bump product version to 6.4.0.3
[LibreOffice.git] / vcl / source / gdi / sallayout.cxx
blobeaa016ed1927e5ddff5ad47395c677293ada19d9
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <iostream>
21 #include <iomanip>
23 #include <sal/config.h>
24 #include <sal/log.hxx>
26 #include <cstdio>
28 #include <math.h>
30 #include <salgdi.hxx>
31 #include <sallayout.hxx>
32 #include <basegfx/polygon/b2dpolypolygon.hxx>
33 #include <basegfx/matrix/b2dhommatrixtools.hxx>
35 #include <i18nlangtag/lang.h>
37 #include <vcl/svapp.hxx>
39 #include <unicode/ubidi.h>
40 #include <unicode/uchar.h>
42 #include <algorithm>
43 #include <memory>
45 #include <impglyphitem.hxx>
47 // Glyph Flags
48 #define GF_FONTMASK 0xF0000000
49 #define GF_FONTSHIFT 28
52 std::ostream &operator <<(std::ostream& s, ImplLayoutArgs const &rArgs)
54 #ifndef SAL_LOG_INFO
55 (void) rArgs;
56 #else
57 s << "ImplLayoutArgs{";
59 s << "Flags=";
60 if (rArgs.mnFlags == SalLayoutFlags::NONE)
61 s << 0;
62 else {
63 bool need_or = false;
64 s << "{";
65 #define TEST(x) if (rArgs.mnFlags & SalLayoutFlags::x) { if (need_or) s << "|"; s << #x; need_or = true; }
66 TEST(BiDiRtl);
67 TEST(BiDiStrong);
68 TEST(RightAlign);
69 TEST(DisableKerning);
70 TEST(KerningAsian);
71 TEST(Vertical);
72 TEST(KashidaJustification);
73 TEST(ForFallback);
74 #undef TEST
75 s << "}";
78 const int nLength = rArgs.mrStr.getLength();
80 s << ",Length=" << nLength;
81 s << ",MinCharPos=" << rArgs.mnMinCharPos;
82 s << ",EndCharPos=" << rArgs.mnEndCharPos;
84 s << ",Str=\"";
85 int lim = nLength;
86 if (lim > 10)
87 lim = 7;
88 for (int i = 0; i < lim; i++) {
89 if (rArgs.mrStr[i] == '\n')
90 s << "\\n";
91 else if (rArgs.mrStr[i] < ' ' || (rArgs.mrStr[i] >= 0x7F && rArgs.mrStr[i] <= 0xFF))
92 s << "\\0x" << std::hex << std::setw(2) << std::setfill('0') << static_cast<int>(rArgs.mrStr[i]) << std::setfill(' ') << std::setw(1) << std::dec;
93 else if (rArgs.mrStr[i] < 0x7F)
94 s << static_cast<char>(rArgs.mrStr[i]);
95 else
96 s << "\\u" << std::hex << std::setw(4) << std::setfill('0') << static_cast<int>(rArgs.mrStr[i]) << std::setfill(' ') << std::setw(1) << std::dec;
98 if (nLength > lim)
99 s << "...";
100 s << "\"";
102 s << ",DXArray=";
103 if (rArgs.mpDXArray) {
104 s << "[";
105 int count = rArgs.mnEndCharPos - rArgs.mnMinCharPos;
106 lim = count;
107 if (lim > 10)
108 lim = 7;
109 for (int i = 0; i < lim; i++) {
110 s << rArgs.mpDXArray[i];
111 if (i < lim-1)
112 s << ",";
114 if (count > lim) {
115 if (count > lim + 1)
116 s << "...";
117 s << rArgs.mpDXArray[count-1];
119 s << "]";
120 } else
121 s << "NULL";
123 s << ",LayoutWidth=" << rArgs.mnLayoutWidth;
125 s << "}";
127 #endif
128 return s;
131 sal_UCS4 GetMirroredChar( sal_UCS4 nChar )
133 nChar = u_charMirror( nChar );
134 return nChar;
137 sal_UCS4 GetLocalizedChar( sal_UCS4 nChar, LanguageType eLang )
139 // currently only conversion from ASCII digits is interesting
140 if( (nChar < '0') || ('9' < nChar) )
141 return nChar;
143 int nOffset;
144 // eLang & LANGUAGE_MASK_PRIMARY catches language independent of region.
145 // CAVEAT! To some like Mongolian MS assigned the same primary language
146 // although the script type is different!
147 LanguageType pri = primary(eLang);
148 if( pri == primary(LANGUAGE_ARABIC_SAUDI_ARABIA) )
149 nOffset = 0x0660 - '0'; // arabic-indic digits
150 else if ( pri.anyOf(
151 primary(LANGUAGE_FARSI),
152 primary(LANGUAGE_URDU_PAKISTAN),
153 primary(LANGUAGE_PUNJABI), //???
154 primary(LANGUAGE_SINDHI)))
155 nOffset = 0x06F0 - '0'; // eastern arabic-indic digits
156 else if ( pri == primary(LANGUAGE_BENGALI) )
157 nOffset = 0x09E6 - '0'; // bengali
158 else if ( pri == primary(LANGUAGE_HINDI) )
159 nOffset = 0x0966 - '0'; // devanagari
160 else if ( pri.anyOf(
161 primary(LANGUAGE_AMHARIC_ETHIOPIA),
162 primary(LANGUAGE_TIGRIGNA_ETHIOPIA)))
163 // TODO case:
164 nOffset = 0x1369 - '0'; // ethiopic
165 else if ( pri == primary(LANGUAGE_GUJARATI) )
166 nOffset = 0x0AE6 - '0'; // gujarati
167 #ifdef LANGUAGE_GURMUKHI // TODO case:
168 else if ( pri == primary(LANGUAGE_GURMUKHI) )
169 nOffset = 0x0A66 - '0'; // gurmukhi
170 #endif
171 else if ( pri == primary(LANGUAGE_KANNADA) )
172 nOffset = 0x0CE6 - '0'; // kannada
173 else if ( pri == primary(LANGUAGE_KHMER))
174 nOffset = 0x17E0 - '0'; // khmer
175 else if ( pri == primary(LANGUAGE_LAO) )
176 nOffset = 0x0ED0 - '0'; // lao
177 else if ( pri == primary(LANGUAGE_MALAYALAM) )
178 nOffset = 0x0D66 - '0'; // malayalam
179 else if ( pri == primary(LANGUAGE_MONGOLIAN_MONGOLIAN_LSO))
181 if (eLang.anyOf(
182 LANGUAGE_MONGOLIAN_MONGOLIAN_MONGOLIA,
183 LANGUAGE_MONGOLIAN_MONGOLIAN_CHINA,
184 LANGUAGE_MONGOLIAN_MONGOLIAN_LSO))
185 nOffset = 0x1810 - '0'; // mongolian
186 else
187 nOffset = 0; // mongolian cyrillic
189 else if ( pri == primary(LANGUAGE_BURMESE) )
190 nOffset = 0x1040 - '0'; // myanmar
191 else if ( pri == primary(LANGUAGE_ODIA) )
192 nOffset = 0x0B66 - '0'; // odia
193 else if ( pri == primary(LANGUAGE_TAMIL) )
194 nOffset = 0x0BE7 - '0'; // tamil
195 else if ( pri == primary(LANGUAGE_TELUGU) )
196 nOffset = 0x0C66 - '0'; // telugu
