bump product version to 6.4.0.3
[LibreOffice.git] / sccomp / source / solver / CoinMPSolver.cxx
blob41d3601b114e58c3780300d9de14a32fa1fc7a3b
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <CoinMP.h>
21 #include <CoinError.hpp>
23 #include "SolverComponent.hxx"
24 #include <strings.hrc>
26 #include <com/sun/star/frame/XModel.hpp>
27 #include <com/sun/star/table/CellAddress.hpp>
29 #include <rtl/math.hxx>
30 #include <stdexcept>
31 #include <vector>
32 #include <float.h>
34 namespace com::sun::star::uno { class XComponentContext; }
36 using namespace com::sun::star;
38 class CoinMPSolver : public SolverComponent
40 public:
41 CoinMPSolver() {}
43 private:
44 virtual void SAL_CALL solve() override;
45 virtual OUString SAL_CALL getImplementationName() override
47 return "com.sun.star.comp.Calc.CoinMPSolver";
49 virtual OUString SAL_CALL getComponentDescription() override
51 return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT );
55 void SAL_CALL CoinMPSolver::solve()
57 uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW );
59 maStatus.clear();
60 mbSuccess = false;
62 xModel->lockControllers();
64 // collect variables in vector (?)
66 auto aVariableCells = comphelper::sequenceToContainer<std::vector<table::CellAddress>>(maVariables);
67 size_t nVariables = aVariableCells.size();
68 size_t nVar = 0;
70 // collect all dependent cells
72 ScSolverCellHashMap aCellsHash;
73 aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
75 for (const auto& rConstr : std::as_const(maConstraints))
77 table::CellAddress aCellAddr = rConstr.Left;
78 aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
80 if ( rConstr.Right >>= aCellAddr )
81 aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
84 // set all variables to zero
85 //! store old values?
86 //! use old values as initial values?
87 for ( const auto& rVarCell : aVariableCells )
89 SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );
92 // read initial values from all dependent cells
93 for ( auto& rEntry : aCellsHash )
95 double fValue = SolverComponent::GetValue( mxDoc, rEntry.first );
96 rEntry.second.push_back( fValue ); // store as first element, as-is
99 // loop through variables
100 for ( const auto& rVarCell : aVariableCells )
102 SolverComponent::SetValue( mxDoc, rVarCell, 1.0 ); // set to 1 to examine influence
104 // read value change from all dependent cells
105 for ( auto& rEntry : aCellsHash )
107 double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first );
108 double fInitial = rEntry.second.front();
109 rEntry.second.push_back( fChanged - fInitial );
112 SolverComponent::SetValue( mxDoc, rVarCell, 2.0 ); // minimal test for linearity
114 for ( const auto& rEntry : aCellsHash )
116 double fInitial = rEntry.second.front();
117 double fCoeff = rEntry.second.back(); // last appended: coefficient for this variable
118 double fTwo = SolverComponent::GetValue( mxDoc, rEntry.first );
120 bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
121 rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
122 // second comparison is needed in case fTwo is zero
123 if ( !bLinear )
124 maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
127 SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); // set back to zero for examining next variable
130 xModel->unlockControllers();
132 if ( !maStatus.isEmpty() )
133 return;
136 // build parameter arrays for CoinMP
139 // set objective function
141 const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
142 std::unique_ptr<double[]> pObjectCoeffs(new double[nVariables]);
143 for (nVar=0; nVar<nVariables; nVar++)
144 pObjectCoeffs[nVar] = rObjCoeff[nVar+1];
145 double nObjectConst = rObjCoeff[0]; // constant term of objective
147 // add rows
149 size_t nRows = maConstraints.getLength();
150 size_t nCompSize = nVariables * nRows;
151 std::unique_ptr<double[]> pCompMatrix(new double[nCompSize]); // first collect all coefficients, row-wise
152 for (size_t i=0; i<nCompSize; i++)
153 pCompMatrix[i] = 0.0;
155 std::unique_ptr<double[]> pRHS(new double[nRows]);
156 std::unique_ptr<char[]> pRowType(new char[nRows]);
157 for (size_t i=0; i<nRows; i++)
159 pRHS[i] = 0.0;
160 pRowType[i] = 'N';
163 for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
165 // integer constraints are set later
166 sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
167 if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
168 eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
169 eOp == sheet::SolverConstraintOperator_EQUAL )
171 double fDirectValue = 0.0;
172 bool bRightCell = false;
173 table::CellAddress aRightAddr;
174 const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
175 if ( rRightAny >>= aRightAddr )
176 bRightCell = true; // cell specified as right-hand side
177 else
178 rRightAny >>= fDirectValue; // constant value
180 table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
182 const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
183 double* pValues = &pCompMatrix[nConstrPos * nVariables];
184 for (nVar=0; nVar<nVariables; nVar++)
185 pValues[nVar] = rLeftCoeff[nVar+1];
187 // if left hand cell has a constant term, put into rhs value
188 double fRightValue = -rLeftCoeff[0];
190 if ( bRightCell )
192 const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
193 // modify pValues with rhs coefficients
194 for (nVar=0; nVar<nVariables; nVar++)
195 pValues[nVar] -= rRightCoeff[nVar+1];
197 fRightValue += rRightCoeff[0]; // constant term
199 else
200 fRightValue += fDirectValue;
202 switch ( eOp )
204 case sheet::SolverConstraintOperator_LESS_EQUAL: pRowType[nConstrPos] = 'L'; break;
205 case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break;
206 case sheet::SolverConstraintOperator_EQUAL: pRowType[nConstrPos] = 'E'; break;
207 default:
208 OSL_ENSURE( false, "unexpected enum type" );
210 pRHS[nConstrPos] = fRightValue;
214 // Find non-zero coefficients, column-wise
216 std::unique_ptr<int[]> pMatrixBegin(new int[nVariables+1]);
217 std::unique_ptr<int[]> pMatrixCount(new int[nVariables]);
218 std::unique_ptr<double[]> pMatrix(new double[nCompSize]); // not always completely used
219 std::unique_ptr<int[]> pMatrixIndex(new int[nCompSize]);
220 int nMatrixPos = 0;
221 for (nVar=0; nVar<nVariables; nVar++)
223 int nBegin = nMatrixPos;
224 for (size_t nRow=0; nRow<nRows; nRow++)
226 double fCoeff = pCompMatrix[ nRow * nVariables + nVar ]; // row-wise
227 if ( fCoeff != 0.0 )
229 pMatrix[nMatrixPos] = fCoeff;
230 pMatrixIndex[nMatrixPos] = nRow;
231 ++nMatrixPos;
234 pMatrixBegin[nVar] = nBegin;
235 pMatrixCount[nVar] = nMatrixPos - nBegin;
237 pMatrixBegin[nVariables] = nMatrixPos;
238 pCompMatrix.reset();
240 // apply settings to all variables
242 std::unique_ptr<double[]> pLowerBounds(new double[nVariables]);
243 std::unique_ptr<double[]> pUpperBounds(new double[nVariables]);
244 for (nVar=0; nVar<nVariables; nVar++)
246 pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX;
247 pUpperBounds[nVar] = DBL_MAX;
249 // bounds could possibly be further restricted from single-cell constraints
252 std::unique_ptr<char[]> pColType(new char[nVariables]);
253 for (nVar=0; nVar<nVariables; nVar++)
254 pColType[nVar] = mbInteger ? 'I' : 'C';
256 // apply single-var integer constraints
258 for (const auto& rConstr : std::as_const(maConstraints))
260 sheet::SolverConstraintOperator eOp = rConstr.Operator;
261 if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
262 eOp == sheet::SolverConstraintOperator_BINARY )
264 table::CellAddress aLeftAddr = rConstr.Left;
265 // find variable index for cell
266 for (nVar=0; nVar<nVariables; nVar++)
267 if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
269 if ( eOp == sheet::SolverConstraintOperator_INTEGER )
270 pColType[nVar] = 'I';
271 else
273 pColType[nVar] = 'B';
274 pLowerBounds[nVar] = 0.0;
275 pUpperBounds[nVar] = 1.0;
281 int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN;
283 HPROB hProb = CoinCreateProblem("");
284 int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0,
285 nObjectSense, nObjectConst, pObjectCoeffs.get(),
286 pLowerBounds.get(), pUpperBounds.get(), pRowType.get(), pRHS.get(), nullptr,
287 pMatrixBegin.get(), pMatrixCount.get(), pMatrixIndex.get(), pMatrix.get(),
288 nullptr, nullptr, nullptr );
289 if (nResult == SOLV_CALL_SUCCESS)
291 nResult = CoinLoadInteger( hProb, pColType.get() );
294 pColType.reset();
295 pMatrixIndex.reset();
296 pMatrix.reset();
297 pMatrixCount.reset();
298 pMatrixBegin.reset();
299 pUpperBounds.reset();
300 pLowerBounds.reset();
301 pRowType.reset();
302 pRHS.reset();
303 pObjectCoeffs.reset();
305 CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout );
306 CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout );
308 // TODO: handle (or remove) settings: epsilon, B&B depth
310 // solve model
312 if (nResult == SOLV_CALL_SUCCESS)
314 nResult = CoinCheckProblem( hProb );
317 if (nResult == SOLV_CALL_SUCCESS)
321 nResult = CoinOptimizeProblem( hProb, 0 );
323 catch (const CoinError& e)
325 throw std::runtime_error(e.message());
329 mbSuccess = ( nResult == SOLV_CALL_SUCCESS );
330 if ( mbSuccess )
332 // get solution
334 maSolution.realloc( nVariables );
335 CoinGetSolutionValues( hProb, maSolution.getArray(), nullptr, nullptr, nullptr );
336 mfResultValue = CoinGetObjectValue( hProb );
338 else
340 int nSolutionStatus = CoinGetSolutionStatus( hProb );
341 if ( nSolutionStatus == 1 )
342 maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
343 else if ( nSolutionStatus == 2 )
344 maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
345 // TODO: detect timeout condition and report as RID_ERROR_TIMEOUT
346 // (currently reported as infeasible)
349 CoinUnloadProblem( hProb );
352 extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface *
353 com_sun_star_comp_Calc_CoinMPSolver_get_implementation(
354 css::uno::XComponentContext *,
355 css::uno::Sequence<css::uno::Any> const &)
357 return cppu::acquire(new CoinMPSolver());
360 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */