2 # Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
3 # Angel Farguell (angel.farguell@gmail.com)
6 # conda install scikit-learn
7 # conda install scikit-image
9 from sklearn
import svm
10 from sklearn
.model_selection
import GridSearchCV
11 from scipy
import interpolate
, spatial
12 import matplotlib
.pyplot
as plt
13 import matplotlib
.font_manager
14 import matplotlib
.colors
as colors
15 from mpl_toolkits
.mplot3d
import axes3d
16 from mpl_toolkits
.mplot3d
.art3d
import Poly3DCollection
19 from infrared_perimeters
import process_infrared_perimeters
23 def preprocess_data_svm(lons
, lats
, U
, L
, T
, scale
, time_num_granules
, C
=None):
25 Preprocess satellite data from JPSSD and setup to use in Support Vector Machine
27 :param lons: longitud grid
28 :param lats: latitde grid
29 :param U: upper bound grid
30 :param L: lower bound grid
32 :param scale: time scales
33 :param time_num_granules: times of the granules
34 :return X: matrix of features for SVM
35 :return y: vector of labels for SVM
37 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
38 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
42 lon
= np
.ravel(lons
).astype(float)
43 lat
= np
.ravel(lats
).astype(float)
45 # Temporal scale to days
50 # Ensuring U>=L always
51 print 'U>L: ',(U
>L
).sum()
52 print 'U<L: ',(U
<L
).sum()
53 print 'U==L: ',(U
==L
).sum()
60 # Maximum and minimums to NaN data
61 uu
[uu
==uu
.max()] = np
.nan
62 ll
[ll
==ll
.min()] = np
.nan
64 # Mask created during computation of lower and upper bounds
65 mk
= tt
==scale
[1]-scale
[0]
66 # Masking upper bounds outside the mask
68 # Creating maximum value considered of the upper bounds
69 nuu
= uu
[~np
.isnan(uu
)]
70 muu
= nuu
.max() # could be a different value like a mean value
71 # Create a mask with lower bound less than the previous maximum upper bound value
72 with np
.errstate(invalid
='ignore'):
75 # Create a mask with all False of low size
76 mask
= np
.repeat(False,len(low
[low
== True]))
77 # Take just a subset of the nodes
79 mask
[0::clear_level
] = True
81 low
[low
== True] = mask
82 # Eliminate all the previous elements from the mask
84 # Masking lower bounds outside the mask
87 # Values different than NaN in the upper and lower bounds
88 um
= np
.array(~np
.isnan(uu
))
89 lm
= np
.array(~np
.isnan(ll
))
90 # Define all the x, y, and z components of upper and lower bounds
98 # Create the data to call SVM3 function from svm3test.py
99 X
= np
.c_
[np
.concatenate((lx
,ux
)),np
.concatenate((ly
,uy
)),np
.concatenate((lz
,uz
))]
100 y
= np
.concatenate((-np
.ones(len(lx
)),np
.ones(len(ux
))))
101 # Print the shape of the data
102 print 'shape X: ', X
.shape
103 print 'shape y: ', y
.shape
106 c
= 80*np
.ones(y
.shape
)
108 c
= np
.concatenate((np
.ravel(C
[0])[lm
],np
.ravel(C
[1])[um
]))
110 # Clean data if not in bounding box
111 bbox
= (lon
.min(),lon
.max(),lat
.min(),lat
.max(),time_num_granules
)
112 geo_mask
= np
.logical_and(np
.logical_and(np
.logical_and(X
[:,0] >= bbox
[0],X
[:,0] <= bbox
[1]), X
[:,1] >= bbox
[2]), X
[:,1] <= bbox
[3])
113 btime
= (0,(scale
[1]-scale
[0])/tscale
)
114 time_mask
= np
.logical_and(X
[:,2] >= btime
[0], X
[:,2] <= btime
[1])
115 whole_mask
= np
.logical_and(geo_mask
, time_mask
)
122 def make_fire_mesh(fxlon
, fxlat
, it