197 else if ( pri == primary(LANGUAGE_THAI) )
198 nOffset = 0x0E50 - '0'; // thai
199 else if ( pri == primary(LANGUAGE_TIBETAN) )
200 nOffset = 0x0F20 - '0'; // tibetan
201 else
203 nOffset = 0;
206 nChar += nOffset;
207 return nChar;
210 static bool IsControlChar( sal_UCS4 cChar )
212 // C0 control characters
213 if( (0x0001 <= cChar) && (cChar <= 0x001F) )
214 return true;
215 // formatting characters
216 if( (0x200E <= cChar) && (cChar <= 0x200F) )
217 return true;
218 if( (0x2028 <= cChar) && (cChar <= 0x202E) )
219 return true;
220 // deprecated formatting characters
221 if( (0x206A <= cChar) && (cChar <= 0x206F) )
222 return true;
223 if( 0x2060 == cChar )
224 return true;
225 // byte order markers and invalid unicode
226 if( (cChar == 0xFEFF) || (cChar == 0xFFFE) || (cChar == 0xFFFF) )
227 return true;
228 return false;
231 void ImplLayoutRuns::AddPos( int nCharPos, bool bRTL )
233 // check if charpos could extend current run
234 int nIndex = maRuns.size();
235 if( nIndex >= 2 )
237 int nRunPos0 = maRuns[ nIndex-2 ];
238 int nRunPos1 = maRuns[ nIndex-1 ];
239 if( ((nCharPos + int(bRTL)) == nRunPos1) && ((nRunPos0 > nRunPos1) == bRTL) )
241 // extend current run by new charpos
242 maRuns[ nIndex-1 ] = nCharPos + int(!bRTL);
243 return;
245 // ignore new charpos when it is in current run
246 if( (nRunPos0 <= nCharPos) && (nCharPos < nRunPos1) )
247 return;
248 if( (nRunPos1 <= nCharPos) && (nCharPos < nRunPos0) )
249 return;
252 // else append a new run consisting of the new charpos
253 maRuns.push_back( nCharPos + (bRTL ? 1 : 0) );
254 maRuns.push_back( nCharPos + (bRTL ? 0 : 1) );
257 void ImplLayoutRuns::AddRun( int nCharPos0, int nCharPos1, bool bRTL )
259 if( nCharPos0 == nCharPos1 )
260 return;
262 // swap if needed
263 if( bRTL == (nCharPos0 < nCharPos1) )
265 int nTemp = nCharPos0;
266 nCharPos0 = nCharPos1;
267 nCharPos1 = nTemp;
270 if (maRuns.size() >= 2 && nCharPos0 == maRuns[maRuns.size() - 2] && nCharPos1 == maRuns[maRuns.size() - 1])
272 //this run is the same as the last
273 return;
276 // append new run
277 maRuns.push_back( nCharPos0 );
278 maRuns.push_back( nCharPos1 );
281 bool ImplLayoutRuns::PosIsInRun( int nCharPos ) const
283 if( mnRunIndex >= static_cast<int>(maRuns.size()) )
284 return false;
286 int nMinCharPos = maRuns[ mnRunIndex+0 ];
287 int nEndCharPos = maRuns[ mnRunIndex+1 ];
288 if( nMinCharPos > nEndCharPos ) // reversed in RTL case
290 int nTemp = nMinCharPos;
291 nMinCharPos = nEndCharPos;
292 nEndCharPos = nTemp;
295 if( nCharPos < nMinCharPos )
296 return false;
297 if( nCharPos >= nEndCharPos )
298 return false;
299 return true;
302 bool ImplLayoutRuns::PosIsInAnyRun( int nCharPos ) const
304 bool bRet = false;
305 int nRunIndex = mnRunIndex;
307 ImplLayoutRuns *pThis = const_cast<ImplLayoutRuns*>(this);
309 pThis->ResetPos();
311 for (size_t i = 0; i < maRuns.size(); i+=2)
313 bRet = PosIsInRun( nCharPos );
314 if( bRet )
315 break;
316 pThis->NextRun();
319 pThis->mnRunIndex = nRunIndex;
320 return bRet;
323 bool ImplLayoutRuns::GetNextPos( int* nCharPos, bool* bRightToLeft )
325 // negative nCharPos => reset to first run
326 if( *nCharPos < 0 )
327 mnRunIndex = 0;
329 // return false when all runs completed
330 if( mnRunIndex >= static_cast<int>(maRuns.size()) )
331 return false;
333 int nRunPos0 = maRuns[ mnRunIndex+0 ];
334 int nRunPos1 = maRuns[ mnRunIndex+1 ];
335 *bRightToLeft = (nRunPos0 > nRunPos1);
337 if( *nCharPos < 0 )
339 // get first valid nCharPos in run
340 *nCharPos = nRunPos0;
342 else
344 // advance to next nCharPos for LTR case
345 if( !*bRightToLeft )
346 ++(*nCharPos);
348 // advance to next run if current run is completed
349 if( *nCharPos == nRunPos1 )
351 if( (mnRunIndex += 2) >= static_cast<int>(maRuns.size()) )
352 return false;
353 nRunPos0 = maRuns[ mnRunIndex+0 ];
354 nRunPos1 = maRuns[ mnRunIndex+1 ];
355 *bRightToLeft = (nRunPos0 > nRunPos1);
356 *nCharPos = nRunPos0;
360 // advance to next nCharPos for RTL case
361 if( *bRightToLeft )
362 --(*nCharPos);
364 return true;
367 bool ImplLayoutRuns::GetRun( int* nMinRunPos, int* nEndRunPos, bool* bRightToLeft ) const
369 if( mnRunIndex >= static_cast<int>(maRuns.size()) )
370 return false;
372 int nRunPos0 = maRuns[ mnRunIndex+0 ];
373 int nRunPos1 = maRuns[ mnRunIndex+1 ];
374 *bRightToLeft = (nRunPos1 < nRunPos0) ;
375 if( !*bRightToLeft )
377 *nMinRunPos = nRunPos0;
378 *nEndRunPos = nRunPos1;
380 else
382 *nMinRunPos = nRunPos1;
383 *nEndRunPos = nRunPos0;
385 return true;
388 ImplLayoutArgs::ImplLayoutArgs(const OUString& rStr,
389 int nMinCharPos, int nEndCharPos, SalLayoutFlags nFlags, const LanguageTag& rLanguageTag,
390 vcl::TextLayoutCache const*const pLayoutCache)
392 maLanguageTag( rLanguageTag ),
393 mnFlags( nFlags ),
394 mrStr( rStr ),
395 mnMinCharPos( nMinCharPos ),
396 mnEndCharPos( nEndCharPos ),
397 m_pTextLayoutCache(pLayoutCache),
398 mpDXArray( nullptr ),
399 mnLayoutWidth( 0 ),
400 mnOrientation( 0 )
402 if( mnFlags & SalLayoutFlags::BiDiStrong )
404 // handle strong BiDi mode
406 // do not bother to BiDi analyze strong LTR/RTL
407 // TODO: can we assume these strings do not have unicode control chars?
