firemask
[conf
=='l']=7
437 conf_fire
[conf
=='l']=30.
438 firemask
[conf
=='n']=8
439 conf_fire
[conf
=='n']=60.
440 firemask
[conf
=='h']=9
441 conf_fire
[conf
=='h']=90.
442 items
.fire
=firemask
.astype(int)
443 items
.lat_fire
=items
.lat
444 items
.lon_fire
=items
.lon
445 items
.brig_fire
=np
.array(df
['bright_ti4'])
446 items
.sat_fire
='Suomi NPP'
447 items
.conf_fire
=conf_fire
448 items
.t31_fire
=np
.array(df
['bright_ti5'])
449 items
.frp_fire
=np
.array(df
['frp'])
450 items
.scan_fire
=np
.array(df
['scan'])
451 items
.track_fire
=np
.array(df
['track'])
452 items
.scan_angle_fire
=np
.ones(items
.scan_fire
.shape
)*np
.nan
453 items
.lat_nofire
=np
.array([])
454 items
.lon_nofire
=np
.array([])
455 items
.scan_angle_nofire
=np
.array([])
456 items
.scan_nofire
=np
.array([])
457 items
.track_nofire
=np
.array([])
458 items
.instrument
=df
['instrument'][0]
460 items
.time_start_geo_iso
='%02d-%02d-%02dT%02d:%02d:%02dZ' % (dt
.year
,dt
.month
,dt
.day
,dt
.hour
,dt
.minute
,dt
.second
)
461 items
.time_num
=time_iso2num(items
.time_start_geo_iso
)
462 items
.acq_date
='%02d-%02d-%02d' % (dt
.year
,dt
.month
,dt
.day
)
463 items
.acq_time
='%02d%02d' % (dt
.hour
,dt
.minute
)
464 items
.time_start_fire_iso
=items
.time_start_geo_iso
465 items
.time_end_geo_iso
=items
.time_start_geo_iso
466 items
.time_end_fire_iso
=items
.time_start_geo_iso
468 items
.file_fire
=items
.file_geo
469 tt
=df
['datetime'][0].timetuple()
470 id='VNPH_A%04d%03d_%02d%02d' % (tt
.tm_year
,tt
.tm_yday
,tt
.tm_hour
,tt
.tm_min
)
472 items
.name
='A%04d%03d_%02d%02d' % (tt
.tm_year
,tt
.tm_yday
,tt
.tm_hour
,tt
.tm_min
)
473 ret
.update({id: items
})
476 def read_goes_files(files
):
478 Read the files for GOES products - geolocation and fire data already included (OS)
480 :param files: pair with geolocation (03) and fire (14) file names for MODIS products (MOD or MYD)
481 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
482 :return ret: dictionary with Latitude, Longitude and fire mask arrays read
484 Developed in Python 2.7.15 :: Anaconda 4.5.10, on WINDOWS10.
485 Lauren Hearn (lauren@robotlauren.com), 2018-10-16
487 h5g
=h5py
.File(files
.geo
,'r')
489 ret
.lat
=np
.array(h5g
['HDFEOS']['SWATHS']['VNP_750M_GEOLOCATION']['Geolocation Fields']['Latitude'])
490 ret
.lon
=np
.array(h5g
['HDFEOS']['SWATHS']['VNP_750M_GEOLOCATION']['Geolocation Fields']['Longitude'])
491 ncf
=nc
.Dataset(files
.fire
,'r')
492 ret
.fire
=np
.array(ncf
.variables
['fire mask'][:])
493 ret
.lat_fire
=np
.array(ncf
.variables
['FP_latitude'][:])
494 ret
.lon_fire
=np
.array(ncf
.variables
['FP_longitude'][:])
495 ret
.brig_fire
=np
.array(ncf
.variables
['FP_T13'][:])
496 sf
=np
.array(ncf
.variables
['FP_sample'][:])
497 # Satellite information
498 N
=2500 # Number of columns (maxim number of sample)
499 h
=35786. # Altitude of the satellite in km
500 p
=2. # Nadir pixel resolution in km
501 ret
.scan_fire
,ret
.track_fire
=pixel_dim(sf
,N
,h
,p
)
502 ret
.sat_fire
=ncf
.SatelliteInstrument
503 ret
.conf_fire
=np
.array(ncf
.variables
['FP_confidence'][:])
504 ret
.t31_fire
=np
.array(ncf
.variables
['FP_T15'][:])
505 ret
.frp_fire
=np
.array(ncf
.variables
['FP_power'][:])
508 def read_data(files
,file_metadata
,bounds
):
510 Read all the geolocation (03) and fire (14) files and if necessary, the reflectance (09) files
512 MODIS file names according to https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/archive/mod14_v5_user_guide.pdf
513 MOD14.AYYYYDDD.HHMM.vvv.yyyydddhhmmss.hdf
514 MYD14.AYYYYDDD.HHMM.vvv.yyyydddhhmmss.hdf
516 YYYYDDD = year and Julian day (001-366) of data acquisition
517 HHMM = hour and minute of data acquisition (approximate beginning time)
519 yyyyddd = year and Julian day of data processing
520 hhmmss = hour, minute, and second of data processing
522 VIIRS file names according to https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/vnp14_user_guide_v1.3.pdf
523 VNP14IMG.AYYYYDDD.HHMM.vvv.yyyydddhhmmss.nc
524 VNP14.AYYYYDDD.HHMM.vvv.yyyydddhhmmss.nc
526 YYYYDDD = year and Julian day (001-366) of data acquisition
527 HHMM = hour and minute of data acquisition (approximate beginning time)
529 yyyyddd = year and Julian day of data processing
530 hhmmss = hour, minute, and second of data processing
532 :param files: list of products with a list of pairs with geolocation (03) and fire (14) file names in the path
533 :param file_metadata: dictionary with file names as key and granules metadata as values
534 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
535 :return data: dictionary with Latitude, Longitude and fire mask arrays read
537 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
538 Angel Farguell (angel.farguell@gmail.com) and Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
540 print "read_data files=%s" % files
542 if files
=='VIIRS375':
543 data
.update(read_viirs375_files('.',bounds
))
546 print "read_data f=%s" % f
547 if 'geo' in f
.keys():
548 f0
=os
.path
.basename(f
.geo
)
550 print 'ERROR: read_data cannot read files=%s, not geo file' % f
552 if 'fire' in f
.keys():
553 f1
=os
.path
.basename(f
.fire
)
555 print 'ERROR: read_data cannot read files=%s, not fire file' % f
558 if 'ref' in f
.keys():
559 f2
=os
.path
.basename(f
.ref
)
562 print 'prefix %s' % prefix
564 print 'ERROR: the prefix of %s %s must coincide' % (f0
,f1
)
569 id = prefix
+ '_' + key
571 if prefix
=="MOD" or prefix
=="MYD":
573 item
=read_modis_files(f
,bounds
)
574 item
.instrument
="MODIS"
575 except Exception as e
:
576 print 'WARNING: reading the files from MODIS failed with error %s' % e
580 item
=read_viirs_files(f
,bounds
)
581 item
.instrument
="VIIRS"
582 except Exception as e
:
583 print 'WARNING: reading the files from VIIRS failed with error %s' % e
587 item
=read_goes_files(f
)
588 item
.instrument
="GOES"
589 except Exception as e
:
590 print 'WARNING: reading the files from GOES failed with error %s' % e
593 print 'ERROR: the prefix of %s %s must be MOD, MYD, or VNP' % (f0
,f1
)
596 if f2
in file_metadata
.keys():
598 if (f0
in file_metadata
.keys()) and (f1
in file_metadata
.keys()) and boo
:
599 # connect the file back to metadata
600 item
.time_start_geo_iso
=file_metadata
[f0
]["time_start"]
601 item
.time_num
=time_iso2num(item
.time_start_geo_iso
)
602 dt
=datetime
.datetime
.strptime(item
.time_start_geo_iso
[0:18],'%Y-%m-%dT%H:%M:%S')
603 item
.acq_date
='%02d-%02d-%02d' % (dt
.year
,dt
.month
,dt
.day
)
604 item
.acq_time
='%02d%02d' % (dt
.hour
,dt
.minute
)
605 item
.time_start_fire_iso
=file_metadata
[f1
]["time_start"]
606 item
.time_end_geo_iso
=file_metadata
[f0
]["time_end"]
607 item
.time_end_fire_iso
=file_metadata
[f1
]["time_end"]
610 if 'ref' in f
.keys():
612 item
.time_start_ref_iso
=file_metadata
[f2
]["time_start"]
613 item
.time_end_ref_iso
=file_metadata
[f2
]["time_end"]
616 data
.update({id:item
})
618 print 'WARNING: file %s or %s not found in downloaded metadata, ignoring both' % (f0
, f1
)
624 def download(granules
):
626 Download files as listed in the granules metadata
628 :param granules: list of products with a list of pairs with geolocation (03) and fire (14) file names in the path
629 :return file_metadata: dictionary with file names as key and granules metadata as values
631 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
632 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
635 for granule
in granules
:
636 #print json.dumps(granule,indent=4, separators=(',', ': '))
637 url
= granule
['links'][0]['href']
638 filename
=os
.path
.basename(urlparse
.urlsplit(url
).path
)
639 file_metadata
[filename
]=granule
641 # to store as object in memory (maybe not completely downloaded until accessed?)
642 # with requests.Session() as s:
643 # data.append(s.get(url))
645 # download - a minimal code without various error checking and corrective actions
646 # see wrfxpy/src/ingest/downloader.py
647 if os
.path
.isfile(filename
):
648 print 'file %s already downloaded' % filename
651 chunk_size
= 1024*1024
653 print 'downloading %s as %s' % (url
,filename
)
654 r
= requests
.get(url
, stream
=True)
655 if r
.status_code
== 200:
656 content_size
= int(r
.headers
['Content-Length'])
657 print 'downloading %s as %s size %sB' % (url
, filename
, content_size
)
658 with
open(filename
, 'wb') as f
:
659 for chunk
in r
.iter_content(chunk_size
):
662 print('downloaded %sB of %sB' % (s
, content_size
))
664 print 'cannot connect to %s' % url
665 print 'web request status code %s' % r
.status_code
666 print 'Make sure you have file ~/.netrc permission 600 with the content'
667 print 'machine urs.earthdata.nasa.gov\nlogin yourusername\npassword yourpassword'
669 except Exception as e
:
670 print 'download failed with error %s' % e
673 def download_GOES16(time
):
675 Download the GOES16 data through rclone application
677 :param time: tupple with the start and end times
678 :return bucket: dictionary of all the data downloaded and all the GOES16 data downloaded in the same directory level
680 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
681 Angel Farguell (angel.farguell@gmail.com) 2018-10-12
684 dts
=[datetime
.datetime
.strptime(d
,'%Y-%m-%dT%H:%M:%SZ') for d
in time
]
686 nh
=int(delta
.total_seconds()/3600)
687 dates
=[dts
[0]+datetime
.timedelta(seconds
=3600*k
) for k
in range(1,nh
+1)]
690 argT
='%d/%03d/%02d' % (tt
.tm_year
,tt
.tm_yday
,tt
.tm_hour
)
692 args
=['rclone','copyto','goes16aws:noaa-goes16/ABI-L2-MCMIPC/'+argT
,'.','-L']
693 print 'running: '+' '.join(args
)
695 print 'goes16aws:noaa-goes16/ABI-L2-MCMIPC/'+argT
+' downloaded.'