, nt
):
124 Create a mesh of points to evaluate the decision function
126 :param fxlon: data to base x-axis meshgrid on
127 :param fxlat: data to base y-axis meshgrid on
128 :param it: data to base z-axis meshgrid on
129 :param nt: tuple of number of nodes at each direction, optional
130 :param coarse: coarsening of the fire mesh
131 :return xx, yy, zz: ndarray
133 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
134 Angel Farguell (angel.farguell@gmail.com), 2019-04-01
137 xx
= np
.repeat(fxlon
[:, :, np
.newaxis
], nt
, axis
=2)
138 yy
= np
.repeat(fxlat
[:, :, np
.newaxis
], nt
, axis
=2)
139 tt
= np
.linspace(it
[0],it
[1],nt
)
140 zz
= np
.swapaxes(np
.swapaxes(np
.array([np
.ones(fxlon
.shape
)*t
for t
in tt
]),0,1),1,2)
144 def make_meshgrid(x
, y
, z
, s
=(50,50,50), exp
=.1):
146 Create a mesh of points to evaluate the decision function
148 :param x: data to base x-axis meshgrid on
149 :param y: data to base y-axis meshgrid on
150 :param z: data to base z-axis meshgrid on
151 :param s: tuple of number of nodes at each direction, optional
152 :param exp: extra percentage of time steps in each direction (between 0 and 1), optional
153 :return xx, yy, zz: ndarray
155 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
156 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
158 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
161 if not isinstance(s
, tuple):
163 print 'The number of nodes at each direction is not a tuple: ', s
165 # number of nodes in each direction
166 sx
, sy
, sz
= np
.array(s
).astype(int)
167 # extra step sizes in each direction
171 # grid lengths in each directon
172 lx
= x
.max() - x
.min()
173 ly
= y
.max() - y
.min()
174 lz
= z
.max() - z
.min()
175 # grid resolutions in each direction
176 hx
= lx
/ (sx
- 2*brx
- 1)
177 hy
= ly
/ (sy
- 2*bry
- 1)
178 hz
= lz
/ (sz
- 2*brz
- 1)
179 # extrem values for each dimension
180 x_min
, x_max
= x
.min() - brx
* hx
, x
.max() + brx
* hx
181 y_min
, y_max
= y
.min() - bry
* hy
, y
.max() + bry
* hy
182 z_min
, z_max
= z
.min() - brz
* hz
, z
.max() + brz
* hz
183 # generating the mesh grid
184 xx
, yy
, zz
= np
.meshgrid(np
.linspace(y_min
, y_max
, sy
),
185 np
.linspace(x_min
, x_max
, sx
),
186 np
.linspace(z_min
, z_max
, sz
))
189 def frontier(clf
, xx
, yy
, zz
, bal
=.5, plot_decision
= False, plot_poly
=False, using_weights
=False):
191 Compute the surface decision frontier for a classifier.
193 :param clf: a classifier
194 :param xx: meshgrid ndarray
195 :param yy: meshgrid ndarray
196 :param zz: meshgrid ndarray
197 :param bal: number between 0 and 1, balance between lower and upper bounds in decision function (in case not level 0)
198 :param plot_decision: boolean of plotting decision volume
199 :param plot_poly: boolean of plotting polynomial approximation
200 :return F: 2D meshes with xx, yy coordinates and the hyperplane z which gives decision functon 0
202 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
203 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
205 https://www.semipol.de/2015/10/29/SVM-separating-hyperplane-3d-matplotlib.html
208 # Creating the 3D grid
209 XX
= np
.c_
[np
.ravel(xx
), np
.ravel(yy
), np
.ravel(zz
)]
211 # Evaluating the decision function
212 print '>> Evaluating the decision function...'
216 from libsvm_weights
.python
.svmutil
import svm_predict
217 _
, _
, p_vals
= svm_predict([], XX
, clf
)
218 ZZ
= np
.array([p
[0] for p
in p_vals
])
220 ZZ
= clf
.decision_function(XX
)
222 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
223 hist
= np
.histogram(ZZ
)
224 print 'counts: ', hist
[0]
225 print 'values: ', hist
[1]
226 print 'decision function range: ', ZZ
.min(), '~', ZZ
.max()
228 # Reshaping decision function volume
229 Z
= ZZ
.reshape(xx
.shape
)
230 print 'decision function shape: ', Z
.shape
231 sl
.save((xx
,yy
,zz
,Z
),'decision')
235 from skimage
import measure
236 from shiftcmap
import shiftedColorMap
237 verts
, faces
, normals
, values
= measure
.marching_cubes_lewiner(Z
, level
=0, allow_degenerate
=False)
238 # Scale and transform to actual size of the interesting volume
239 h
= np
.divide([xx
.max()-xx
.min(), yy
.max() - yy
.min(), zz
.max() - zz
.min()],np
.array(xx
.shape
)-1)
241 verts
= verts
+ [xx
.min(), yy
.min(), zz
.min()]
242 mesh
= Poly3DCollection(verts
[faces
], facecolor
='orange', alpha
=.9)
244 ax
= fig
.gca(projection
='3d')
245 fig
.suptitle("Decision volume")
246 col
= [(0, 0, 1), (.5, .5, .5), (1, 0, 0)]
247 cm
= colors
.LinearSegmentedColormap
.from_list('BuRd',col
,N
=100)
248 midpoint
= 1 - ZZ
.max() / (ZZ
.max() + abs(ZZ
.min()))
249 shiftedcmap
= shiftedColorMap(cm
, midpoint
=midpoint
, name
='shifted')
254 p
= ax
.scatter(X
[0::kk
], Y
[0::kk
], T
[0::kk
], c
=ZZ
[0::kk
], s
=.1, alpha
=.4, cmap
=shiftedcmap
)
255 cbar
= fig
.colorbar(p
)
256 cbar
.set_label('decision function value', rotation
=270, labelpad
=20)
257 ax
.add_collection3d(mesh
)
258 ax
.set_zlim([xx
.min(),xx
.max()])
259 ax
.set_ylim([yy
.min(),yy
.max()])
260 ax
.set_zlim([zz
.min(),zz
.max()])
261 ax
.set_xlabel("Longitude normalized")
262 ax
.set_ylabel("Latitude normalized")
263 ax
.set_zlabel("Time normalized")
264 plt
.savefig('decision.png')
265 except Exception as e
:
266 print 'Warning: something went wrong when plotting...'
271 # Computing fire arrival time from previous decision function
272 print '>> Computing fire arrival time...'
275 # xx 2-dimensional array
277 # yy 2-dimensional array
279 # zz 1-dimensional array
281 # Initializing fire arrival time
282 Fz
= np
.zeros(Fx
.shape
)
284 for k1
in range(Fx
.shape
[0]):
285 for k2
in range(Fx
.shape
[1]):
286 # Approximate the vertical decision function by a piecewise polynomial (cubic spline interpolation)
287 pz
= interpolate
.CubicSpline(zr
, Z
[k1
,k2
])
288 # Compute the real roots of the the piecewise polynomial
290 # Just take the real roots between min(zz) and max(zz)
291 realr
= rr
.real
[np
.logical_and(abs(rr
.imag
) < 1e-5, np
.logical_and(rr
.real
> zr
.min(), rr
.real
< zr
.max()))]
293 # Take the minimum root
294 Fz
[k1
,k2
] = realr
.min()
295 # Plotting the approximated polynomial with the decision function
300 plt
.plot(Z
[k1
,k2
],zr
,'+')
301 plt
.plot(np
.zeros(len(realr
)),realr
,'o',c
='g')
302 plt
.plot(0,Fz
[k1
,k2
],'o',markersize
=3,c
='r')
303 plt
.title('Polynomial approximation of decision_function(%f,%f,z)' % (Fx
[k1
,k2
],Fy
[k1
,k2
]))
304 plt
.xlabel('decision function value')
306 plt
.legend(['polynomial','decision values','roots','fire arrival time'])
307 plt
.xlim([Z
.min(),Z
.max()])
308 plt
.ylim([zz
.min(),zz
.max()])
312 except Exception as e
:
313 print 'Warning: something went wrong when plotting...'