408 // if not remove the control characters from the runs
409 bool bRTL(mnFlags & SalLayoutFlags::BiDiRtl);
410 AddRun( mnMinCharPos, mnEndCharPos, bRTL );
412 else
414 // handle weak BiDi mode
415 UBiDiLevel nLevel = (mnFlags & SalLayoutFlags::BiDiRtl)? 1 : 0;
417 // prepare substring for BiDi analysis
418 // TODO: reuse allocated pParaBidi
419 UErrorCode rcI18n = U_ZERO_ERROR;
420 const int nLength = mrStr.getLength();
421 UBiDi* pParaBidi = ubidi_openSized(nLength, 0, &rcI18n);
422 if( !pParaBidi )
423 return;
424 ubidi_setPara(pParaBidi, reinterpret_cast<const UChar *>(mrStr.getStr()), nLength, nLevel, nullptr, &rcI18n);
426 UBiDi* pLineBidi = pParaBidi;
427 int nSubLength = mnEndCharPos - mnMinCharPos;
428 if (nSubLength != nLength)
430 pLineBidi = ubidi_openSized( nSubLength, 0, &rcI18n );
431 ubidi_setLine( pParaBidi, mnMinCharPos, mnEndCharPos, pLineBidi, &rcI18n );
434 // run BiDi algorithm
435 const int nRunCount = ubidi_countRuns( pLineBidi, &rcI18n );
436 //maRuns.resize( 2 * nRunCount );
437 for( int i = 0; i < nRunCount; ++i )
439 int32_t nMinPos, nRunLength;
440 const UBiDiDirection nDir = ubidi_getVisualRun( pLineBidi, i, &nMinPos, &nRunLength );
441 const int nPos0 = nMinPos + mnMinCharPos;
442 const int nPos1 = nPos0 + nRunLength;
444 const bool bRTL = (nDir == UBIDI_RTL);
445 AddRun( nPos0, nPos1, bRTL );
448 // cleanup BiDi engine
449 if( pLineBidi != pParaBidi )
450 ubidi_close( pLineBidi );
451 ubidi_close( pParaBidi );
454 // prepare calls to GetNextPos/GetNextRun
455 maRuns.ResetPos();
458 // add a run after splitting it up to get rid of control chars
459 void ImplLayoutArgs::AddRun( int nCharPos0, int nCharPos1, bool bRTL )
461 SAL_WARN_IF( nCharPos0 > nCharPos1, "vcl", "ImplLayoutArgs::AddRun() nCharPos0>=nCharPos1" );
463 // remove control characters from runs by splitting them up
464 if( !bRTL )
466 for( int i = nCharPos0; i < nCharPos1; ++i )
467 if( IsControlChar( mrStr[i] ) )
469 // add run until control char
470 maRuns.AddRun( nCharPos0, i, bRTL );
471 nCharPos0 = i + 1;
474 else
476 for( int i = nCharPos1; --i >= nCharPos0; )
477 if( IsControlChar( mrStr[i] ) )
479 // add run until control char
480 maRuns.AddRun( i+1, nCharPos1, bRTL );
481 nCharPos1 = i;
485 // add remainder of run
486 maRuns.AddRun( nCharPos0, nCharPos1, bRTL );
489 bool ImplLayoutArgs::PrepareFallback()
491 // short circuit if no fallback is needed
492 if( maFallbackRuns.IsEmpty() )
494 maRuns.Clear();
495 return false;
498 // convert the fallback requests to layout requests
499 bool bRTL;
500 int nMin, nEnd;
502 // get the individual fallback requests
503 std::vector<int> aPosVector;
504 aPosVector.reserve(mrStr.getLength());
505 maFallbackRuns.ResetPos();
506 for(; maFallbackRuns.GetRun( &nMin, &nEnd, &bRTL ); maFallbackRuns.NextRun() )
507 for( int i = nMin; i < nEnd; ++i )
508 aPosVector.push_back( i );
509 maFallbackRuns.Clear();
511 // sort the individual fallback requests
512 std::sort( aPosVector.begin(), aPosVector.end() );
514 // adjust fallback runs to have the same order and limits of the original runs
515 ImplLayoutRuns aNewRuns;
516 maRuns.ResetPos();
517 for(; maRuns.GetRun( &nMin, &nEnd, &bRTL ); maRuns.NextRun() )
519 if( !bRTL) {
520 auto it = std::lower_bound( aPosVector.begin(), aPosVector.end(), nMin );
521 for(; (it != aPosVector.end()) && (*it < nEnd); ++it )
522 aNewRuns.AddPos( *it, bRTL );
523 } else {
524 auto it = std::upper_bound( aPosVector.begin(), aPosVector.end(), nEnd );
525 while( (it != aPosVector.begin()) && (*--it >= nMin) )
526 aNewRuns.AddPos( *it, bRTL );
530 maRuns = aNewRuns; // TODO: use vector<>::swap()
531 maRuns.ResetPos();
532 return true;
535 bool ImplLayoutArgs::GetNextRun( int* nMinRunPos, int* nEndRunPos, bool* bRTL )
537 bool bValid = maRuns.GetRun( nMinRunPos, nEndRunPos, bRTL );
538 maRuns.NextRun();
539 return bValid;
542 SalLayout::SalLayout()
543 : mnMinCharPos( -1 ),
544 mnEndCharPos( -1 ),
545 mnUnitsPerPixel( 1 ),
546 mnOrientation( 0 ),
547 maDrawOffset( 0, 0 )
550 SalLayout::~SalLayout()
553 void SalLayout::AdjustLayout( ImplLayoutArgs& rArgs )
555 mnMinCharPos = rArgs.mnMinCharPos;
556 mnEndCharPos = rArgs.mnEndCharPos;
557 mnOrientation = rArgs.mnOrientation;
560 Point SalLayout::GetDrawPosition( const Point& rRelative ) const
562 Point aPos = maDrawBase;
563 Point aOfs = rRelative + maDrawOffset;
565 if( mnOrientation == 0 )
566 aPos += aOfs;
567 else
569 // cache trigonometric results
570 static int nOldOrientation = 0;
571 static double fCos = 1.0, fSin = 0.0;
572 if( nOldOrientation != mnOrientation )
574 nOldOrientation = mnOrientation;
575 double fRad = mnOrientation * (M_PI / 1800.0);
576 fCos = cos( fRad );
577 fSin = sin( fRad );
580 double fX = aOfs.X();
581 double fY = aOfs.Y();
582 long nX = static_cast<long>( +fCos * fX + fSin * fY );
583 long nY = static_cast<long>( +fCos * fY - fSin * fX );
584 aPos += Point( nX, nY );
587 return aPos;
590 bool SalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rVector) const
592 bool bAllOk = true;
593 bool bOneOk = false;
595 basegfx::B2DPolyPolygon aGlyphOutline;
597 Point aPos;
598 const GlyphItem* pGlyph;
599 int nStart = 0;
600 while (GetNextGlyph(&pGlyph, aPos, nStart))
602 // get outline of individual glyph, ignoring "empty" glyphs
603 bool bSuccess = pGlyph->GetGlyphOutline(aGlyphOutline);
604 bAllOk &= bSuccess;
605 bOneOk |= bSuccess;
606 // only add non-empty outlines
607 if( bSuccess && (aGlyphOutline.count() > 0) )
609 if( aPos.X() || aPos.Y() )
611 aGlyphOutline.transform(basegfx::utils::createTranslateB2DHomMatrix(aPos.X(), aPos.Y()));
614 // insert outline at correct position