696 args
=['rclone','ls','goes16aws:noaa-goes16/ABI-L2-MCMIPC/'+argT
,'-L']
697 out
=check_output(args
)
698 bucket
.update({argT
: [o
.split(' ')[2] for o
in out
.split('\n')[:-1]]})
699 except Exception as e
:
700 print 'download failed with error %s' % e
703 def retrieve_af_data(bbox
,time
,burned
=False,high
=False):
705 Retrieve the data in a bounding box coordinates and time interval and save it in a Matlab structure inside the out.mat Matlab file
707 :param bbox: polygon with the search bounding box
708 :param time: time interval (init_time,final_time)
709 :return data: dictonary with all the data and out.mat Matlab file with a Matlab structure of the dictionary
711 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
712 Angel Farguell (angel.farguell@gmail.com) and Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
716 lonmin
,lonmax
,latmin
,latmax
= bbox
718 bbox
= [(lonmin
,latmax
),(lonmin
,latmin
),(lonmax
,latmin
),(lonmax
,latmax
),(lonmin
,latmax
)]
729 granules
=get_meta(bbox
,time
,maxg
,burned
=burned
,high
=high
)
730 #print 'medatada found:\n' + json.dumps(granules,indent=4, separators=(',', ': '))
732 # Eliminating the NRT data (repeated always)
733 nrt_elimination(granules
)
736 for k
,g
in granules
.items():
737 print 'Downloading %s files' % k
739 file_metadata
.update(download(g
))
743 print "download complete"
745 # Group all files downloaded
747 #print "group all files:"
750 # Generate data dictionary
752 data
.update(read_data(files
.MOD
,file_metadata
,bounds
))
753 data
.update(read_data(files
.MYD
,file_metadata
,bounds
))
754 data
.update(read_data(files
.VNP
,file_metadata
,bounds
))
755 #data.update(read_data('VIIRS375','',bounds))
759 def nrt_elimination(granules
):
761 Cleaning all the NRT data which is repeated
763 :param granules: Dictionary of granules products to clean up
764 :return: It will update the granules dictionary
766 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
767 Angel Farguell (angel.farguell@gmail.com) and Jan Mandel (jan.mandel@ucdenver.edu) 2018-11-30
770 if 'MOD14' in granules
:
771 nlist
=[g
for g
in granules
['MOD14'] if g
['data_center']=='LPDAAC_ECS']
772 granules
['MOD14']=nlist
773 if 'MYD14' in granules
:
774 nlist
=[g
for g
in granules
['MYD14'] if g
['data_center']=='LPDAAC_ECS']
775 granules
['MYD14']=nlist
778 def read_fire_mesh(filename
):
780 Read necessary variables in the fire mesh of the wrfout file filename
782 :param filename: wrfout file
783 :return fxlon: lon coordinates in the fire mesh
784 :return fxlat: lat coordinates in the fire mesh
785 :return bbox: bounding box
786 :return time_esmf: simulation times in ESMF format
788 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
789 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
791 print 'opening ' + filename
792 d
= nc
.Dataset(filename
)
793 m
,n
= d
.variables
['XLONG'][0,:,:].shape
794 fm
,fn
= d
.variables
['FXLONG'][0,:,:].shape
795 fm
=fm
-fm
/(m
+1) # dimensions corrected for extra strip
797 fxlon
= np
.array(d
.variables
['FXLONG'][0,:fm
,:fn
]) # masking extra strip
798 fxlat
= np
.array(d
.variables
['FXLAT'][0,:fm
,:fn
])
799 time_esmf
= ''.join(d
.variables
['Times'][:][0]) # date string as YYYY-MM-DD_hh:mm:ss
800 bbox
= [fxlon
.min(),fxlon
.max(),fxlat
.min(),fxlat
.max()]
801 print 'min max longitude latitude %s' % bbox
802 print 'time (ESMF) %s' % time_esmf
806 tign_g
= np
.array(d
.variables
['TIGN_G'][0,:fm
,:fn
])
807 plot_3D(fxlon
,fxlat
,tign_g
)
811 return fxlon
,fxlat
,bbox
,time_esmf
813 def data2json(data
,keys
,dkeys
,N
):
815 Create a json dictionary from data dictionary
817 :param data: dictionary with Latitude, Longitude and fire mask arrays and metadata information
