1 // Copyright (c) 2019 Google LLC
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
7 // http://www.apache.org/licenses/LICENSE-2.0
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
15 #include "source/fuzz/fuzzer_pass_construct_composites.h"
19 #include "source/fuzz/available_instructions.h"
20 #include "source/fuzz/fuzzer_util.h"
21 #include "source/fuzz/transformation_composite_construct.h"
26 FuzzerPassConstructComposites::FuzzerPassConstructComposites(
27 opt::IRContext
* ir_context
, TransformationContext
* transformation_context
,
28 FuzzerContext
* fuzzer_context
,
29 protobufs::TransformationSequence
* transformations
,
30 bool ignore_inapplicable_transformations
)
31 : FuzzerPass(ir_context
, transformation_context
, fuzzer_context
,
32 transformations
, ignore_inapplicable_transformations
) {}
34 void FuzzerPassConstructComposites::Apply() {
35 // Gather up the ids of all composite types, but skip block-/buffer
36 // block-decorated struct types.
37 std::vector
<uint32_t> composite_type_ids
;
38 for (auto& inst
: GetIRContext()->types_values()) {
39 if (fuzzerutil::IsCompositeType(
40 GetIRContext()->get_type_mgr()->GetType(inst
.result_id())) &&
41 !fuzzerutil::HasBlockOrBufferBlockDecoration(GetIRContext(),
43 composite_type_ids
.push_back(inst
.result_id());
47 if (composite_type_ids
.empty()) {
48 // There are no composite types, so this fuzzer pass cannot do anything.
52 AvailableInstructions
available_composite_constituents(
54 [this](opt::IRContext
* ir_context
, opt::Instruction
* inst
) -> bool {
55 if (!inst
->result_id() || !inst
->type_id()) {
59 // If the id is irrelevant, we can use it since it will not
60 // participate in DataSynonym fact. Otherwise, we should be able
61 // to produce a synonym out of the id.
62 return GetTransformationContext()->GetFactManager()->IdIsIrrelevant(
64 fuzzerutil::CanMakeSynonymOf(ir_context
,
65 *GetTransformationContext(), *inst
);
68 ForEachInstructionWithInstructionDescriptor(
69 [this, &available_composite_constituents
, &composite_type_ids
](
70 opt::Function
* /*unused*/, opt::BasicBlock
* /*unused*/,
71 opt::BasicBlock::iterator inst_it
,
72 const protobufs::InstructionDescriptor
& instruction_descriptor
)
74 // Randomly decide whether to try inserting a composite construction
76 if (!GetFuzzerContext()->ChoosePercentage(
77 GetFuzzerContext()->GetChanceOfConstructingComposite())) {
81 // Check whether it is legitimate to insert a composite construction
82 // before the instruction.
83 if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
84 spv::Op::OpCompositeConstruct
, inst_it
)) {
88 // For each instruction that is available at this program point (i.e. an
89 // instruction that is global or whose definition strictly dominates the
90 // program point) and suitable for making a synonym of, associate it
91 // with the id of its result type.
92 TypeIdToInstructions type_id_to_available_instructions
;
93 auto available_instructions
=
94 available_composite_constituents
.GetAvailableBeforeInstruction(
96 for (uint32_t available_instruction_index
= 0;
97 available_instruction_index
< available_instructions
.size();
98 available_instruction_index
++) {
99 opt::Instruction
* inst
=
100 available_instructions
[available_instruction_index
];
101 type_id_to_available_instructions
[inst
->type_id()].push_back(
105 // At this point, |composite_type_ids| captures all the composite types
106 // we could try to create, while |type_id_to_available_instructions|
107 // captures all the available result ids we might use, organized by
110 // Now we choose a composite type to construct, building it from
111 // available constituent components and using zero constants if suitable
112 // components are not available.
114 std::vector
<uint32_t> constructor_arguments
;
115 uint32_t chosen_composite_type
=
116 composite_type_ids
[GetFuzzerContext()->RandomIndex(
117 composite_type_ids
)];
119 // Construct a composite of this type, using an appropriate helper
120 // method depending on the kind of composite type.
121 auto composite_type_inst
=
122 GetIRContext()->get_def_use_mgr()->GetDef(chosen_composite_type
);
123 switch (composite_type_inst
->opcode()) {
124 case spv::Op::OpTypeArray
:
125 constructor_arguments
= FindComponentsToConstructArray(
126 *composite_type_inst
, type_id_to_available_instructions
);
128 case spv::Op::OpTypeMatrix
:
129 constructor_arguments
= FindComponentsToConstructMatrix(
130 *composite_type_inst
, type_id_to_available_instructions
);
132 case spv::Op::OpTypeStruct
:
133 constructor_arguments
= FindComponentsToConstructStruct(
134 *composite_type_inst
, type_id_to_available_instructions
);
136 case spv::Op::OpTypeVector
:
137 constructor_arguments
= FindComponentsToConstructVector(
138 *composite_type_inst
, type_id_to_available_instructions
);
142 "The space of possible composite types should be covered "
143 "by the above cases.");
146 assert(!constructor_arguments
.empty());
148 // Make and apply a transformation.
149 ApplyTransformation(TransformationCompositeConstruct(
150 chosen_composite_type
, constructor_arguments
,
151 instruction_descriptor
, GetFuzzerContext()->GetFreshId()));
155 std::vector
<uint32_t>
156 FuzzerPassConstructComposites::FindComponentsToConstructArray(
157 const opt::Instruction
& array_type_instruction
,
158 const TypeIdToInstructions
& type_id_to_available_instructions
) {
159 assert(array_type_instruction
.opcode() == spv::Op::OpTypeArray
&&
160 "Precondition: instruction must be an array type.");
162 // Get the element type for the array.
163 auto element_type_id
= array_type_instruction
.GetSingleWordInOperand(0);
165 // Get all instructions at our disposal that compute something of this element
167 auto available_instructions
=
168 type_id_to_available_instructions
.find(element_type_id
);
170 uint32_t array_length
=
173 ->GetDef(array_type_instruction
.GetSingleWordInOperand(1))
174 ->GetSingleWordInOperand(0);
176 std::vector
<uint32_t> result
;
177 for (uint32_t index
= 0; index
< array_length
; index
++) {
178 if (available_instructions
== type_id_to_available_instructions
.cend()) {
179 // No suitable instructions are available, so use a zero constant
180 result
.push_back(FindOrCreateZeroConstant(element_type_id
, true));
183 available_instructions
->second
[GetFuzzerContext()->RandomIndex(
184 available_instructions
->second
)]);
190 std::vector
<uint32_t>
191 FuzzerPassConstructComposites::FindComponentsToConstructMatrix(
192 const opt::Instruction
& matrix_type_instruction
,
193 const TypeIdToInstructions
& type_id_to_available_instructions
) {
194 assert(matrix_type_instruction
.opcode() == spv::Op::OpTypeMatrix
&&
195 "Precondition: instruction must be a matrix type.");
197 // Get the element type for the matrix.
198 auto element_type_id
= matrix_type_instruction
.GetSingleWordInOperand(0);
200 // Get all instructions at our disposal that compute something of this element
202 auto available_instructions
=
203 type_id_to_available_instructions
.find(element_type_id
);
205 std::vector
<uint32_t> result
;
206 for (uint32_t index
= 0;
207 index
< matrix_type_instruction
.GetSingleWordInOperand(1); index
++) {
208 if (available_instructions
== type_id_to_available_instructions
.cend()) {
209 // No suitable components are available, so use a zero constant.
210 result
.push_back(FindOrCreateZeroConstant(element_type_id
, true));
213 available_instructions
->second
[GetFuzzerContext()->RandomIndex(
214 available_instructions
->second
)]);
220 std::vector
<uint32_t>
221 FuzzerPassConstructComposites::FindComponentsToConstructStruct(
222 const opt::Instruction
& struct_type_instruction
,
223 const TypeIdToInstructions
& type_id_to_available_instructions
) {
224 assert(struct_type_instruction
.opcode() == spv::Op::OpTypeStruct
&&
225 "Precondition: instruction must be a struct type.");
226 std::vector
<uint32_t> result
;
227 // Consider the type of each field of the struct.
228 for (uint32_t in_operand_index
= 0;
229 in_operand_index
< struct_type_instruction
.NumInOperands();
230 in_operand_index
++) {
231 auto element_type_id
=
232 struct_type_instruction
.GetSingleWordInOperand(in_operand_index
);
233 // Find the instructions at our disposal that compute something of the field
235 auto available_instructions
=
236 type_id_to_available_instructions
.find(element_type_id
);
237 if (available_instructions
== type_id_to_available_instructions
.cend()) {
238 // No suitable component is available for this element type, so use a zero
240 result
.push_back(FindOrCreateZeroConstant(element_type_id
, true));
243 available_instructions
->second
[GetFuzzerContext()->RandomIndex(
244 available_instructions
->second
)]);
250 std::vector
<uint32_t>
251 FuzzerPassConstructComposites::FindComponentsToConstructVector(
252 const opt::Instruction
& vector_type_instruction
,
253 const TypeIdToInstructions
& type_id_to_available_instructions
) {
254 assert(vector_type_instruction
.opcode() == spv::Op::OpTypeVector
&&
255 "Precondition: instruction must be a vector type.");
257 // Get details of the type underlying the vector, and the width of the vector,
259 auto element_type_id
= vector_type_instruction
.GetSingleWordInOperand(0);
260 auto element_type
= GetIRContext()->get_type_mgr()->GetType(element_type_id
);
261 auto element_count
= vector_type_instruction
.GetSingleWordInOperand(1);
263 // Collect a mapping, from type id to width, for scalar/vector types that are
264 // smaller in width than |vector_type|, but that have the same underlying
265 // type. For example, if |vector_type| is vec4, the mapping will be:
266 // { float -> 1, vec2 -> 2, vec3 -> 3 }
267 // The mapping will have missing entries if some of these types do not exist.
269 std::map
<uint32_t, uint32_t> smaller_vector_type_id_to_width
;
270 // Add the underlying type. This id must exist, in order for |vector_type| to
272 smaller_vector_type_id_to_width
[element_type_id
] = 1;
274 // Now add every vector type with width at least 2, and less than the width of
276 for (uint32_t width
= 2; width
< element_count
; width
++) {
277 opt::analysis::Vector
smaller_vector_type(element_type
, width
);
278 auto smaller_vector_type_id
=
279 GetIRContext()->get_type_mgr()->GetId(&smaller_vector_type
);
280 // We might find that there is no declared type of this smaller width.
281 // For example, a module can declare vec4 without having declared vec2 or
283 if (smaller_vector_type_id
) {
284 smaller_vector_type_id_to_width
[smaller_vector_type_id
] = width
;
288 // Now we know the types that are available to us, we set about populating a
289 // vector of the right length. We do this by deciding, with no order in mind,
290 // which instructions we will use to populate the vector, and subsequently
291 // randomly choosing an order. This is to avoid biasing construction of
292 // vectors with smaller vectors to the left and scalars to the right. That is
293 // a concern because, e.g. in the case of populating a vec4, if we populate
294 // the constructor instructions left-to-right, we can always choose a vec3 to
295 // construct the first three elements, but can only choose a vec3 to construct
296 // the last three elements if we chose a float to construct the first element
297 // (otherwise there will not be space left for a vec3).
299 uint32_t vector_slots_used
= 0;
301 // The instructions result ids we will use to construct the vector, in no
302 // particular order at this stage.
303 std::vector
<uint32_t> result
;
305 while (vector_slots_used
< element_count
) {
306 std::vector
<uint32_t> instructions_to_choose_from
;
307 for (auto& entry
: smaller_vector_type_id_to_width
) {
309 std::min(element_count
- 1, element_count
- vector_slots_used
)) {
312 auto available_instructions
=
313 type_id_to_available_instructions
.find(entry
.first
);
314 if (available_instructions
== type_id_to_available_instructions
.cend()) {
317 instructions_to_choose_from
.insert(instructions_to_choose_from
.end(),
318 available_instructions
->second
.begin(),
319 available_instructions
->second
.end());
321 // If there are no instructions to choose from then use a zero constant,
322 // otherwise select one of the instructions at random.
323 uint32_t id_of_instruction_to_use
=
324 instructions_to_choose_from
.empty()
325 ? FindOrCreateZeroConstant(element_type_id
, true)
326 : instructions_to_choose_from
[GetFuzzerContext()->RandomIndex(
327 instructions_to_choose_from
)];
328 opt::Instruction
* instruction_to_use
=
329 GetIRContext()->get_def_use_mgr()->GetDef(id_of_instruction_to_use
);
330 result
.push_back(instruction_to_use
->result_id());
332 GetIRContext()->get_type_mgr()->GetType(instruction_to_use
->type_id());
333 if (chosen_type
->AsVector()) {
334 assert(chosen_type
->AsVector()->element_type() == element_type
);
335 assert(chosen_type
->AsVector()->element_count() < element_count
);
336 assert(chosen_type
->AsVector()->element_count() <=
337 element_count
- vector_slots_used
);
338 vector_slots_used
+= chosen_type
->AsVector()->element_count();
340 assert(chosen_type
== element_type
);
341 vector_slots_used
+= 1;
344 assert(vector_slots_used
== element_count
);
346 GetFuzzerContext()->Shuffle(&result
);
351 } // namespace spvtools