615 rVector.push_back( aGlyphOutline );
619 return (bAllOk && bOneOk);
622 bool SalLayout::GetBoundRect(tools::Rectangle& rRect) const
624 bool bRet = false;
625 rRect.SetEmpty();
627 tools::Rectangle aRectangle;
629 Point aPos;
630 const GlyphItem* pGlyph;
631 int nStart = 0;
632 while (GetNextGlyph(&pGlyph, aPos, nStart))
634 // get bounding rectangle of individual glyph
635 if (pGlyph->GetGlyphBoundRect(aRectangle))
637 // merge rectangle
638 aRectangle += aPos;
639 if (rRect.IsEmpty())
640 rRect = aRectangle;
641 else
642 rRect.Union(aRectangle);
643 bRet = true;
647 return bRet;
650 DeviceCoordinate GenericSalLayout::FillDXArray( DeviceCoordinate* pCharWidths ) const
652 if (pCharWidths)
653 GetCharWidths(pCharWidths);
655 return GetTextWidth();
658 // the text width is the maximum logical extent of all glyphs
659 DeviceCoordinate GenericSalLayout::GetTextWidth() const
661 if (!m_GlyphItems.IsValid())
662 return 0;
664 // initialize the extent
665 DeviceCoordinate nMinPos = 0;
666 DeviceCoordinate nMaxPos = 0;
668 for (auto const& aGlyphItem : *m_GlyphItems.Impl())
670 // update the text extent with the glyph extent
671 DeviceCoordinate nXPos = aGlyphItem.m_aLinearPos.getX();
672 if( nMinPos > nXPos )
673 nMinPos = nXPos;
674 nXPos += aGlyphItem.m_nNewWidth - aGlyphItem.xOffset();
675 if( nMaxPos < nXPos )
676 nMaxPos = nXPos;
679 DeviceCoordinate nWidth = nMaxPos - nMinPos;
680 return nWidth;
683 void GenericSalLayout::Justify( DeviceCoordinate nNewWidth )
685 nNewWidth *= mnUnitsPerPixel;
686 DeviceCoordinate nOldWidth = GetTextWidth();
687 if( !nOldWidth || nNewWidth==nOldWidth )
688 return;
690 if (!m_GlyphItems.IsValid())
692 return;
694 // find rightmost glyph, it won't get stretched
695 std::vector<GlyphItem>::iterator pGlyphIterRight = m_GlyphItems.Impl()->begin();
696 pGlyphIterRight += m_GlyphItems.Impl()->size() - 1;
697 std::vector<GlyphItem>::iterator pGlyphIter;
698 // count stretchable glyphs
699 int nStretchable = 0;
700 int nMaxGlyphWidth = 0;
701 for(pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter)
703 if( !pGlyphIter->IsDiacritic() )
704 ++nStretchable;
705 if (nMaxGlyphWidth < pGlyphIter->origWidth())
706 nMaxGlyphWidth = pGlyphIter->origWidth();
709 // move rightmost glyph to requested position
710 nOldWidth -= pGlyphIterRight->origWidth();
711 if( nOldWidth <= 0 )
712 return;
713 if( nNewWidth < nMaxGlyphWidth)
714 nNewWidth = nMaxGlyphWidth;
715 nNewWidth -= pGlyphIterRight->origWidth();
716 pGlyphIterRight->m_aLinearPos.setX( nNewWidth );
718 // justify glyph widths and positions
719 int nDiffWidth = nNewWidth - nOldWidth;
720 if( nDiffWidth >= 0) // expanded case
722 // expand width by distributing space between glyphs evenly
723 int nDeltaSum = 0;
724 for( pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter )
726 // move glyph to justified position
727 pGlyphIter->m_aLinearPos.AdjustX(nDeltaSum );
729 // do not stretch non-stretchable glyphs
730 if( pGlyphIter->IsDiacritic() || (nStretchable <= 0) )
731 continue;
733 // distribute extra space equally to stretchable glyphs
734 int nDeltaWidth = nDiffWidth / nStretchable--;
735 nDiffWidth -= nDeltaWidth;
736 pGlyphIter->m_nNewWidth += nDeltaWidth;
737 nDeltaSum += nDeltaWidth;
740 else // condensed case
742 // squeeze width by moving glyphs proportionally
743 double fSqueeze = static_cast<double>(nNewWidth) / nOldWidth;
744 if(m_GlyphItems.Impl()->size() > 1)
746 for( pGlyphIter = m_GlyphItems.Impl()->begin(); ++pGlyphIter != pGlyphIterRight;)
748 int nX = pGlyphIter->m_aLinearPos.getX();
749 nX = static_cast<int>(nX * fSqueeze);
750 pGlyphIter->m_aLinearPos.setX( nX );
753 // adjust glyph widths to new positions
754 for( pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter )
755 pGlyphIter->m_nNewWidth = pGlyphIter[1].m_aLinearPos.getX() - pGlyphIter[0].m_aLinearPos.getX();
759 // returns asian kerning values in quarter of character width units
760 // to enable automatic halfwidth substitution for fullwidth punctuation
761 // return value is negative for l, positive for r, zero for neutral
762 // TODO: handle vertical layout as proposed in commit 43bf2ad49c2b3989bbbe893e4fee2e032a3920f5?
763 static int lcl_CalcAsianKerning(sal_UCS4 c, bool bLeft)
765 // http://www.asahi-net.or.jp/~sd5a-ucd/freetexts/jis/x4051/1995/appendix.html
766 static const signed char nTable[0x30] =
768 0, -2, -2, 0, 0, 0, 0, 0, +2, -2, +2, -2, +2, -2, +2, -2,
769 +2, -2, 0, 0, +2, -2, +2, -2, 0, 0, 0, 0, 0, +2, -2, -2,
770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, +2, +2, -2, -2
773 int nResult = 0;
774 if( (c >= 0x3000) && (c < 0x3030) )
775 nResult = nTable[ c - 0x3000 ];
776 else switch( c )
778 case 0x30FB:
779 nResult = bLeft ? -1 : +1; // 25% left/right/top/bottom
780 break;
781 case 0x2019: case 0x201D:
782 case 0xFF01: case 0xFF09: case 0xFF0C:
783 case 0xFF1A: case 0xFF1B:
784 nResult = -2;
785 break;
786 case 0x2018: case 0x201C:
787 case 0xFF08:
788 nResult = +2;
789 break;
790 default:
791 break;
794 return nResult;
797 static bool lcl_CanApplyAsianKerning(sal_Unicode cp)
799 return (0x3000 == (cp & 0xFF00)) || (0xFF00 == (cp & 0xFF00)) || (0x2010 == (cp & 0xFFF0));
802 void GenericSalLayout::ApplyAsianKerning(const OUString& rStr)
804 const int nLength = rStr.getLength();
805 long nOffset = 0;
807 for (std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.Impl()->begin(),
808 pGlyphIterEnd = m_GlyphItems.Impl()->end();
809 pGlyphIter != pGlyphIterEnd; ++pGlyphIter)
811 const int n = pGlyphIter->charPos();
812 if (n < nLength - 1)
814 // ignore code ranges that are not affected by asian punctuation compression
815 const sal_Unicode cCurrent = rStr[n];
816 if (!lcl_CanApplyAsianKerning(cCurrent))
817 continue;
818 const sal_Unicode cNext = rStr[n + 1];
819 if (!lcl_CanApplyAsianKerning(cNext))
820 continue;
822 // calculate compression values
823 const int nKernCurrent = +lcl_CalcAsianKerning(cCurrent, true);
824 if (nKernCurrent == 0)
825 continue;
826 const int nKernNext = -lcl_CalcAsianKerning(cNext, false);
827 if (nKernNext == 0)
828 continue;
830 // apply punctuation compression to logical glyph widths
831 int nDelta = (nKernCurrent < nKernNext) ? nKernCurrent : nKernNext;
832 if (nDelta < 0)
834 nDelta = (nDelta * pGlyphIter->origWidth() + 2) / 4;
835 if( pGlyphIter+1 == pGlyphIterEnd )
836 pGlyphIter->m_nNewWidth += nDelta;
837 nOffset += nDelta;
841 // adjust the glyph positions to the new glyph widths
842 if( pGlyphIter+1 != pGlyphIterEnd )
843 pGlyphIter->m_aLinearPos.AdjustX(nOffset);
847 void GenericSalLayout::GetCaretPositions( int nMaxIndex, long* pCaretXArray ) const
849 // initialize result array
850 for (int i = 0; i < nMaxIndex; ++i)
851 pCaretXArray[i] = -1;
853 // calculate caret positions using glyph array
854 for (auto const& aGlyphItem : *m_GlyphItems.Impl())
856 long nXPos = aGlyphItem.m_aLinearPos.getX();
857 long nXRight = nXPos + aGlyphItem.origWidth();
858 int n = aGlyphItem.charPos();
859 int nCurrIdx = 2 * (n - mnMinCharPos);
860 // tdf#86399 if this is not the start of a cluster, don't overwrite the caret bounds of the cluster start
861 if (aGlyphItem.IsInCluster() && pCaretXArray[nCurrIdx] != -1)
862 continue;
863 if (!aGlyphItem.IsRTLGlyph() )
865 // normal positions for LTR case
866 pCaretXArray[ nCurrIdx ] = nXPos;
867 pCaretXArray[ nCurrIdx+1 ] = nXRight;
869 else
871 // reverse positions for RTL case
872 pCaretXArray[ nCurrIdx ] = nXRight;
873 pCaretXArray[ nCurrIdx+1 ] = nXPos;
878 sal_Int32 GenericSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth, DeviceCoordinate nCharExtra, int nFactor ) const
880 int nCharCapacity = mnEndCharPos - mnMinCharPos;
881 std::unique_ptr<DeviceCoordinate[]> const pCharWidths(new DeviceCoordinate[nCharCapacity]);
882 GetCharWidths(pCharWidths.get());
884 DeviceCoordinate nWidth = 0;
885 for( int i = mnMinCharPos; i < mnEndCharPos; ++i )
887 nWidth += pCharWidths[ i - mnMinCharPos ] * nFactor;
888 if( nWidth > nMaxWidth )
889 return i;
890 nWidth += nCharExtra;
893 return -1;
896 bool GenericSalLayout::GetNextGlyph(const GlyphItem** pGlyph,
897 Point& rPos, int& nStart,
898 const PhysicalFontFace**, int* const pFallbackLevel) const
900 std::vector<GlyphItem>::const_iterator pGlyphIter = m_GlyphItems.Impl()->begin();
901 std::vector<GlyphItem>::const_iterator pGlyphIterEnd = m_GlyphItems.Impl()->end();
902 pGlyphIter += nStart;
904 // find next glyph in substring
905 for(; pGlyphIter != pGlyphIterEnd; ++nStart, ++pGlyphIter )
907 int n = pGlyphIter->charPos();
908 if( (mnMinCharPos <= n) && (n < mnEndCharPos) )
909 break;
912 // return zero if no more glyph found
913 if( nStart >= static_cast<int>(m_GlyphItems.Impl()->size()) )
914 return false;
916 if( pGlyphIter == pGlyphIterEnd )
917 return false;
919 // update return data with glyph info
920 *pGlyph = &(*pGlyphIter);
921 if (pFallbackLevel)
922 *pFallbackLevel = 0;
923 ++nStart;
925 // calculate absolute position in pixel units
926 Point aRelativePos = pGlyphIter->m_aLinearPos;
928 aRelativePos.setX( aRelativePos.X() / mnUnitsPerPixel );
929 aRelativePos.setY( aRelativePos.Y() / mnUnitsPerPixel );
930 rPos = GetDrawPosition( aRelativePos );
932 return true;
935 void GenericSalLayout::MoveGlyph( int nStart, long nNewXPos )
937 if( nStart >= static_cast<int>(m_GlyphItems.Impl()->size()) )
938 return;
940 std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.Impl()->begin();
941 pGlyphIter += nStart;
943 // the nNewXPos argument determines the new cell position
944 // as RTL-glyphs are right justified in their cell
945 // the cell position needs to be adjusted to the glyph position
946 if( pGlyphIter->IsRTLGlyph() )
947 nNewXPos += pGlyphIter->m_nNewWidth - pGlyphIter->origWidth();
948 // calculate the x-offset to the old position
949 long nXDelta = nNewXPos - pGlyphIter->m_aLinearPos.getX();
950 // adjust all following glyph positions if needed
951 if( nXDelta != 0 )
953 for( std::vector<GlyphItem>::iterator pGlyphIterEnd = m_GlyphItems.Impl()->end(); pGlyphIter != pGlyphIterEnd; ++pGlyphIter )
955 pGlyphIter->m_aLinearPos.AdjustX(nXDelta );
960 void GenericSalLayout::DropGlyph( int nStart )
962 if( nStart >= static_cast<int>(m_GlyphItems.Impl()->size()))
963 return;
965 std::vector<GlyphItem>::iterator pGlyphIter = m_GlyphItems.Impl()->begin();
966 pGlyphIter += nStart;
967 pGlyphIter->dropGlyph();
970 void GenericSalLayout::Simplify( bool bIsBase )
972 // remove dropped glyphs inplace
973 size_t j = 0;
974 for(size_t i = 0; i < m_GlyphItems.Impl()->size(); i++ )
976 if (bIsBase && (*m_GlyphItems.Impl())[i].IsDropped())
977 continue;
978 if (!bIsBase && (*m_GlyphItems.Impl())[i].glyphId() == 0)
979 continue;
981 if( i != j )
983 (*m_GlyphItems.Impl())[j] = (*m_GlyphItems.Impl())[i];
985 j += 1;
987 m_GlyphItems.Impl()->erase(m_GlyphItems.Impl()->begin() + j, m_GlyphItems.Impl()->end());
990 MultiSalLayout::MultiSalLayout( std::unique_ptr<SalLayout> pBaseLayout )
991 : SalLayout()
992 , mnLevel( 1 )
993 , mbIncomplete( false )
995 assert(dynamic_cast<GenericSalLayout*>(pBaseLayout.get()));
997 mpLayouts[ 0 ].reset(static_cast<GenericSalLayout*>(pBaseLayout.release()));
998 mnUnitsPerPixel = mpLayouts[ 0 ]->GetUnitsPerPixel();
1001 void MultiSalLayout::SetIncomplete(bool bIncomplete)