818 :param keys: keys which are going to be included into the json
819 :param dkeys: keys in the data dictionary which correspond to the previous keys (same order)
820 :param N: number of entries in each instance of the json dictionary (used for the variables with only one entry in the data dictionary)
821 :return ret: dictionary with all the fire detection information to create the KML file
823 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
824 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
827 for i
,k
in enumerate(keys
):
828 if isinstance(data
[list(data
)[0]][dkeys
[i
]],(list, tuple, np
.ndarray
)):
829 dd
=[np
.ravel(data
[d
][dkeys
[i
]]) for d
in list(data
)]
830 ret
.update({k
: np
.concatenate(dd
)})
832 dd
=[[data
[d
[1]][dkeys
[i
]]]*N
[d
[0]] for d
in enumerate(list(data
))]
833 ret
.update({k
: np
.concatenate(dd
)})
837 def sdata2json(sdata
,keys
,dkeys
,N
):
839 Create a json dictionary from sorted array of data dictionaries
841 :param sdata: sorted array of data dictionaries with Latitude, Longitude and fire mask arrays and metadata information
842 :param keys: keys which are going to be included into the json
843 :param dkeys: keys in the data dictionary which correspond to the previous keys (same order)
844 :param N: number of entries in each instance of the json dictionary (used for the variables with only one entry in the data dictionary)
845 :return ret: dictionary with all the fire detection information to create the KML file
847 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
848 Angel Farguell (angel.farguell@gmail.com), 2018-12-03
850 ret
=Dict({'granules': [d
[0] for d
in sdata
]})
851 for i
,k
in enumerate(keys
):
852 dd
= [d
[1][dkeys
[i
]] if dkeys
[i
] in d
[1] else None for d
in sdata
]
854 if np
.any([isinstance(d
,(list, tuple, np
.ndarray
)) for d
in dd
]):
855 out
= [d
if d
is not None else np
.array([]) for d
in dd
]
858 out
= [[d
[1][1][dkeys
[i
]]]*N
[d
[0]] if dkeys
[i
] in d
[1][1] else [] for d
in enumerate(sdata
)]
859 ret
.update({k
: out
})
864 def write_csv(d
,bounds
):
866 Write fire detections from data dictionary d to a CSV file
868 :param d: dictionary with Latitude, Longitude and fire mask arrays and metadata information
869 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
870 :return: fire_detections.csv file with all the detections
872 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
873 Angel Farguell (angel.farguell@gmail.com), 2018-09-17
876 df
=pd
.DataFrame(data
=d
)
877 df
=df
[(df
['longitude']>bounds
[0]) & (df
['longitude']<bounds
[1]) & (df
['latitude']>bounds
[2]) & (df
['latitude']<bounds
[3])]
878 df
.to_csv('fire_detections.csv', encoding
='utf-8', index
=False)
880 def plot_3D(xx
,yy
,zz
):
882 Plot surface of (xx,yy,zz) data
886 :param zz: values at the (x,y) points
887 :return: a plot show of the 3D data
889 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
890 Angel Farguell (angel.farguell@gmail.com) 2018-09-21
892 from mpl_toolkits
.mplot3d
import Axes3D
893 import matplotlib
.pyplot
as plt
894 from matplotlib
import cm
896 ax
= fig
.gca(projection
='3d')
897 surf
= ax
.plot_surface(xx
,yy
,zz
,cmap
=cm
.coolwarm
)
900 def time_iso2num(time_iso
):
902 Transform an iso time string to a time integer number of seconds since December 31 1969 at 17:00:00
904 :param time_iso: string iso date
905 :return s: integer number of seconds since December 31 1969 at 17:00:00
907 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
908 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
910 time_datetime
=datetime
.datetime
.strptime(time_iso
[0:19],'%Y-%m-%dT%H:%M:%S')
911 # seconds since December 31 1969 at 17:00:00
912 s
=time
.mktime(time_datetime
.timetuple())
915 def time_iso2datetime(time_iso
):
917 Transform an iso time string to a datetime element
919 :param time_iso: string iso date
920 :return time_datetime: datetime element
922 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
923 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
925 time_datetime
=datetime
.datetime
.strptime(time_iso
[0:19],'%Y-%m-%dT%H:%M:%S')
928 def time_datetime2iso(time_datetime
):
930 Transform a datetime element to iso time string
932 :param time_datetime: datetime element
933 :return time_iso: string iso date
935 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
936 Angel Farguell (angel.farguell@gmail.com) 2018-10-01
938 time_iso
='%02d-%02d-%02dT%02d:%02d:%02dZ' % (time_datetime
.year
,time_datetime
.month
,
939 time_datetime
.day
,time_datetime
.hour
,
940 time_datetime
.minute
,time_datetime
.second
)
943 def time_num2iso(time_num
):
945 Transform a time integer number of seconds since December 31 1969 at 17:00:00 to an iso time string
947 :param time_num: integer number of seconds since December 31 1969 at 17:00:00
948 :return date: time string in ISO date
950 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
951 Angel Farguell (angel.farguell@gmail.com) 2018-10-01
953 dt
=datetime
.datetime
.fromtimestamp(time_num
)
954 # seconds since December 31 1969 at 17:00:00
955 date
='%02d-%02d-%02dT%02d:%02d:%02dZ' % (dt
.year
,dt
.month
,dt
.day
,dt
.hour
,dt
.minute
,dt
.second
)
958 def pixel_dim(sample
,N
,h
,p
,a
=None):
960 Computes pixel dimensions (along-scan and track pixel sizes)
962 :param sample: array of integers with the column number (sample variable in files)
963 :param N: scalar, total number of pixels in each row of the image swath
964 :param h: scalar, altitude of the satellite in km
965 :param p: scalar, pixel nadir resolution in km
966 :param a: array of floats of the size of p with the angles where the resolution change
967 :return theta: scan angle in radiands
968 :return scan: along-scan pixel size in km
969 :return track: along-track pixel size in km
971 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
972 Angel Farguell (angel.farguell@gmail.com) 2018-10-01
974 Re
=6378 # approximation of the radius of the Earth in km
977 s
=np
.arctan(p
/h
) # trigonometry (deg/sample)
978 if isinstance(p
,(list, tuple, np
.ndarray
)):
979 Ns
=np
.array([int((a
[k
]-a
[k
-1])/s
[k
-1]) for k
in range(1,len(a
)-1)])
980 Ns
=np
.append(Ns
,int(M
-Ns
.sum()))
981 theta
=s
[0]*(sample
-M
)
982 scan
=Re
*s
[0]*(np
.cos(theta
)/np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
)))-1)
983 track
=r
*s
[0]*(np
.cos(theta
)-np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
))))
984 for k
in range(1,len(Ns
)):
985 p
=sample
<=M
-Ns
[0:k
].sum()
986 theta
[p
]=s
[k
]*(sample
[p
]-(M
-Ns
[0:k
].sum()))-(s
[0:k
]*Ns
[0:k
]).sum()
987 scan
[p
]=Re
*np
.mean(s
)*(np
.cos(theta
[p
])/np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
[p
])))-1)
988 track
[p
]=r
*np
.mean(s
)*(np
.cos(theta
[p
])-np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
[p
]))))
989 p
=sample
>=M
+Ns
[0:k
].sum()
990 theta
[p
]=s
[k
]*(sample
[p
]-(M
+Ns
[0:k
].sum()))+(s
[0:k
]*Ns
[0:k
]).sum()
991 scan
[p
]=Re
*np
.mean(s
)*(np
.cos(theta
[p
])/np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
[p
])))-1)
992 track
[p
]=r
*np
.mean(s
)*(np
.cos(theta
[p
])-np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
[p
]))))
995 scan
=Re
*s
*(np
.cos(theta
)/np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
)))-1)
996 track
=r
*s
*(np
.cos(theta
)-np
.sqrt((Re
/r
)**2-np
.square(np
.sin(theta
))))
997 return (theta
,scan
,track
)
999 def copyto(partial_path
,kml
):
1001 Copy information in partial_path to kml
1003 :param partial_path: path to a partial KML file
1004 :param kml: KML object where to write to
1005 :return: information from partial_path into kml
1007 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
1008 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
1010 with
open(partial_path
,'r') as part
:
1014 def json2kml(d
,kml_path
,bounds
,prods
,opt
='granule',minconf
=80.):
1016 Creates a KML file kml_path from a dictionary d
1018 :param d: dictionary with all the fire detection information to create the KML file
1019 :param kml_path: path in where the KML file is going to be written
1020 :param bounds: spatial bounds tuple (lonmin,lonmax,latmin,latmax)
1023 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
1024 Jan Mandel (jan.mandel@ucdenver.edu) 2018-09-17
1028 if not isinstance(d
['latitude'][0],(list, tuple, np
.ndarray
)):
1030 ind
=[i
[0] for i
in sorted(enumerate(d
.acq_date
), key
=lambda x
:x
[1])]
1031 L
=[len(list(grp
)) for k
, grp
in groupby(d
['acq_date'][ind
])]
1033 ll
=[sum(L
[0:k
+1]) for k
in range(len(L
))]
1035 sort
=[d
[v
][i
] for i
in ind
]
1036 d
[v
]=[sort
[ll
[k
]:ll
[k
+1]] for k
in range(len(ll
)-1)]
1042 frp_style
={-1:'modis_frp_no_data',40:'modis_frp_gt_400'}
1043 for i
in range(0,40):
1044 frp_style
[i
]='modis_frp_%s_to_%s' % (i
*10, i
*10+10)
1046 with
open(kml_path
,'w') as kml
:
1048 copyto('kmls/partial1.kml',kml
)
1050 # set some constants
1051 r
= 6378 # Earth radius
1052 km_lat
= 180/(np
.pi
*r
) # 1km in degrees latitude
1053 ND
= len(d
['latitude'])
1057 kml
.write('<Folder>\n')
1058 kml
.write('<name>%s</name>\n' % prods
[prod
])
1061 copyto('kmls/partial2.kml',kml
)
1064 col
= np
.flip(np
.divide([(230, 25, 75, 150), (245, 130, 48, 150), (255, 255, 25, 150),
1065 (210, 245, 60, 150), (60, 180, 75, 150), (70, 240, 240, 150),
1066 (0, 0, 128, 150), (145, 30, 180, 150), (240, 50, 230, 150),
1067 (128, 128, 128, 150)],255.),0)
1068 cm
= colors
.LinearSegmentedColormap
.from_list('BuRd',col
,ND
)
1069 cols
= ['%02x%02x%02x%02x' % tuple(255*np
.flip(c
)) for c
in cm(range(cm
.N
))]
1070 t_range
= range(ND
-1,-1,-1)
1075 lats
=np
.array(d
['latitude'][t
]).astype(float)
1076 lons
=np
.array(d
['longitude'][t
]).astype(float)
1077 ll
=np
.logical_and(np
.logical_and(np
.logical_and(lons
>= bounds
[0], lons
<= bounds
[1]), lats
>= bounds
[2]), lats
<= bounds
[3])
1082 acq_date
=np
.array(d
['acq_date'][t
])[ll
]
1083 acq_time
=np
.array(d
['acq_time'][t
])[ll
]
1085 satellite
=np
.array(d
['satellite'][t
])[ll
]
1087 satellite
=np
.array(['Not available']*NN
)
1089 instrument
=np
.array(d
['instrument'][t
])[ll
]
1091 instrument
=np
.array(['Not available']*NN
)
1093 confidence
=np
.array(d
['confidence'][t
])[ll
].astype(float)
1095 confidence
=np
.array(np
.zeros(NN
)).astype(float)
1097 frps
=np
.array(d
['frp'][t
])[ll
].astype(float)
1099 frps
=np
.array(np
.zeros(NN
)).astype(float)
1101 angles
=np
.array(d
['scan_angle'][t
])[ll
].astype(float)
1103 angles
=np
.array(['Not available']*NN
)
1105 scans
=np
.array(d
['scan'][t
])[ll
].astype(float)
1107 scans
=np
.ones(NN
).astype(float)
1109 tracks
=np
.array(d
['track'][t
])[ll
].astype(float)
1111 tracks
=np
.ones(NN
).astype(float)
1113 kml
.write('<Folder>\n')
1115 kml
.write('<name>%s</name>\n' % acq_date
[0])
1116 elif opt
=='granule':
1117 kml
.write('<name>%s</name>\n' % d
['granules'][t
])
1119 kml
.write('<name>Pixels</name>\n')
1130 timestamp
=acq_date
[p
] + 'T' + acq_time
[p
][0:2] + ':' + acq_time
[p
][2:4] + 'Z'
1131 timedescr
=acq_date
[p
] + ' ' + acq_time
[p
][0:2] + ':' + acq_time
[p
][2:4] + ' UTC'
1134 kml
.write('<Placemark>\n<name>Ground detection square</name>\n')
1135 kml
.write('<description>\nlongitude: %s\n' % lon
1136 + 'latitude: %s\n' % lat
1137 + 'time: %s\n' % timedescr
1138 + 'satellite: %s\n' % satellite
[p
]
1139 + 'instrument: %s\n' % instrument
[p
]
1140 + 'scan angle: %s\n' % angle
1141 + 'along-scan: %s\n' % scan
1142 + 'along-track: %s\n' % track
1143 + '</description>\n')
1145 kml
.write('<Placemark>\n<name>Fire detection square</name>\n')
1146 kml
.write('<description>\nlongitude: %s\n' % lon
1147 + 'latitude: %s\n' % lat
1148 + 'time: %s\n' % timedescr
1149 + 'satellite: %s\n' % satellite
[p
]
1150 + 'instrument: %s\n' % instrument
[p
]
1151 + 'confidence: %s\n' % conf
1153 + 'scan angle: %s\n' % angle
1154 + 'along-scan: %s\n' % scan
1155 + 'along-track: %s\n' % track
1156 + '</description>\n')
1157 kml
.write('<TimeStamp><when>%s</when></TimeStamp>\n' % timestamp
)
1160 kml
.write('<styleUrl> modis_conf_low </styleUrl>\n')
1162 kml
.write('<styleUrl> modis_conf_med </styleUrl>\n')
1164 kml
.write('<styleUrl> modis_conf_high </styleUrl>\n')
1166 kml
.write('<Style>\n'+'<PolyStyle>\n'
1167 +'<color>%s</color>\n' % cols
[t
]
1168 +'<outline>0</outline>\n'+'</PolyStyle>\n'
1171 frpx
= min(40,np
.ceil(frp
/10.)-1)
1172 kml
.write('<styleUrl> %s </styleUrl>\n' % frp_style
[frpx
] )
1174 kml
.write('<styleUrl> no_fire </styleUrl>\n')
1177 kml
.write('<Style>\n'+'<PolyStyle>\n'
1178 +'<color>7000ffff</color>\n'
1179 +'<outline>0</outline>\n'+'</PolyStyle>\n'
1182 kml
.write('<Style>\n'+'<PolyStyle>\n'
1183 +'<color>7000a5ff</color>\n'
1184 +'<outline>0</outline>\n'+'</PolyStyle>\n'
1187 kml
.write('<Style>\n'+'<PolyStyle>\n'
1188 +'<color>700000ff</color>\n'
1189 +'<outline>0</outline>\n'+'</PolyStyle>\n'
1192 kml
.write('<Polygon>\n<outerBoundaryIs>\n<LinearRing>\n<coordinates>\n')
1194 km_lon
=km_lat
/np
.cos(lat
*np
.pi
/180) # 1 km in longitude
1196 sq_track_size_km
=track
1197 sq2_lat
=km_lat
* sq_track_size_km
/2
1198 sq_scan_size_km
=scan
1199 sq2_lon
=km_lon
* sq_scan_size_km
/2
1201 kml
.write('%s,%s,0\n' % (lon
- sq2_lon
, lat
- sq2_lat
))
1202 kml
.write('%s,%s,0\n' % (lon
- sq2_lon
, lat
+ sq2_lat
))
1203 kml
.write('%s,%s,0\n' % (lon
+ sq2_lon
, lat
+ sq2_lat
))
1204 kml
.write('%s,%s,0\n' % (lon
+ sq2_lon
, lat
- sq2_lat
))
1205 kml
.write('%s,%s,0\n' % (lon
- sq2_lon
, lat
- sq2_lat
))
1207 kml
.write('</coordinates>\n</LinearRing>\n</outerBoundaryIs>\n</Polygon>\n</Placemark>\n')
1208 kml
.write('</Folder>\n')
1210 kml
.write('</Folder>\n')
1212 kml
.write('</Document>\n</kml>\n')
1214 print 'Created file %s' % kml_path
1216 print 'Any detections to be saved as %s' % kml_path
1218 def burned_algorithm(data
):
1220 Computes mask of burned scar pixels
1222 :param data: data dictionary with all the necessary bands M7, M8, M10 and M11
1223 :return C: Mask of burned scar pixels
1225 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
1226 Angel Farguell (angel.farguell@gmail.com) 2019-01-03
1244 M
=(M8
.astype(float)-RthSub
)/(M11
.astype(float)+eps
)
1245 C1
=np
.logical_and(M
>0,M
<Rth
)
1247 C2
=np
.logical_and(M8
>M08LB
,M8
<M08UB
)
1253 C5
=np
.logical_and(M10
>M10LB
,M10
<M10UB
)
1254 # All the conditions at the same time
1255 C
=np
.logical_and(np
.logical_and(np
.logical_and(np
.logical_and(C1
,C2
),C3
),C4
),C5
)
1258 if __name__
== "__main__":
1259 bbox
=[-132.86966,-102.0868788,44.002495,66.281204]
1260 time
= ("2012-09-11T00:00:00Z", "2012-09-12T00:00:00Z")
1261 data
=retrieve_af_data(bbox
,time
)
1262 # Save the data dictionary into a matlab structure file out.mat
1263 sio
.savemat('out.mat', mdict
=data
)