316 # If there is not a real root of the polynomial between zz.min() and zz.max(), just define as a Nan
319 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
324 def SVM3(X
, y
, C
=1., kgam
=1., search
=False, norm
=True, fire_grid
=None, weights
=None):
326 3D SuperVector Machine analysis and plot
328 :param X: Training vectors, where n_samples is the number of samples and n_features is the number of features.
329 :param y: Target values
330 :param C: Weight to not having outliers (argument of svm.SVC class), optional
331 :param kgam: Scalar multiplier for gamma (capture more details increasing it)
332 :param norm: Normalize the data in the interval (0,1) in all the directions, optional
333 :param fire_grid: The longitud and latitude grid where to have the fire arrival time
334 :return F: tuple with (longitude grid, latitude grid, fire arrival time grid)
336 Developed in Python 2.7.15 :: Anaconda 4.5.10, on MACINTOSH.
337 Angel Farguell (angel.farguell@gmail.com), 2019-02-20
339 https://scikit-learn.org/stable/auto_examples/svm/plot_iris.html#sphx-glr-auto-examples-svm-plot-iris-py
344 col
= [(0, 1, 0), (1, 0, 0)]
345 cm_GR
= colors
.LinearSegmentedColormap
.from_list('GrRd',col
,N
=2)
346 col
= [(1, 0, 0), (.25, 0, 0)]
347 cm_Rds
= colors
.LinearSegmentedColormap
.from_list('Rds',col
,N
=100)
352 # plot scaled data with artificial data
354 # plot decision volume
355 plot_decision
= False
356 # plot polynomial approximation
358 # plot full hyperplane vs detections with support vectors
360 # plot resulting fire arrival time vs detections
364 # number of vertical nodes per observation
366 # interpolate into the original fire mesh
368 # if not Nans in the data are wanted (all Nans are going to be replaced by the maximum value)
371 # Options better to not change
372 # number of horizontal nodes per observation (if fire_grid==None)
374 # creation of under artificial lower bounds in the pre-processing
376 # if artil = True: resolution of artificial lower bounds vertical to the ground detections
378 # creation of over artificial upper bounds in the pre-processing
380 # if artiu = True: resolution of artificial upper bounds vertical to the fire detections
382 # creation of an artifitial mesh of down lower bounds
384 # if downarti = True: below min of z direction for lower bound artifitial creation
386 # if downarti = True: confidence level of the artificial lower bounds
388 # creation of an artifitial mesh of top upper bounds
390 # if toparti = True: proportion over max of z direction for upper bound artifitial creation
392 # if toparti = True: confidence level of the artificial upper bounds
395 # using different weights for the data
396 if isinstance(C
,(list,tuple,np
.ndarray
)):
398 from libsvm_weights
.python
.svm
import svm_problem
, svm_parameter
399 from libsvm_weights
.python
.svmutil
import svm_train
400 from sklearn
.utils
import compute_class_weight
402 using_weights
= False
405 X
= np
.array(X
).astype(float)
409 oX
= np
.array(X
).astype(float)
412 # Visualization of the data
413 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
417 ax
= fig
.gca(projection
='3d')
418 fig
.suptitle("Plotting the original data to fit")
419 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=cm_GR
, s
=20, edgecolors
='k', vmin
=y
.min(), vmax
=y
.max())
420 ax
.set_xlabel("Longitude")
421 ax
.set_ylabel("Latitude")
422 ax
.set_zlabel("Time (days)")
423 plt
.savefig('original_data.png')
424 except Exception as e
:
425 print 'Warning: something went wrong when plotting...'
428 # Normalization of the data into [0,1]^3
431 xlen
= X0
.max() - X0
.min()
432 x0
= np
.divide(X0
- xmin
, xlen
)
434 ylen
= X1
.max() - X1
.min()
435 x1
= np
.divide(X1
- ymin
, ylen
)
437 zlen
= X2
.max() - X2
.min()
438 x2
= np
.divide(X2
- zmin
, zlen
)
439 X0
, X1
, X2
= x0
, x1
, x2
444 # Creation of fire and ground artificial detections
445 if artil
or artiu
or toparti
or downarti
:
446 # Extreme values at z direction
449 # Division of lower and upper bounds for data and confidence level
450 fl
= X
[y
==np
.unique(y
)[0]]
451 fu
= X
[y
==np
.unique(y
)[1]]
453 # Artifitial extensions of the lower bounds
455 # Create artificial lower bounds
456 flz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],minz
,-hartil
),f
[2])) for f
in fl
])
457 # Definition of new ground detections after artificial detections added
458 Xg
= np
.concatenate([ np
.c_
[(np
.repeat(fl
[k
][0],len(flz
[k
])),np
.repeat(fl
[k
][1],len(flz
[k
])),flz
[k
])] for k
in range(len(flz
)) ])
460 cl
= C
[y
==np
.unique(y
)[0]]
461 Cg
= np
.concatenate([ np
.repeat(cl
[k
],len(flz
[k
])) for k
in range(len(flz
)) ])
465 cl
= C
[y
==np
.unique(y
)[0]]
468 # Artifitial extensions of the upper bounds
470 # Create artificial upper bounds
471 fuz
= np
.array([ np
.unique(np
.append(np
.arange(f
[2],maxz
,hartiu
),f
[2])) for f
in fu
])
472 # Definition of new fire detections after artificial detections added
473 Xf
= np
.concatenate([ np
.c_
[(np
.repeat(fu
[k
][0],len(fuz
[k
])),np
.repeat(fu
[k
][1],len(fuz
[k
])),fuz
[k
])] for k
in range(len(fuz
)) ])
474 # Define new confidence levels
476 cu
= C
[y
==np
.unique(y
)[1]]
477 Cf
= np
.concatenate([ np
.repeat(cu
[k
],len(fuz
[k
])) for k
in range(len(fuz
)) ])
481 cu
= C
[y
==np
.unique(y
)[1]]
484 # Bottom artificial lower bounds
486 # Creation of the x,y new mesh of artificial lower bounds
487 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
488 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
489 # All the artificial new mesh are going to be below the data
490 zng
= np
.repeat(minz
-dminz
,len(np
.ravel(xn
)))
491 # Artifitial lower bounds
492 Xga
= np
.c_
[np
.ravel(xn
),np
.ravel(yn
),np
.ravel(zng
)]
493 # Definition of new ground detections after down artificial lower detections
494 Xgn
= np
.concatenate((Xg
,Xga
))
495 # Definition of new confidence level
497 Cga
= np
.ones(len(Xga
))*confal
498 Cgn
= np
.concatenate((Cg
,Cga
))
504 # Top artificial upper bounds
506 # Creation of the x,y new mesh of artificial upper bounds
507 xn
, yn
= np
.meshgrid(np
.linspace(X
[:, 0].min(), X
[:, 0].max(), 20),
508 np
.linspace(X
[:, 1].min(), X
[:, 1].max(), 20))
509 # All the artificial new mesh are going to be over the data
510 znf
= np
.repeat(maxz
+dmaxz
,len(np
.ravel(xn
)))
511 # Artifitial upper bounds
512 Xfa
= np
.c_
[np
.ravel(xn
),np
.ravel(yn
),np
.ravel(znf
)]
513 # Definition of new fire detections after top artificial upper detections
514 Xfn
= np
.concatenate((Xf
,Xfa
))
515 # Definition of new confidence level
517 Cfa
= np
.ones(len(Xfa
))*confau
518 Cfn
= np
.concatenate((Cf
,Cfa
))
524 # New definition of the training vectors
525 X
= np
.concatenate((Xgn
, Xfn
))
526 # New definition of the target values
527 y
= np
.concatenate((np
.repeat(np
.unique(y
)[0],len(Xgn
)),np
.repeat(np
.unique(y
)[1],len(Xfn
))))
528 # New definition of the confidence level
530 C
= np
.concatenate((Cgn
, Cfn
))
531 # New definition of each feature vector
532 X0
, X1
, X2
= X
[:, 0], X
[:, 1], X
[:, 2]
534 # Printing number of samples and features
535 n0
= (y
==np
.unique(y
)[0]).sum().astype(float)
536 n1
= (y
==np
.unique(y
)[1]).sum().astype(float)
537 n_samples
, n_features
= X
.shape
538 print 'n_samples =', n_samples
539 print 'n_samples_{-1} =', int(n0
)
540 print 'n_samples_{+1} =', int(n1
)
541 print 'n_features =', n_features
543 # Visualization of scaled data
547 ax
= fig
.gca(projection
='3d')
548 fig
.suptitle("Plotting the data scaled to fit")
549 ax
.scatter(X0
, X1
, X2
, c
=y
, cmap
=cm_GR
, s
=20, edgecolors
='k', vmin
=y
.min(), vmax
=y
.max())
550 ax
.set_xlabel("Longitude normalized")
551 ax
.set_ylabel("Latitude normalized")
552 ax
.set_zlabel("Time normalized")
553 plt
.savefig('scaled_data.png')
554 except Exception as e
:
555 print 'Warning: something went wrong when plotting...'
558 # Reescaling gamma to include more detailed results
559 gamma
= 1. / (n_features
* X
.std())
560 print 'gamma =', gamma
562 # Creating the SVM model and fitting the data using Super Vector Machine technique
563 print '>> Creating the SVM model...'
567 # Compute class balanced weights
568 cls
, _
= np
.unique(y
, return_inverse
=True)
569 class_weight
= compute_class_weight("balanced", cls
, y
)
570 prob
= svm_problem(C
,y
,X
)
571 arg
= '-g %.15g -w%01d %.15g -w%01d %.15g -m 1000 -h 0' % (gamma
, cls
[0], class_weight
[0],
572 cls
[1], class_weight
[1])
573 param
= svm_parameter(arg
)
574 print '>> Fitting the SVM model...'
576 clf
= svm_train(prob
,param
)
581 print '>> Searching for best value of C and gamma...'
584 param_grid
= {'C': np
.logspace(-2,5,8), 'gamma': gamma
*np
.logspace(-1,6,8)}
585 # Make grid search classifier
586 grid_search
= GridSearchCV(svm
.SVC(cache_size
=2000,class_weight
="balanced",probability
=True), param_grid
, n_jobs
=-1, verbose
=1, cv
=5, iid
=False)
587 print '>> Fitting the SVM model...'
588 # Train the classifier
589 grid_search
.fit(X
, y
)
590 print "Best Parameters:\n", grid_search
.best_params_
591 clf
= grid_search
.best_estimator_
592 print "Best Estimators:\n", clf
595 clf
= svm
.SVC(C
=C
, kernel
="rbf", gamma
=gamma
, cache_size
=2000, class_weight
="balanced") # default kernel: exp(-gamma||x-x'||^2)
597 print '>> Fitting the SVM model...'
598 # Fitting the data using Super Vector Machine technique
601 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
603 if not using_weights
:
604 # Check if the classification failed
607 print 'Failed fitting the data'
609 print 'number of support vectors: ', clf
.n_support_
610 print 'score of trained data: ', clf
.score(X
,y
)
612 # Creating the mesh grid to evaluate the classification
613 print '>> Creating mesh grid to evaluate the classification...'
614 nnodes
= np
.ceil(np
.power(n_samples
,1./n_features
))
615 if fire_grid
is None:
616 # Number of necessary nodes
619 print 'number of horizontal nodes (%d meshgrid nodes for each observation): %d' % (hN
,hnodes
)
620 print 'number of vertical nodes (%d meshgrid nodes for each observation): %d' % (vN
,vnodes
)
621 # Computing resolution of the mesh to evaluate
622 sdim
= (hnodes
,hnodes
,vnodes
)
623 print 'grid_size = %dx%dx%d = %d' % (sdim
[0],sdim
[1],sdim
[2],np
.prod(sdim
))
625 xx
, yy
, zz
= make_meshgrid(X0
, X1
, X2
, s
=sdim
)
628 fxlon
= np
.divide(fire_grid
[0] - xmin
, xlen
)
629 fxlat
= np
.divide(fire_grid
[1] - ymin
, ylen
)
630 it
= (X2
.min(),X2
.max())
632 sdim
= (fxlon
.shape
[0],fxlon
.shape
[1],vnodes
)
633 print 'fire_grid_size = %dx%dx%d = %d' % (sdim
+ (np
.prod(sdim
),))
635 xx
, yy
, zz
= make_fire_mesh(fxlon
, fxlat
, it
, sdim
[2])
637 print 'grid_created = %dx%dx%d = %d' % (zz
.shape
+ (np
.prod(zz
.shape
),))
638 print 'elapsed time: %ss.' % str(abs(t_2
-t_1
))
640 # Computing the 2D fire arrival time, F
641 print '>> Computing the 2D fire arrival time, F...'
643 F
= frontier(clf
, xx
, yy
, zz
, plot_decision
=plot_decision
, plot_poly
=plot_poly
, using_weights
=using_weights
)
645 print '>> Creating final results...'
647 # Plotting the Separating Hyperplane of the SVM classification with the support vectors
651 supp_ind
= np
.sort(clf
.get_sv_indices())-1
652 supp_vec
= X
[supp_ind
]
654 supp_ind
= clf
.support_
655 supp_vec
= clf
.support_vectors_
657 ax
= fig
.gca(projection
='3d')
658 fig
.suptitle("Plotting the 3D Separating Hyperplane of an SVM")
659 # plotting the separating hyperplane
660 ax
.plot_wireframe(F
[0], F
[1], F
[2], color
='orange', alpha
=.5)
661 # computing the indeces where no support vectors
662 rr
= np
.array(range(len(y
)))
663 ms
= np
.isin(rr
,supp_ind
)
665 # plotting no-support vectors (smaller)
666 ax
.scatter(X0
[nsupp
], X1
[nsupp
], X2
[nsupp
], c
=y
[nsupp
], cmap
=cm_GR
, s
=.5, vmin
=y
.min(), vmax
=y
.max(), alpha
=.1)
667 # plotting support vectors (bigger)
668 ax
.scatter(supp_vec
[:, 0], supp_vec
[:, 1], supp_vec
[:, 2], c
=y
[supp_ind
], cmap
=cm_GR
, s
=20, edgecolors
='k', alpha
=.2);
669 ax
.set_xlim(xx
.min(),xx
.max())
670 ax
.set_ylim(yy
.min(),yy
.max())
671 ax
.set_zlim(zz
.min(),zz
.max())
672 ax
.set_xlabel("Longitude normalized")
673 ax
.set_ylabel("Latitude normalized")
674 ax
.set_zlabel("Time normalized")
675 plt
.savefig('support.png')
676 except Exception as e
:
677 print 'Warning: something went wrong when plotting...'
680 # Plot the fire arrival time resulting from the SVM classification normalized
683 Fx
, Fy
, Fz
= np
.array(F
[0]), np
.array(F
[1]), np
.array(F
[2])
684 with np
.errstate(invalid
='ignore'):
685 Fz
[Fz
> X2
.max()] = np
.nan
687 Fz
[np
.isnan(Fz
)] = X2
.max()
688 Fz
= np
.minimum(Fz
, X2
.max())
690 ax
= fig
.gca(projection
='3d')
691 fig
.suptitle("Fire arrival time normalized")
692 # plotting fire arrival time
693 p
= ax
.plot_surface(Fx
, Fy
, Fz
, cmap
=cm_Rds
,
694 linewidth
=0, antialiased
=False)
695 ax
.set_xlim(xx
.min(),xx
.max())
696 ax
.set_ylim(yy
.min(),yy
.max())
697 ax
.set_zlim(zz
.min(),zz
.max())
698 cbar
= fig
.colorbar(p
)
699 cbar
.set_label('Fire arrival time normalized', labelpad
=20, rotation
=270)
700 ax
.set_xlabel("Longitude normalized")
701 ax
.set_ylabel("Latitude normalized")
702 ax
.set_zlabel("Time normalized")
703 plt
.savefig('tign_g.png')
704 except Exception as e
:
705 print 'Warning: something went wrong when plotting...'
708 # Translate the result again into initial data scale
710 f0
= F
[0] * xlen
+ xmin
711 f1
= F
[1] * ylen
+ ymin
712 f2
= F
[2] * zlen
+ zmin
715 # Set all the larger values at the end to be the same maximum value
716 oX0
, oX1
, oX2
= oX
[:, 0], oX
[:, 1], oX
[:, 2]
717 FFx
, FFy
, FFz
= FF
[0], FF
[1], FF
[2]
719 with np
.errstate(invalid
='ignore'):
720 FFz
[FFz
> oX2
.max()] = np
.nan
723 FFz
[np
.isnan(FFz
)] = oX2
.max()
724 FFz
= np
.minimum(FFz
, oX2
.max())
726 if (not fire_grid
is None) and (interp
):
727 print '>> Interpolating the results in the fire mesh'
730 points
= np
.c_
[np
.ravel(Fx
),np
.ravel(Fy
)]
731 values
= np
.ravel(Fz
)
732 Ffire
= interpolate
.griddata(points
,values
,(Flon
,Flat
))
733 FF
= [Flon
,Flat
,Ffire
]
737 # Plot the fire arrival time resulting from the SVM classification
740 # Plotting the result
742 ax
= fig
.gca(projection
='3d')
743 fig
.suptitle("Plotting the 3D graph function of a SVM")
744 FFx
, FFy
, FFz
= np
.array(FF
[0]), np
.array(FF
[1]), np
.array(FF
[2])
745 # plotting original data
746 ax
.scatter(oX0
, oX1
, oX2
, c
=oy
, cmap
=cm_GR
, s
=2, vmin
=y
.min(), vmax
=y
.max())
747 # plotting fire arrival time
748 ax
.plot_wireframe(FFx
, FFy
, FFz
, color
='orange', alpha
=.5)
749 ax
.set_xlabel("Longitude")
750 ax
.set_ylabel("Latitude")
751 ax
.set_zlabel("Time (days)")
752 plt
.savefig('result.png')
753 except Exception as e
:
754 print 'Warning: something went wrong when plotting...'
757 print '>> SUCCESS <<'
759 print 'TOTAL elapsed time: %ss.' % str(abs(t_final
-t_init
))
765 if __name__
== "__main__":
770 # Defining ground and fire detections
772 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0]]
773 Xf
= [[0, 0, 1], [1, 1, 0], [2, 2, 1], [2, 0, 1], [0, 2, 1]]
774 C
= np
.concatenate((10.*np
.ones(len(Xg
)),100.*np
.ones(len(Xf
))))
776 return Xg
, Xf
, C
, kgam
778 Xg
= [[0, 0, 0], [2, 2, 0], [2, 0, 0], [0, 2, 0],
779 [4, 2, 0], [4, 0, 0], [2, 1, .5], [0, 1, .5],
780 [4, 1, .5], [2, 0, .5], [2, 2, .5]]
781 Xf
= [[0, 0, 1], [1, 1, 0.25], [2, 2, 1], [2, 0, 1], [0, 2, 1], [3, 1, 0.25], [4, 2, 1], [4, 0, 1]]
782 C
= np
.concatenate((np
.array([50.,50.,50.,50.,50.,50.,
783 1000.,100.,100.,100.,100.]), 100.*np
.ones(len(Xf
))))
785 return Xg
, Xf
, C
, kgam
787 # Creating the options
788 options
= {1 : exp1
, 2 : exp2
}
790 # Defining the option depending on the experiment
791 Xg
, Xf
, C
, kgam
= options
[exp
]()
793 # Creating the data necessary to run SVM3 function
794 X
= np
.concatenate((Xg
, Xf
))
795 y
= np
.concatenate((-np
.ones(len(Xg
)), np
.ones(len(Xf
))))
797 # Running SVM classification
798 SVM3(X
,y
,C
=C
,kgam
=kgam
,search
=search
)