1003 mbIncomplete = bIncomplete;
1004 maFallbackRuns[mnLevel-1] = ImplLayoutRuns();
1007 MultiSalLayout::~MultiSalLayout()
1011 void MultiSalLayout::AddFallback( std::unique_ptr<SalLayout> pFallback,
1012 ImplLayoutRuns const & rFallbackRuns)
1014 assert(dynamic_cast<GenericSalLayout*>(pFallback.get()));
1015 if( mnLevel >= MAX_FALLBACK )
1016 return;
1018 mpLayouts[ mnLevel ].reset(static_cast<GenericSalLayout*>(pFallback.release()));
1019 maFallbackRuns[ mnLevel-1 ] = rFallbackRuns;
1020 ++mnLevel;
1023 bool MultiSalLayout::LayoutText( ImplLayoutArgs& rArgs, const SalLayoutGlyphs* )
1025 if( mnLevel <= 1 )
1026 return false;
1027 if (!mbIncomplete)
1028 maFallbackRuns[ mnLevel-1 ] = rArgs.maRuns;
1029 return true;
1032 void MultiSalLayout::AdjustLayout( ImplLayoutArgs& rArgs )
1034 SalLayout::AdjustLayout( rArgs );
1035 ImplLayoutArgs aMultiArgs = rArgs;
1036 std::unique_ptr<DeviceCoordinate[]> pJustificationArray;
1038 if( !rArgs.mpDXArray && rArgs.mnLayoutWidth )
1040 // for stretched text in a MultiSalLayout the target width needs to be
1041 // distributed by individually adjusting its virtual character widths
1042 DeviceCoordinate nTargetWidth = aMultiArgs.mnLayoutWidth;
1043 nTargetWidth *= mnUnitsPerPixel; // convert target width to base font units
1044 aMultiArgs.mnLayoutWidth = 0;
1046 // we need to get the original unmodified layouts ready
1047 for( int n = 0; n < mnLevel; ++n )
1048 mpLayouts[n]->SalLayout::AdjustLayout( aMultiArgs );
1049 // then we can measure the unmodified metrics
1050 int nCharCount = rArgs.mnEndCharPos - rArgs.mnMinCharPos;
1051 pJustificationArray.reset(new DeviceCoordinate[nCharCount]);
1052 FillDXArray( pJustificationArray.get() );
1053 // #i17359# multilayout is not simplified yet, so calculating the
1054 // unjustified width needs handholding; also count the number of
1055 // stretchable virtual char widths
1056 DeviceCoordinate nOrigWidth = 0;
1057 int nStretchable = 0;
1058 for( int i = 0; i < nCharCount; ++i )
1060 // convert array from widths to sum of widths
1061 nOrigWidth += pJustificationArray[i];
1062 if( pJustificationArray[i] > 0 )
1063 ++nStretchable;
1066 // now we are able to distribute the extra width over the virtual char widths
1067 if( nOrigWidth && (nTargetWidth != nOrigWidth) )
1069 DeviceCoordinate nDiffWidth = nTargetWidth - nOrigWidth;
1070 DeviceCoordinate nWidthSum = 0;
1071 for( int i = 0; i < nCharCount; ++i )
1073 DeviceCoordinate nJustWidth = pJustificationArray[i];
1074 if( (nJustWidth > 0) && (nStretchable > 0) )
1076 DeviceCoordinate nDeltaWidth = nDiffWidth / nStretchable;
1077 nJustWidth += nDeltaWidth;
1078 nDiffWidth -= nDeltaWidth;
1079 --nStretchable;
1081 nWidthSum += nJustWidth;
1082 pJustificationArray[i] = nWidthSum;
1084 if( nWidthSum != nTargetWidth )
1085 pJustificationArray[ nCharCount-1 ] = nTargetWidth;
1087 // the justification array is still in base level units
1088 // => convert it to pixel units
1089 if( mnUnitsPerPixel > 1 )
1091 for( int i = 0; i < nCharCount; ++i )
1093 DeviceCoordinate nVal = pJustificationArray[ i ];
1094 nVal += (mnUnitsPerPixel + 1) / 2;
1095 pJustificationArray[ i ] = nVal / mnUnitsPerPixel;
1099 // change the mpDXArray temporarily (just for the justification)
1100 aMultiArgs.mpDXArray = pJustificationArray.get();
1104 // Compute rtl flags, since in some scripts glyphs/char order can be
1105 // reversed for a few character sequences e.g. Myanmar
1106 std::vector<bool> vRtl(rArgs.mnEndCharPos - rArgs.mnMinCharPos, false);
1107 rArgs.ResetPos();
1108 bool bRtl;
1109 int nRunStart, nRunEnd;
1110 while (rArgs.GetNextRun(&nRunStart, &nRunEnd, &bRtl))
1112 if (bRtl) std::fill(vRtl.begin() + (nRunStart - rArgs.mnMinCharPos),
1113 vRtl.begin() + (nRunEnd - rArgs.mnMinCharPos), true);
1115 rArgs.ResetPos();
1117 // prepare "merge sort"
1118 int nStartOld[ MAX_FALLBACK ];
1119 int nStartNew[ MAX_FALLBACK ];
1120 const GlyphItem* pGlyphs[MAX_FALLBACK];
1121 bool bValid[MAX_FALLBACK] = { false };
1123 Point aPos;
1124 int nLevel = 0, n;
1125 for( n = 0; n < mnLevel; ++n )
1127 // now adjust the individual components
1128 if( n > 0 )
1130 aMultiArgs.maRuns = maFallbackRuns[ n-1 ];
1131 aMultiArgs.mnFlags |= SalLayoutFlags::ForFallback;
1133 mpLayouts[n]->AdjustLayout( aMultiArgs );
1135 // remove unused parts of component
1136 if( n > 0 )
1138 if (mbIncomplete && (n == mnLevel-1))
1139 mpLayouts[n]->Simplify( true );
1140 else
1141 mpLayouts[n]->Simplify( false );
1144 // prepare merging components
1145 nStartNew[ nLevel ] = nStartOld[ nLevel ] = 0;
1146 bValid[nLevel] = mpLayouts[n]->GetNextGlyph(&pGlyphs[nLevel], aPos, nStartNew[nLevel]);
1148 if( (n > 0) && !bValid[ nLevel ] )
1150 // an empty fallback layout can be released
1151 mpLayouts[n].reset();
1153 else
1155 // reshuffle used fallbacks if needed
1156 if( nLevel != n )
1158 mpLayouts[ nLevel ] = std::move(mpLayouts[ n ]);
1159 maFallbackRuns[ nLevel ] = maFallbackRuns[ n ];
1161 ++nLevel;
1164 mnLevel = nLevel;
1166 // prepare merge the fallback levels
1167 long nXPos = 0;
1168 double fUnitMul = 1.0;
1169 for( n = 0; n < nLevel; ++n )
1170 maFallbackRuns[n].ResetPos();
1172 int nFirstValid = -1;
1173 for( n = 0; n < nLevel; ++n )
1175 if(bValid[n])
1177 nFirstValid = n;
1178 break;
1181 assert(nFirstValid >= 0);
1183 // get the next codepoint index that needs fallback
1184 int nActiveCharPos = pGlyphs[nFirstValid]->charPos();
1185 int nActiveCharIndex = nActiveCharPos - mnMinCharPos;
1186 // get the end index of the active run
1187 int nLastRunEndChar = (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex]) ?
1188 rArgs.mnEndCharPos : rArgs.mnMinCharPos - 1;
1189 int nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos();
1190 // merge the fallback levels
1191 while( bValid[nFirstValid] && (nLevel > 0))
1193 // find best fallback level
1194 for( n = 0; n < nLevel; ++n )
1195 if( bValid[n] && !maFallbackRuns[n].PosIsInAnyRun( nActiveCharPos ) )
1196 // fallback level n wins when it requested no further fallback
1197 break;
1198 int nFBLevel = n;
1200 if( n < nLevel )
1202 // use base(n==0) or fallback(n>=1) level
1203 fUnitMul = mnUnitsPerPixel;
1204 fUnitMul /= mpLayouts[n]->GetUnitsPerPixel();
1205 long nNewPos = static_cast<long>(nXPos/fUnitMul + 0.5);
1206 mpLayouts[n]->MoveGlyph( nStartOld[n], nNewPos );
1208 else
1210 n = 0; // keep NotDef in base level
1211 fUnitMul = 1.0;
1214 if( n > 0 )
1216 // drop the NotDef glyphs in the base layout run if a fallback run exists
1217 while (
1218 (maFallbackRuns[n-1].PosIsInRun(pGlyphs[nFirstValid]->charPos())) &&
1219 (!maFallbackRuns[n].PosIsInAnyRun(pGlyphs[nFirstValid]->charPos()))
1222 mpLayouts[0]->DropGlyph( nStartOld[0] );
1223 nStartOld[0] = nStartNew[0];
1224 bValid[nFirstValid] = mpLayouts[0]->GetNextGlyph(&pGlyphs[nFirstValid], aPos, nStartNew[0]);
1226 if( !bValid[nFirstValid] )
1227 break;
1231 // skip to end of layout run and calculate its advance width
1232 DeviceCoordinate nRunAdvance = 0;
1233 bool bKeepNotDef = (nFBLevel >= nLevel);
1234 for(;;)
1236 nRunAdvance += pGlyphs[n]->m_nNewWidth;
1238 // proceed to next glyph
1239 nStartOld[n] = nStartNew[n];
1240 int nOrigCharPos = pGlyphs[n]->charPos();
1241 bValid[n] = mpLayouts[n]->GetNextGlyph(&pGlyphs[n], aPos, nStartNew[n]);
1242 // break after last glyph of active layout
1243 if( !bValid[n] )
1245 // performance optimization (when a fallback layout is no longer needed)
1246 if( n >= nLevel-1 )
1247 --nLevel;
1248 break;
1251 //If the next character is one which belongs to the next level, then we
1252 //are finished here for now, and we'll pick up after the next level has
1253 //been processed
1254 if ((n+1 < nLevel) && (pGlyphs[n]->charPos() != nOrigCharPos))
1256 if (nOrigCharPos < pGlyphs[n]->charPos())
1258 if (pGlyphs[n+1]->charPos() > nOrigCharPos && (pGlyphs[n+1]->charPos() < pGlyphs[n]->charPos()))
1259 break;
1261 else if (nOrigCharPos > pGlyphs[n]->charPos())
1263 if (pGlyphs[n+1]->charPos() > pGlyphs[n]->charPos() && (pGlyphs[n+1]->charPos() < nOrigCharPos))
1264 break;
1268 // break at end of layout run
1269 if( n > 0 )
1271 // skip until end of fallback run
1272 if (!maFallbackRuns[n-1].PosIsInRun(pGlyphs[n]->charPos()))
1273 break;
1275 else
1277 // break when a fallback is needed and available
1278 bool bNeedFallback = maFallbackRuns[0].PosIsInRun(pGlyphs[nFirstValid]->charPos());
1279 if( bNeedFallback )
1280 if (!maFallbackRuns[nLevel-1].PosIsInRun(pGlyphs[nFirstValid]->charPos()))
1281 break;
1282 // break when change from resolved to unresolved base layout run
1283 if( bKeepNotDef && !bNeedFallback )
1284 { maFallbackRuns[0].NextRun(); break; }
1285 bKeepNotDef = bNeedFallback;
1287 // check for reordered glyphs
1288 if (aMultiArgs.mpDXArray &&
1289 nRunVisibleEndChar < mnEndCharPos &&
1290 nRunVisibleEndChar >= mnMinCharPos &&
1291 pGlyphs[n]->charPos() < mnEndCharPos &&
1292 pGlyphs[n]->charPos() >= mnMinCharPos)
1294 if (vRtl[nActiveCharPos - mnMinCharPos])
1296 if (aMultiArgs.mpDXArray[nRunVisibleEndChar-mnMinCharPos]
1297 >= aMultiArgs.mpDXArray[pGlyphs[n]->charPos() - mnMinCharPos])
1299 nRunVisibleEndChar = pGlyphs[n]->charPos();
1302 else if (aMultiArgs.mpDXArray[nRunVisibleEndChar-mnMinCharPos]
1303 <= aMultiArgs.mpDXArray[pGlyphs[n]->charPos() - mnMinCharPos])
1305 nRunVisibleEndChar = pGlyphs[n]->charPos();
1310 // if a justification array is available
1311 // => use it directly to calculate the corresponding run width
1312 if( aMultiArgs.mpDXArray )
1314 // the run advance is the width from the first char
1315 // in the run to the first char in the next run
1316 nRunAdvance = 0;
1317 nActiveCharIndex = nActiveCharPos - mnMinCharPos;
1318 if (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex])
1320 if (nRunVisibleEndChar > mnMinCharPos && nRunVisibleEndChar <= mnEndCharPos)
1321 nRunAdvance -= aMultiArgs.mpDXArray[nRunVisibleEndChar - 1 - mnMinCharPos];
1322 if (nLastRunEndChar > mnMinCharPos && nLastRunEndChar <= mnEndCharPos)
1323 nRunAdvance += aMultiArgs.mpDXArray[nLastRunEndChar - 1 - mnMinCharPos];
1325 else
1327 if (nRunVisibleEndChar >= mnMinCharPos)
1328 nRunAdvance += aMultiArgs.mpDXArray[nRunVisibleEndChar - mnMinCharPos];
1329 if (nLastRunEndChar >= mnMinCharPos)
1330 nRunAdvance -= aMultiArgs.mpDXArray[nLastRunEndChar - mnMinCharPos];
1332 nLastRunEndChar = nRunVisibleEndChar;
1333 nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos();
1334 // the requested width is still in pixel units
1335 // => convert it to base level font units
1336 nRunAdvance *= mnUnitsPerPixel;
1338 else
1340 // the measured width is still in fallback font units
1341 // => convert it to base level font units
1342 if( n > 0 ) // optimization: because (fUnitMul==1.0) for (n==0)
1343 nRunAdvance = static_cast<long>(nRunAdvance*fUnitMul + 0.5);
1346 // calculate new x position (in base level units)
1347 nXPos += nRunAdvance;
1349 // prepare for next fallback run
1350 nActiveCharPos = pGlyphs[nFirstValid]->charPos();
1351 // it essential that the runs don't get ahead of themselves and in the
1352 // if( bKeepNotDef && !bNeedFallback ) statement above, the next run may
1353 // have already been reached on the base level
1354 for( int i = nFBLevel; --i >= 0;)
1356 if (maFallbackRuns[i].GetRun(&nRunStart, &nRunEnd, &bRtl))
1358 if (bRtl)
1360 if (nRunStart > nActiveCharPos)
1361 maFallbackRuns[i].NextRun();
1363 else
1365 if (nRunEnd <= nActiveCharPos)
1366 maFallbackRuns[i].NextRun();
1372 mpLayouts[0]->Simplify( true );
1375 void MultiSalLayout::InitFont() const
1377 if( mnLevel > 0 )
1378 mpLayouts[0]->InitFont();
1381 void MultiSalLayout::DrawText( SalGraphics& rGraphics ) const
1383 for( int i = mnLevel; --i >= 0; )
1385 SalLayout& rLayout = *mpLayouts[ i ];
1386 rLayout.DrawBase() += maDrawBase;
1387 rLayout.DrawOffset() += maDrawOffset;
1388 rLayout.InitFont();
1389 rLayout.DrawText( rGraphics );
1390 rLayout.DrawOffset() -= maDrawOffset;
1391 rLayout.DrawBase() -= maDrawBase;
1393 // NOTE: now the baselevel font is active again
1396 sal_Int32 MultiSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth, DeviceCoordinate nCharExtra, int nFactor ) const
1398 if( mnLevel <= 0 )
1399 return -1;
1400 if( mnLevel == 1 )
1401 return mpLayouts[0]->GetTextBreak( nMaxWidth, nCharExtra, nFactor );
1403 int nCharCount = mnEndCharPos - mnMinCharPos;
1404 std::unique_ptr<DeviceCoordinate[]> const pCharWidths(new DeviceCoordinate[nCharCount]);
1405 std::unique_ptr<DeviceCoordinate[]> const pFallbackCharWidths(new DeviceCoordinate[nCharCount]);
1406 mpLayouts[0]->FillDXArray( pCharWidths.get() );
1408 for( int n = 1; n < mnLevel; ++n )
1410 SalLayout& rLayout = *mpLayouts[ n ];
1411 rLayout.FillDXArray( pFallbackCharWidths.get() );
1412 double fUnitMul = mnUnitsPerPixel;
1413 fUnitMul /= rLayout.GetUnitsPerPixel();
1414 for( int i = 0; i < nCharCount; ++i )
1416 if( pCharWidths[ i ] == 0 )
1418 DeviceCoordinate w = pFallbackCharWidths[i];
1419 w = static_cast<DeviceCoordinate>(w * fUnitMul + 0.5);
1420 pCharWidths[ i ] = w;
1425 DeviceCoordinate nWidth = 0;
1426 for( int i = 0; i < nCharCount; ++i )
1428 nWidth += pCharWidths[ i ] * nFactor;
1429 if( nWidth > nMaxWidth )
1430 return (i + mnMinCharPos);
1431 nWidth += nCharExtra;
1434 return -1;
1437 DeviceCoordinate MultiSalLayout::FillDXArray( DeviceCoordinate* pCharWidths ) const
1439 DeviceCoordinate nMaxWidth = 0;
1441 // prepare merging of fallback levels
1442 std::unique_ptr<DeviceCoordinate[]> pTempWidths;
1443 const int nCharCount = mnEndCharPos - mnMinCharPos;
1444 if( pCharWidths )
1446 for( int i = 0; i < nCharCount; ++i )
1447 pCharWidths[i] = 0;
1448 pTempWidths.reset(new DeviceCoordinate[nCharCount]);
1451 for( int n = mnLevel; --n >= 0; )
1453 // query every fallback level
1454 DeviceCoordinate nTextWidth = mpLayouts[n]->FillDXArray( pTempWidths.get() );
1455 if( !nTextWidth )
1456 continue;
1457 // merge results from current level
1458 double fUnitMul = mnUnitsPerPixel;
1459 fUnitMul /= mpLayouts[n]->GetUnitsPerPixel();
1460 nTextWidth = static_cast<DeviceCoordinate>(nTextWidth * fUnitMul + 0.5);
1461 if( nMaxWidth < nTextWidth )
1462 nMaxWidth = nTextWidth;
1463 if( !pCharWidths )
1464 continue;
1465 // calculate virtual char widths using most probable fallback layout
1466 for( int i = 0; i < nCharCount; ++i )
1468 // #i17359# restriction:
1469 // one char cannot be resolved from different fallbacks
1470 if( pCharWidths[i] != 0 )
1471 continue;
1472 DeviceCoordinate nCharWidth = pTempWidths[i];
1473 if( !nCharWidth )
1474 continue;
1475 nCharWidth = static_cast<DeviceCoordinate>(nCharWidth * fUnitMul + 0.5);
1476 pCharWidths[i] = nCharWidth;
1480 return nMaxWidth;
1483 void MultiSalLayout::GetCaretPositions( int nMaxIndex, long* pCaretXArray ) const
1485 SalLayout& rLayout = *mpLayouts[ 0 ];
1486 rLayout.GetCaretPositions( nMaxIndex, pCaretXArray );
1488 if( mnLevel > 1 )
1490 std::unique_ptr<long[]> const pTempPos(new long[nMaxIndex]);
1491 for( int n = 1; n < mnLevel; ++n )
1493 mpLayouts[ n ]->GetCaretPositions( nMaxIndex, pTempPos.get() );
1494 double fUnitMul = mnUnitsPerPixel;
1495 fUnitMul /= mpLayouts[n]->GetUnitsPerPixel();
1496 for( int i = 0; i < nMaxIndex; ++i )
1497 if( pTempPos[i] >= 0 )
1499 long w = pTempPos[i];
1500 w = static_cast<long>(w*fUnitMul + 0.5);
1501 pCaretXArray[i] = w;
1507 bool MultiSalLayout::GetNextGlyph(const GlyphItem** pGlyph,
1508 Point& rPos, int& nStart,
1509 const PhysicalFontFace** pFallbackFont,
1510 int* const pFallbackLevel) const
1512 // NOTE: nStart is tagged with current font index
1513 int nLevel = static_cast<unsigned>(nStart) >> GF_FONTSHIFT;
1514 nStart &= ~GF_FONTMASK;
1515 for(; nLevel < mnLevel; ++nLevel, nStart=0 )
1517 GenericSalLayout& rLayout = *mpLayouts[ nLevel ];
1518 rLayout.InitFont();
1519 const PhysicalFontFace* pFontFace = rLayout.GetFont().GetFontFace();
1520 if (rLayout.GetNextGlyph(pGlyph, rPos, nStart))
1522 int nFontTag = nLevel << GF_FONTSHIFT;
1523 nStart |= nFontTag;
1524 if (pFallbackFont)
1525 *pFallbackFont = pFontFace;
1526 if (pFallbackLevel)
1527 *pFallbackLevel = nLevel;
1528 rPos += maDrawBase;
1529 rPos += maDrawOffset;
1530 return true;
1534 // #111016# reset to base level font when done
1535 mpLayouts[0]->InitFont();
1536 return false;
1539 bool MultiSalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rPPV) const
1541 bool bRet = false;
1543 for( int i = mnLevel; --i >= 0; )
1545 SalLayout& rLayout = *mpLayouts[ i ];
1546 rLayout.DrawBase() = maDrawBase;
1547 rLayout.DrawOffset() += maDrawOffset;
1548 rLayout.InitFont();
1549 bRet |= rLayout.GetOutline(rPPV);
1550 rLayout.DrawOffset() -= maDrawOffset;
1553 return bRet;
1556 bool MultiSalLayout::IsKashidaPosValid(int nCharPos) const
1558 // Check the base layout
1559 bool bValid = mpLayouts[0]->IsKashidaPosValid(nCharPos);
1561 // If base layout returned false, it might be because the character was not
1562 // supported there, so we check fallback layouts.
1563 if (!bValid)
1565 for (int i = 1; i < mnLevel; ++i)
1567 // - 1 because there is no fallback run for the base layout, IIUC.
1568 if (maFallbackRuns[i - 1].PosIsInAnyRun(nCharPos))
1570 bValid = mpLayouts[i]->IsKashidaPosValid(nCharPos);
1571 break;
1576 return bValid;
1579 const SalLayoutGlyphs* SalLayout::GetGlyphs() const
1581 // No access to the glyphs by default.
1582 return nullptr;
1585 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */