1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
23 #include <sal/config.h>
24 #include <sal/log.hxx>
31 #include <sallayout.hxx>
32 #include <basegfx/polygon/b2dpolypolygon.hxx>
33 #include <basegfx/matrix/b2dhommatrixtools.hxx>
35 #include <i18nlangtag/lang.h>
37 #include <vcl/svapp.hxx>
39 #include <unicode/ubidi.h>
40 #include <unicode/uchar.h>
45 #include <impglyphitem.hxx>
48 #define GF_FONTMASK 0xF0000000
49 #define GF_FONTSHIFT 28
52 std::ostream
&operator <<(std::ostream
& s
, ImplLayoutArgs
const &rArgs
)
57 s
<< "ImplLayoutArgs{";
60 if (rArgs
.mnFlags
== SalLayoutFlags::NONE
)
65 #define TEST(x) if (rArgs.mnFlags & SalLayoutFlags::x) { if (need_or) s << "|"; s << #x; need_or = true; }
72 TEST(KashidaJustification
);
78 const int nLength
= rArgs
.mrStr
.getLength();
80 s
<< ",Length=" << nLength
;
81 s
<< ",MinCharPos=" << rArgs
.mnMinCharPos
;
82 s
<< ",EndCharPos=" << rArgs
.mnEndCharPos
;
88 for (int i
= 0; i
< lim
; i
++) {
89 if (rArgs
.mrStr
[i
] == '\n')
91 else if (rArgs
.mrStr
[i
] < ' ' || (rArgs
.mrStr
[i
] >= 0x7F && rArgs
.mrStr
[i
] <= 0xFF))
92 s
<< "\\0x" << std::hex
<< std::setw(2) << std::setfill('0') << static_cast<int>(rArgs
.mrStr
[i
]) << std::setfill(' ') << std::setw(1) << std::dec
;
93 else if (rArgs
.mrStr
[i
] < 0x7F)
94 s
<< static_cast<char>(rArgs
.mrStr
[i
]);
96 s
<< "\\u" << std::hex
<< std::setw(4) << std::setfill('0') << static_cast<int>(rArgs
.mrStr
[i
]) << std::setfill(' ') << std::setw(1) << std::dec
;
103 if (rArgs
.mpDXArray
) {
105 int count
= rArgs
.mnEndCharPos
- rArgs
.mnMinCharPos
;
109 for (int i
= 0; i
< lim
; i
++) {
110 s
<< rArgs
.mpDXArray
[i
];
117 s
<< rArgs
.mpDXArray
[count
-1];
123 s
<< ",LayoutWidth=" << rArgs
.mnLayoutWidth
;
131 sal_UCS4
GetMirroredChar( sal_UCS4 nChar
)
133 nChar
= u_charMirror( nChar
);
137 sal_UCS4
GetLocalizedChar( sal_UCS4 nChar
, LanguageType eLang
)
139 // currently only conversion from ASCII digits is interesting
140 if( (nChar
< '0') || ('9' < nChar
) )
144 // eLang & LANGUAGE_MASK_PRIMARY catches language independent of region.
145 // CAVEAT! To some like Mongolian MS assigned the same primary language
146 // although the script type is different!
147 LanguageType pri
= primary(eLang
);
148 if( pri
== primary(LANGUAGE_ARABIC_SAUDI_ARABIA
) )
149 nOffset
= 0x0660 - '0'; // arabic-indic digits
151 primary(LANGUAGE_FARSI
),
152 primary(LANGUAGE_URDU_PAKISTAN
),
153 primary(LANGUAGE_PUNJABI
), //???
154 primary(LANGUAGE_SINDHI
)))
155 nOffset
= 0x06F0 - '0'; // eastern arabic-indic digits
156 else if ( pri
== primary(LANGUAGE_BENGALI
) )
157 nOffset
= 0x09E6 - '0'; // bengali
158 else if ( pri
== primary(LANGUAGE_HINDI
) )
159 nOffset
= 0x0966 - '0'; // devanagari
161 primary(LANGUAGE_AMHARIC_ETHIOPIA
),
162 primary(LANGUAGE_TIGRIGNA_ETHIOPIA
)))
164 nOffset
= 0x1369 - '0'; // ethiopic
165 else if ( pri
== primary(LANGUAGE_GUJARATI
) )
166 nOffset
= 0x0AE6 - '0'; // gujarati
167 #ifdef LANGUAGE_GURMUKHI // TODO case:
168 else if ( pri
== primary(LANGUAGE_GURMUKHI
) )
169 nOffset
= 0x0A66 - '0'; // gurmukhi
171 else if ( pri
== primary(LANGUAGE_KANNADA
) )
172 nOffset
= 0x0CE6 - '0'; // kannada
173 else if ( pri
== primary(LANGUAGE_KHMER
))
174 nOffset
= 0x17E0 - '0'; // khmer
175 else if ( pri
== primary(LANGUAGE_LAO
) )
176 nOffset
= 0x0ED0 - '0'; // lao
177 else if ( pri
== primary(LANGUAGE_MALAYALAM
) )
178 nOffset
= 0x0D66 - '0'; // malayalam
179 else if ( pri
== primary(LANGUAGE_MONGOLIAN_MONGOLIAN_LSO
))
182 LANGUAGE_MONGOLIAN_MONGOLIAN_MONGOLIA
,
183 LANGUAGE_MONGOLIAN_MONGOLIAN_CHINA
,
184 LANGUAGE_MONGOLIAN_MONGOLIAN_LSO
))
185 nOffset
= 0x1810 - '0'; // mongolian
187 nOffset
= 0; // mongolian cyrillic
189 else if ( pri
== primary(LANGUAGE_BURMESE
) )
190 nOffset
= 0x1040 - '0'; // myanmar
191 else if ( pri
== primary(LANGUAGE_ODIA
) )
192 nOffset
= 0x0B66 - '0'; // odia
193 else if ( pri
== primary(LANGUAGE_TAMIL
) )
194 nOffset
= 0x0BE7 - '0'; // tamil
195 else if ( pri
== primary(LANGUAGE_TELUGU
) )
196 nOffset
= 0x0C66 - '0'; // telugu
197 else if ( pri
== primary(LANGUAGE_THAI
) )
198 nOffset
= 0x0E50 - '0'; // thai
199 else if ( pri
== primary(LANGUAGE_TIBETAN
) )
200 nOffset
= 0x0F20 - '0'; // tibetan
210 static bool IsControlChar( sal_UCS4 cChar
)
212 // C0 control characters
213 if( (0x0001 <= cChar
) && (cChar
<= 0x001F) )
215 // formatting characters
216 if( (0x200E <= cChar
) && (cChar
<= 0x200F) )
218 if( (0x2028 <= cChar
) && (cChar
<= 0x202E) )
220 // deprecated formatting characters
221 if( (0x206A <= cChar
) && (cChar
<= 0x206F) )
223 if( 0x2060 == cChar
)
225 // byte order markers and invalid unicode
226 if( (cChar
== 0xFEFF) || (cChar
== 0xFFFE) || (cChar
== 0xFFFF) )
231 void ImplLayoutRuns::AddPos( int nCharPos
, bool bRTL
)
233 // check if charpos could extend current run
234 int nIndex
= maRuns
.size();
237 int nRunPos0
= maRuns
[ nIndex
-2 ];
238 int nRunPos1
= maRuns
[ nIndex
-1 ];
239 if( ((nCharPos
+ int(bRTL
)) == nRunPos1
) && ((nRunPos0
> nRunPos1
) == bRTL
) )
241 // extend current run by new charpos
242 maRuns
[ nIndex
-1 ] = nCharPos
+ int(!bRTL
);
245 // ignore new charpos when it is in current run
246 if( (nRunPos0
<= nCharPos
) && (nCharPos
< nRunPos1
) )
248 if( (nRunPos1
<= nCharPos
) && (nCharPos
< nRunPos0
) )
252 // else append a new run consisting of the new charpos
253 maRuns
.push_back( nCharPos
+ (bRTL
? 1 : 0) );
254 maRuns
.push_back( nCharPos
+ (bRTL
? 0 : 1) );
257 void ImplLayoutRuns::AddRun( int nCharPos0
, int nCharPos1
, bool bRTL
)
259 if( nCharPos0
== nCharPos1
)
263 if( bRTL
== (nCharPos0
< nCharPos1
) )
265 int nTemp
= nCharPos0
;
266 nCharPos0
= nCharPos1
;
270 if (maRuns
.size() >= 2 && nCharPos0
== maRuns
[maRuns
.size() - 2] && nCharPos1
== maRuns
[maRuns
.size() - 1])
272 //this run is the same as the last
277 maRuns
.push_back( nCharPos0
);
278 maRuns
.push_back( nCharPos1
);
281 bool ImplLayoutRuns::PosIsInRun( int nCharPos
) const
283 if( mnRunIndex
>= static_cast<int>(maRuns
.size()) )
286 int nMinCharPos
= maRuns
[ mnRunIndex
+0 ];
287 int nEndCharPos
= maRuns
[ mnRunIndex
+1 ];
288 if( nMinCharPos
> nEndCharPos
) // reversed in RTL case
290 int nTemp
= nMinCharPos
;
291 nMinCharPos
= nEndCharPos
;
295 if( nCharPos
< nMinCharPos
)
297 if( nCharPos
>= nEndCharPos
)
302 bool ImplLayoutRuns::PosIsInAnyRun( int nCharPos
) const
305 int nRunIndex
= mnRunIndex
;
307 ImplLayoutRuns
*pThis
= const_cast<ImplLayoutRuns
*>(this);
311 for (size_t i
= 0; i
< maRuns
.size(); i
+=2)
313 bRet
= PosIsInRun( nCharPos
);
319 pThis
->mnRunIndex
= nRunIndex
;
323 bool ImplLayoutRuns::GetNextPos( int* nCharPos
, bool* bRightToLeft
)
325 // negative nCharPos => reset to first run
329 // return false when all runs completed
330 if( mnRunIndex
>= static_cast<int>(maRuns
.size()) )
333 int nRunPos0
= maRuns
[ mnRunIndex
+0 ];
334 int nRunPos1
= maRuns
[ mnRunIndex
+1 ];
335 *bRightToLeft
= (nRunPos0
> nRunPos1
);
339 // get first valid nCharPos in run
340 *nCharPos
= nRunPos0
;
344 // advance to next nCharPos for LTR case
348 // advance to next run if current run is completed
349 if( *nCharPos
== nRunPos1
)
351 if( (mnRunIndex
+= 2) >= static_cast<int>(maRuns
.size()) )
353 nRunPos0
= maRuns
[ mnRunIndex
+0 ];
354 nRunPos1
= maRuns
[ mnRunIndex
+1 ];
355 *bRightToLeft
= (nRunPos0
> nRunPos1
);
356 *nCharPos
= nRunPos0
;
360 // advance to next nCharPos for RTL case
367 bool ImplLayoutRuns::GetRun( int* nMinRunPos
, int* nEndRunPos
, bool* bRightToLeft
) const
369 if( mnRunIndex
>= static_cast<int>(maRuns
.size()) )
372 int nRunPos0
= maRuns
[ mnRunIndex
+0 ];
373 int nRunPos1
= maRuns
[ mnRunIndex
+1 ];
374 *bRightToLeft
= (nRunPos1
< nRunPos0
) ;
377 *nMinRunPos
= nRunPos0
;
378 *nEndRunPos
= nRunPos1
;
382 *nMinRunPos
= nRunPos1
;
383 *nEndRunPos
= nRunPos0
;
388 ImplLayoutArgs::ImplLayoutArgs(const OUString
& rStr
,
389 int nMinCharPos
, int nEndCharPos
, SalLayoutFlags nFlags
, const LanguageTag
& rLanguageTag
,
390 vcl::TextLayoutCache
const*const pLayoutCache
)
392 maLanguageTag( rLanguageTag
),
395 mnMinCharPos( nMinCharPos
),
396 mnEndCharPos( nEndCharPos
),
397 m_pTextLayoutCache(pLayoutCache
),
398 mpDXArray( nullptr ),
402 if( mnFlags
& SalLayoutFlags::BiDiStrong
)
404 // handle strong BiDi mode
406 // do not bother to BiDi analyze strong LTR/RTL
407 // TODO: can we assume these strings do not have unicode control chars?
408 // if not remove the control characters from the runs
409 bool bRTL(mnFlags
& SalLayoutFlags::BiDiRtl
);
410 AddRun( mnMinCharPos
, mnEndCharPos
, bRTL
);
414 // handle weak BiDi mode
415 UBiDiLevel nLevel
= (mnFlags
& SalLayoutFlags::BiDiRtl
)? 1 : 0;
417 // prepare substring for BiDi analysis
418 // TODO: reuse allocated pParaBidi
419 UErrorCode rcI18n
= U_ZERO_ERROR
;
420 const int nLength
= mrStr
.getLength();
421 UBiDi
* pParaBidi
= ubidi_openSized(nLength
, 0, &rcI18n
);
424 ubidi_setPara(pParaBidi
, reinterpret_cast<const UChar
*>(mrStr
.getStr()), nLength
, nLevel
, nullptr, &rcI18n
);
426 UBiDi
* pLineBidi
= pParaBidi
;
427 int nSubLength
= mnEndCharPos
- mnMinCharPos
;
428 if (nSubLength
!= nLength
)
430 pLineBidi
= ubidi_openSized( nSubLength
, 0, &rcI18n
);
431 ubidi_setLine( pParaBidi
, mnMinCharPos
, mnEndCharPos
, pLineBidi
, &rcI18n
);
434 // run BiDi algorithm
435 const int nRunCount
= ubidi_countRuns( pLineBidi
, &rcI18n
);
436 //maRuns.resize( 2 * nRunCount );
437 for( int i
= 0; i
< nRunCount
; ++i
)
439 int32_t nMinPos
, nRunLength
;
440 const UBiDiDirection nDir
= ubidi_getVisualRun( pLineBidi
, i
, &nMinPos
, &nRunLength
);
441 const int nPos0
= nMinPos
+ mnMinCharPos
;
442 const int nPos1
= nPos0
+ nRunLength
;
444 const bool bRTL
= (nDir
== UBIDI_RTL
);
445 AddRun( nPos0
, nPos1
, bRTL
);
448 // cleanup BiDi engine
449 if( pLineBidi
!= pParaBidi
)
450 ubidi_close( pLineBidi
);
451 ubidi_close( pParaBidi
);
454 // prepare calls to GetNextPos/GetNextRun
458 // add a run after splitting it up to get rid of control chars
459 void ImplLayoutArgs::AddRun( int nCharPos0
, int nCharPos1
, bool bRTL
)
461 SAL_WARN_IF( nCharPos0
> nCharPos1
, "vcl", "ImplLayoutArgs::AddRun() nCharPos0>=nCharPos1" );
463 // remove control characters from runs by splitting them up
466 for( int i
= nCharPos0
; i
< nCharPos1
; ++i
)
467 if( IsControlChar( mrStr
[i
] ) )
469 // add run until control char
470 maRuns
.AddRun( nCharPos0
, i
, bRTL
);
476 for( int i
= nCharPos1
; --i
>= nCharPos0
; )
477 if( IsControlChar( mrStr
[i
] ) )
479 // add run until control char
480 maRuns
.AddRun( i
+1, nCharPos1
, bRTL
);
485 // add remainder of run
486 maRuns
.AddRun( nCharPos0
, nCharPos1
, bRTL
);
489 bool ImplLayoutArgs::PrepareFallback()
491 // short circuit if no fallback is needed
492 if( maFallbackRuns
.IsEmpty() )
498 // convert the fallback requests to layout requests
502 // get the individual fallback requests
503 std::vector
<int> aPosVector
;
504 aPosVector
.reserve(mrStr
.getLength());
505 maFallbackRuns
.ResetPos();
506 for(; maFallbackRuns
.GetRun( &nMin
, &nEnd
, &bRTL
); maFallbackRuns
.NextRun() )
507 for( int i
= nMin
; i
< nEnd
; ++i
)
508 aPosVector
.push_back( i
);
509 maFallbackRuns
.Clear();
511 // sort the individual fallback requests
512 std::sort( aPosVector
.begin(), aPosVector
.end() );
514 // adjust fallback runs to have the same order and limits of the original runs
515 ImplLayoutRuns aNewRuns
;
517 for(; maRuns
.GetRun( &nMin
, &nEnd
, &bRTL
); maRuns
.NextRun() )
520 auto it
= std::lower_bound( aPosVector
.begin(), aPosVector
.end(), nMin
);
521 for(; (it
!= aPosVector
.end()) && (*it
< nEnd
); ++it
)
522 aNewRuns
.AddPos( *it
, bRTL
);
524 auto it
= std::upper_bound( aPosVector
.begin(), aPosVector
.end(), nEnd
);
525 while( (it
!= aPosVector
.begin()) && (*--it
>= nMin
) )
526 aNewRuns
.AddPos( *it
, bRTL
);
530 maRuns
= aNewRuns
; // TODO: use vector<>::swap()
535 bool ImplLayoutArgs::GetNextRun( int* nMinRunPos
, int* nEndRunPos
, bool* bRTL
)
537 bool bValid
= maRuns
.GetRun( nMinRunPos
, nEndRunPos
, bRTL
);
542 SalLayout::SalLayout()
543 : mnMinCharPos( -1 ),
545 mnUnitsPerPixel( 1 ),
550 SalLayout::~SalLayout()
553 void SalLayout::AdjustLayout( ImplLayoutArgs
& rArgs
)
555 mnMinCharPos
= rArgs
.mnMinCharPos
;
556 mnEndCharPos
= rArgs
.mnEndCharPos
;
557 mnOrientation
= rArgs
.mnOrientation
;
560 Point
SalLayout::GetDrawPosition( const Point
& rRelative
) const
562 Point aPos
= maDrawBase
;
563 Point aOfs
= rRelative
+ maDrawOffset
;
565 if( mnOrientation
== 0 )
569 // cache trigonometric results
570 static int nOldOrientation
= 0;
571 static double fCos
= 1.0, fSin
= 0.0;
572 if( nOldOrientation
!= mnOrientation
)
574 nOldOrientation
= mnOrientation
;
575 double fRad
= mnOrientation
* (M_PI
/ 1800.0);
580 double fX
= aOfs
.X();
581 double fY
= aOfs
.Y();
582 long nX
= static_cast<long>( +fCos
* fX
+ fSin
* fY
);
583 long nY
= static_cast<long>( +fCos
* fY
- fSin
* fX
);
584 aPos
+= Point( nX
, nY
);
590 bool SalLayout::GetOutline(basegfx::B2DPolyPolygonVector
& rVector
) const
595 basegfx::B2DPolyPolygon aGlyphOutline
;
598 const GlyphItem
* pGlyph
;
600 while (GetNextGlyph(&pGlyph
, aPos
, nStart
))
602 // get outline of individual glyph, ignoring "empty" glyphs
603 bool bSuccess
= pGlyph
->GetGlyphOutline(aGlyphOutline
);
606 // only add non-empty outlines
607 if( bSuccess
&& (aGlyphOutline
.count() > 0) )
609 if( aPos
.X() || aPos
.Y() )
611 aGlyphOutline
.transform(basegfx::utils::createTranslateB2DHomMatrix(aPos
.X(), aPos
.Y()));
614 // insert outline at correct position
615 rVector
.push_back( aGlyphOutline
);
619 return (bAllOk
&& bOneOk
);
622 bool SalLayout::GetBoundRect(tools::Rectangle
& rRect
) const
627 tools::Rectangle aRectangle
;
630 const GlyphItem
* pGlyph
;
632 while (GetNextGlyph(&pGlyph
, aPos
, nStart
))
634 // get bounding rectangle of individual glyph
635 if (pGlyph
->GetGlyphBoundRect(aRectangle
))
642 rRect
.Union(aRectangle
);
650 DeviceCoordinate
GenericSalLayout::FillDXArray( DeviceCoordinate
* pCharWidths
) const
653 GetCharWidths(pCharWidths
);
655 return GetTextWidth();
658 // the text width is the maximum logical extent of all glyphs
659 DeviceCoordinate
GenericSalLayout::GetTextWidth() const
661 if (!m_GlyphItems
.IsValid())
664 // initialize the extent
665 DeviceCoordinate nMinPos
= 0;
666 DeviceCoordinate nMaxPos
= 0;
668 for (auto const& aGlyphItem
: *m_GlyphItems
.Impl())
670 // update the text extent with the glyph extent
671 DeviceCoordinate nXPos
= aGlyphItem
.m_aLinearPos
.getX();
672 if( nMinPos
> nXPos
)
674 nXPos
+= aGlyphItem
.m_nNewWidth
- aGlyphItem
.xOffset();
675 if( nMaxPos
< nXPos
)
679 DeviceCoordinate nWidth
= nMaxPos
- nMinPos
;
683 void GenericSalLayout::Justify( DeviceCoordinate nNewWidth
)
685 nNewWidth
*= mnUnitsPerPixel
;
686 DeviceCoordinate nOldWidth
= GetTextWidth();
687 if( !nOldWidth
|| nNewWidth
==nOldWidth
)
690 if (!m_GlyphItems
.IsValid())
694 // find rightmost glyph, it won't get stretched
695 std::vector
<GlyphItem
>::iterator pGlyphIterRight
= m_GlyphItems
.Impl()->begin();
696 pGlyphIterRight
+= m_GlyphItems
.Impl()->size() - 1;
697 std::vector
<GlyphItem
>::iterator pGlyphIter
;
698 // count stretchable glyphs
699 int nStretchable
= 0;
700 int nMaxGlyphWidth
= 0;
701 for(pGlyphIter
= m_GlyphItems
.Impl()->begin(); pGlyphIter
!= pGlyphIterRight
; ++pGlyphIter
)
703 if( !pGlyphIter
->IsDiacritic() )
705 if (nMaxGlyphWidth
< pGlyphIter
->origWidth())
706 nMaxGlyphWidth
= pGlyphIter
->origWidth();
709 // move rightmost glyph to requested position
710 nOldWidth
-= pGlyphIterRight
->origWidth();
713 if( nNewWidth
< nMaxGlyphWidth
)
714 nNewWidth
= nMaxGlyphWidth
;
715 nNewWidth
-= pGlyphIterRight
->origWidth();
716 pGlyphIterRight
->m_aLinearPos
.setX( nNewWidth
);
718 // justify glyph widths and positions
719 int nDiffWidth
= nNewWidth
- nOldWidth
;
720 if( nDiffWidth
>= 0) // expanded case
722 // expand width by distributing space between glyphs evenly
724 for( pGlyphIter
= m_GlyphItems
.Impl()->begin(); pGlyphIter
!= pGlyphIterRight
; ++pGlyphIter
)
726 // move glyph to justified position
727 pGlyphIter
->m_aLinearPos
.AdjustX(nDeltaSum
);
729 // do not stretch non-stretchable glyphs
730 if( pGlyphIter
->IsDiacritic() || (nStretchable
<= 0) )
733 // distribute extra space equally to stretchable glyphs
734 int nDeltaWidth
= nDiffWidth
/ nStretchable
--;
735 nDiffWidth
-= nDeltaWidth
;
736 pGlyphIter
->m_nNewWidth
+= nDeltaWidth
;
737 nDeltaSum
+= nDeltaWidth
;
740 else // condensed case
742 // squeeze width by moving glyphs proportionally
743 double fSqueeze
= static_cast<double>(nNewWidth
) / nOldWidth
;
744 if(m_GlyphItems
.Impl()->size() > 1)
746 for( pGlyphIter
= m_GlyphItems
.Impl()->begin(); ++pGlyphIter
!= pGlyphIterRight
;)
748 int nX
= pGlyphIter
->m_aLinearPos
.getX();
749 nX
= static_cast<int>(nX
* fSqueeze
);
750 pGlyphIter
->m_aLinearPos
.setX( nX
);
753 // adjust glyph widths to new positions
754 for( pGlyphIter
= m_GlyphItems
.Impl()->begin(); pGlyphIter
!= pGlyphIterRight
; ++pGlyphIter
)
755 pGlyphIter
->m_nNewWidth
= pGlyphIter
[1].m_aLinearPos
.getX() - pGlyphIter
[0].m_aLinearPos
.getX();
759 // returns asian kerning values in quarter of character width units
760 // to enable automatic halfwidth substitution for fullwidth punctuation
761 // return value is negative for l, positive for r, zero for neutral
762 // TODO: handle vertical layout as proposed in commit 43bf2ad49c2b3989bbbe893e4fee2e032a3920f5?
763 static int lcl_CalcAsianKerning(sal_UCS4 c
, bool bLeft
)
765 // http://www.asahi-net.or.jp/~sd5a-ucd/freetexts/jis/x4051/1995/appendix.html
766 static const signed char nTable
[0x30] =
768 0, -2, -2, 0, 0, 0, 0, 0, +2, -2, +2, -2, +2, -2, +2, -2,
769 +2, -2, 0, 0, +2, -2, +2, -2, 0, 0, 0, 0, 0, +2, -2, -2,
770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, +2, +2, -2, -2
774 if( (c
>= 0x3000) && (c
< 0x3030) )
775 nResult
= nTable
[ c
- 0x3000 ];
779 nResult
= bLeft
? -1 : +1; // 25% left/right/top/bottom
781 case 0x2019: case 0x201D:
782 case 0xFF01: case 0xFF09: case 0xFF0C:
783 case 0xFF1A: case 0xFF1B:
786 case 0x2018: case 0x201C:
797 static bool lcl_CanApplyAsianKerning(sal_Unicode cp
)
799 return (0x3000 == (cp
& 0xFF00)) || (0xFF00 == (cp
& 0xFF00)) || (0x2010 == (cp
& 0xFFF0));
802 void GenericSalLayout::ApplyAsianKerning(const OUString
& rStr
)
804 const int nLength
= rStr
.getLength();
807 for (std::vector
<GlyphItem
>::iterator pGlyphIter
= m_GlyphItems
.Impl()->begin(),
808 pGlyphIterEnd
= m_GlyphItems
.Impl()->end();
809 pGlyphIter
!= pGlyphIterEnd
; ++pGlyphIter
)
811 const int n
= pGlyphIter
->charPos();
814 // ignore code ranges that are not affected by asian punctuation compression
815 const sal_Unicode cCurrent
= rStr
[n
];
816 if (!lcl_CanApplyAsianKerning(cCurrent
))
818 const sal_Unicode cNext
= rStr
[n
+ 1];
819 if (!lcl_CanApplyAsianKerning(cNext
))
822 // calculate compression values
823 const int nKernCurrent
= +lcl_CalcAsianKerning(cCurrent
, true);
824 if (nKernCurrent
== 0)
826 const int nKernNext
= -lcl_CalcAsianKerning(cNext
, false);
830 // apply punctuation compression to logical glyph widths
831 int nDelta
= (nKernCurrent
< nKernNext
) ? nKernCurrent
: nKernNext
;
834 nDelta
= (nDelta
* pGlyphIter
->origWidth() + 2) / 4;
835 if( pGlyphIter
+1 == pGlyphIterEnd
)
836 pGlyphIter
->m_nNewWidth
+= nDelta
;
841 // adjust the glyph positions to the new glyph widths
842 if( pGlyphIter
+1 != pGlyphIterEnd
)
843 pGlyphIter
->m_aLinearPos
.AdjustX(nOffset
);
847 void GenericSalLayout::GetCaretPositions( int nMaxIndex
, long* pCaretXArray
) const
849 // initialize result array
850 for (int i
= 0; i
< nMaxIndex
; ++i
)
851 pCaretXArray
[i
] = -1;
853 // calculate caret positions using glyph array
854 for (auto const& aGlyphItem
: *m_GlyphItems
.Impl())
856 long nXPos
= aGlyphItem
.m_aLinearPos
.getX();
857 long nXRight
= nXPos
+ aGlyphItem
.origWidth();
858 int n
= aGlyphItem
.charPos();
859 int nCurrIdx
= 2 * (n
- mnMinCharPos
);
860 // tdf#86399 if this is not the start of a cluster, don't overwrite the caret bounds of the cluster start
861 if (aGlyphItem
.IsInCluster() && pCaretXArray
[nCurrIdx
] != -1)
863 if (!aGlyphItem
.IsRTLGlyph() )
865 // normal positions for LTR case
866 pCaretXArray
[ nCurrIdx
] = nXPos
;
867 pCaretXArray
[ nCurrIdx
+1 ] = nXRight
;
871 // reverse positions for RTL case
872 pCaretXArray
[ nCurrIdx
] = nXRight
;
873 pCaretXArray
[ nCurrIdx
+1 ] = nXPos
;
878 sal_Int32
GenericSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth
, DeviceCoordinate nCharExtra
, int nFactor
) const
880 int nCharCapacity
= mnEndCharPos
- mnMinCharPos
;
881 std::unique_ptr
<DeviceCoordinate
[]> const pCharWidths(new DeviceCoordinate
[nCharCapacity
]);
882 GetCharWidths(pCharWidths
.get());
884 DeviceCoordinate nWidth
= 0;
885 for( int i
= mnMinCharPos
; i
< mnEndCharPos
; ++i
)
887 nWidth
+= pCharWidths
[ i
- mnMinCharPos
] * nFactor
;
888 if( nWidth
> nMaxWidth
)
890 nWidth
+= nCharExtra
;
896 bool GenericSalLayout::GetNextGlyph(const GlyphItem
** pGlyph
,
897 Point
& rPos
, int& nStart
,
898 const PhysicalFontFace
**, int* const pFallbackLevel
) const
900 std::vector
<GlyphItem
>::const_iterator pGlyphIter
= m_GlyphItems
.Impl()->begin();
901 std::vector
<GlyphItem
>::const_iterator pGlyphIterEnd
= m_GlyphItems
.Impl()->end();
902 pGlyphIter
+= nStart
;
904 // find next glyph in substring
905 for(; pGlyphIter
!= pGlyphIterEnd
; ++nStart
, ++pGlyphIter
)
907 int n
= pGlyphIter
->charPos();
908 if( (mnMinCharPos
<= n
) && (n
< mnEndCharPos
) )
912 // return zero if no more glyph found
913 if( nStart
>= static_cast<int>(m_GlyphItems
.Impl()->size()) )
916 if( pGlyphIter
== pGlyphIterEnd
)
919 // update return data with glyph info
920 *pGlyph
= &(*pGlyphIter
);
925 // calculate absolute position in pixel units
926 Point aRelativePos
= pGlyphIter
->m_aLinearPos
;
928 aRelativePos
.setX( aRelativePos
.X() / mnUnitsPerPixel
);
929 aRelativePos
.setY( aRelativePos
.Y() / mnUnitsPerPixel
);
930 rPos
= GetDrawPosition( aRelativePos
);
935 void GenericSalLayout::MoveGlyph( int nStart
, long nNewXPos
)
937 if( nStart
>= static_cast<int>(m_GlyphItems
.Impl()->size()) )
940 std::vector
<GlyphItem
>::iterator pGlyphIter
= m_GlyphItems
.Impl()->begin();
941 pGlyphIter
+= nStart
;
943 // the nNewXPos argument determines the new cell position
944 // as RTL-glyphs are right justified in their cell
945 // the cell position needs to be adjusted to the glyph position
946 if( pGlyphIter
->IsRTLGlyph() )
947 nNewXPos
+= pGlyphIter
->m_nNewWidth
- pGlyphIter
->origWidth();
948 // calculate the x-offset to the old position
949 long nXDelta
= nNewXPos
- pGlyphIter
->m_aLinearPos
.getX();
950 // adjust all following glyph positions if needed
953 for( std::vector
<GlyphItem
>::iterator pGlyphIterEnd
= m_GlyphItems
.Impl()->end(); pGlyphIter
!= pGlyphIterEnd
; ++pGlyphIter
)
955 pGlyphIter
->m_aLinearPos
.AdjustX(nXDelta
);
960 void GenericSalLayout::DropGlyph( int nStart
)
962 if( nStart
>= static_cast<int>(m_GlyphItems
.Impl()->size()))
965 std::vector
<GlyphItem
>::iterator pGlyphIter
= m_GlyphItems
.Impl()->begin();
966 pGlyphIter
+= nStart
;
967 pGlyphIter
->dropGlyph();
970 void GenericSalLayout::Simplify( bool bIsBase
)
972 // remove dropped glyphs inplace
974 for(size_t i
= 0; i
< m_GlyphItems
.Impl()->size(); i
++ )
976 if (bIsBase
&& (*m_GlyphItems
.Impl())[i
].IsDropped())
978 if (!bIsBase
&& (*m_GlyphItems
.Impl())[i
].glyphId() == 0)
983 (*m_GlyphItems
.Impl())[j
] = (*m_GlyphItems
.Impl())[i
];
987 m_GlyphItems
.Impl()->erase(m_GlyphItems
.Impl()->begin() + j
, m_GlyphItems
.Impl()->end());
990 MultiSalLayout::MultiSalLayout( std::unique_ptr
<SalLayout
> pBaseLayout
)
993 , mbIncomplete( false )
995 assert(dynamic_cast<GenericSalLayout
*>(pBaseLayout
.get()));
997 mpLayouts
[ 0 ].reset(static_cast<GenericSalLayout
*>(pBaseLayout
.release()));
998 mnUnitsPerPixel
= mpLayouts
[ 0 ]->GetUnitsPerPixel();
1001 void MultiSalLayout::SetIncomplete(bool bIncomplete
)
1003 mbIncomplete
= bIncomplete
;
1004 maFallbackRuns
[mnLevel
-1] = ImplLayoutRuns();
1007 MultiSalLayout::~MultiSalLayout()
1011 void MultiSalLayout::AddFallback( std::unique_ptr
<SalLayout
> pFallback
,
1012 ImplLayoutRuns
const & rFallbackRuns
)
1014 assert(dynamic_cast<GenericSalLayout
*>(pFallback
.get()));
1015 if( mnLevel
>= MAX_FALLBACK
)
1018 mpLayouts
[ mnLevel
].reset(static_cast<GenericSalLayout
*>(pFallback
.release()));
1019 maFallbackRuns
[ mnLevel
-1 ] = rFallbackRuns
;
1023 bool MultiSalLayout::LayoutText( ImplLayoutArgs
& rArgs
, const SalLayoutGlyphs
* )
1028 maFallbackRuns
[ mnLevel
-1 ] = rArgs
.maRuns
;
1032 void MultiSalLayout::AdjustLayout( ImplLayoutArgs
& rArgs
)
1034 SalLayout::AdjustLayout( rArgs
);
1035 ImplLayoutArgs aMultiArgs
= rArgs
;
1036 std::unique_ptr
<DeviceCoordinate
[]> pJustificationArray
;
1038 if( !rArgs
.mpDXArray
&& rArgs
.mnLayoutWidth
)
1040 // for stretched text in a MultiSalLayout the target width needs to be
1041 // distributed by individually adjusting its virtual character widths
1042 DeviceCoordinate nTargetWidth
= aMultiArgs
.mnLayoutWidth
;
1043 nTargetWidth
*= mnUnitsPerPixel
; // convert target width to base font units
1044 aMultiArgs
.mnLayoutWidth
= 0;
1046 // we need to get the original unmodified layouts ready
1047 for( int n
= 0; n
< mnLevel
; ++n
)
1048 mpLayouts
[n
]->SalLayout::AdjustLayout( aMultiArgs
);
1049 // then we can measure the unmodified metrics
1050 int nCharCount
= rArgs
.mnEndCharPos
- rArgs
.mnMinCharPos
;
1051 pJustificationArray
.reset(new DeviceCoordinate
[nCharCount
]);
1052 FillDXArray( pJustificationArray
.get() );
1053 // #i17359# multilayout is not simplified yet, so calculating the
1054 // unjustified width needs handholding; also count the number of
1055 // stretchable virtual char widths
1056 DeviceCoordinate nOrigWidth
= 0;
1057 int nStretchable
= 0;
1058 for( int i
= 0; i
< nCharCount
; ++i
)
1060 // convert array from widths to sum of widths
1061 nOrigWidth
+= pJustificationArray
[i
];
1062 if( pJustificationArray
[i
] > 0 )
1066 // now we are able to distribute the extra width over the virtual char widths
1067 if( nOrigWidth
&& (nTargetWidth
!= nOrigWidth
) )
1069 DeviceCoordinate nDiffWidth
= nTargetWidth
- nOrigWidth
;
1070 DeviceCoordinate nWidthSum
= 0;
1071 for( int i
= 0; i
< nCharCount
; ++i
)
1073 DeviceCoordinate nJustWidth
= pJustificationArray
[i
];
1074 if( (nJustWidth
> 0) && (nStretchable
> 0) )
1076 DeviceCoordinate nDeltaWidth
= nDiffWidth
/ nStretchable
;
1077 nJustWidth
+= nDeltaWidth
;
1078 nDiffWidth
-= nDeltaWidth
;
1081 nWidthSum
+= nJustWidth
;
1082 pJustificationArray
[i
] = nWidthSum
;
1084 if( nWidthSum
!= nTargetWidth
)
1085 pJustificationArray
[ nCharCount
-1 ] = nTargetWidth
;
1087 // the justification array is still in base level units
1088 // => convert it to pixel units
1089 if( mnUnitsPerPixel
> 1 )
1091 for( int i
= 0; i
< nCharCount
; ++i
)
1093 DeviceCoordinate nVal
= pJustificationArray
[ i
];
1094 nVal
+= (mnUnitsPerPixel
+ 1) / 2;
1095 pJustificationArray
[ i
] = nVal
/ mnUnitsPerPixel
;
1099 // change the mpDXArray temporarily (just for the justification)
1100 aMultiArgs
.mpDXArray
= pJustificationArray
.get();
1104 // Compute rtl flags, since in some scripts glyphs/char order can be
1105 // reversed for a few character sequences e.g. Myanmar
1106 std::vector
<bool> vRtl(rArgs
.mnEndCharPos
- rArgs
.mnMinCharPos
, false);
1109 int nRunStart
, nRunEnd
;
1110 while (rArgs
.GetNextRun(&nRunStart
, &nRunEnd
, &bRtl
))
1112 if (bRtl
) std::fill(vRtl
.begin() + (nRunStart
- rArgs
.mnMinCharPos
),
1113 vRtl
.begin() + (nRunEnd
- rArgs
.mnMinCharPos
), true);
1117 // prepare "merge sort"
1118 int nStartOld
[ MAX_FALLBACK
];
1119 int nStartNew
[ MAX_FALLBACK
];
1120 const GlyphItem
* pGlyphs
[MAX_FALLBACK
];
1121 bool bValid
[MAX_FALLBACK
] = { false };
1125 for( n
= 0; n
< mnLevel
; ++n
)
1127 // now adjust the individual components
1130 aMultiArgs
.maRuns
= maFallbackRuns
[ n
-1 ];
1131 aMultiArgs
.mnFlags
|= SalLayoutFlags::ForFallback
;
1133 mpLayouts
[n
]->AdjustLayout( aMultiArgs
);
1135 // remove unused parts of component
1138 if (mbIncomplete
&& (n
== mnLevel
-1))
1139 mpLayouts
[n
]->Simplify( true );
1141 mpLayouts
[n
]->Simplify( false );
1144 // prepare merging components
1145 nStartNew
[ nLevel
] = nStartOld
[ nLevel
] = 0;
1146 bValid
[nLevel
] = mpLayouts
[n
]->GetNextGlyph(&pGlyphs
[nLevel
], aPos
, nStartNew
[nLevel
]);
1148 if( (n
> 0) && !bValid
[ nLevel
] )
1150 // an empty fallback layout can be released
1151 mpLayouts
[n
].reset();
1155 // reshuffle used fallbacks if needed
1158 mpLayouts
[ nLevel
] = std::move(mpLayouts
[ n
]);
1159 maFallbackRuns
[ nLevel
] = maFallbackRuns
[ n
];
1166 // prepare merge the fallback levels
1168 double fUnitMul
= 1.0;
1169 for( n
= 0; n
< nLevel
; ++n
)
1170 maFallbackRuns
[n
].ResetPos();
1172 int nFirstValid
= -1;
1173 for( n
= 0; n
< nLevel
; ++n
)
1181 assert(nFirstValid
>= 0);
1183 // get the next codepoint index that needs fallback
1184 int nActiveCharPos
= pGlyphs
[nFirstValid
]->charPos();
1185 int nActiveCharIndex
= nActiveCharPos
- mnMinCharPos
;
1186 // get the end index of the active run
1187 int nLastRunEndChar
= (nActiveCharIndex
>= 0 && vRtl
[nActiveCharIndex
]) ?
1188 rArgs
.mnEndCharPos
: rArgs
.mnMinCharPos
- 1;
1189 int nRunVisibleEndChar
= pGlyphs
[nFirstValid
]->charPos();
1190 // merge the fallback levels
1191 while( bValid
[nFirstValid
] && (nLevel
> 0))
1193 // find best fallback level
1194 for( n
= 0; n
< nLevel
; ++n
)
1195 if( bValid
[n
] && !maFallbackRuns
[n
].PosIsInAnyRun( nActiveCharPos
) )
1196 // fallback level n wins when it requested no further fallback
1202 // use base(n==0) or fallback(n>=1) level
1203 fUnitMul
= mnUnitsPerPixel
;
1204 fUnitMul
/= mpLayouts
[n
]->GetUnitsPerPixel();
1205 long nNewPos
= static_cast<long>(nXPos
/fUnitMul
+ 0.5);
1206 mpLayouts
[n
]->MoveGlyph( nStartOld
[n
], nNewPos
);
1210 n
= 0; // keep NotDef in base level
1216 // drop the NotDef glyphs in the base layout run if a fallback run exists
1218 (maFallbackRuns
[n
-1].PosIsInRun(pGlyphs
[nFirstValid
]->charPos())) &&
1219 (!maFallbackRuns
[n
].PosIsInAnyRun(pGlyphs
[nFirstValid
]->charPos()))
1222 mpLayouts
[0]->DropGlyph( nStartOld
[0] );
1223 nStartOld
[0] = nStartNew
[0];
1224 bValid
[nFirstValid
] = mpLayouts
[0]->GetNextGlyph(&pGlyphs
[nFirstValid
], aPos
, nStartNew
[0]);
1226 if( !bValid
[nFirstValid
] )
1231 // skip to end of layout run and calculate its advance width
1232 DeviceCoordinate nRunAdvance
= 0;
1233 bool bKeepNotDef
= (nFBLevel
>= nLevel
);
1236 nRunAdvance
+= pGlyphs
[n
]->m_nNewWidth
;
1238 // proceed to next glyph
1239 nStartOld
[n
] = nStartNew
[n
];
1240 int nOrigCharPos
= pGlyphs
[n
]->charPos();
1241 bValid
[n
] = mpLayouts
[n
]->GetNextGlyph(&pGlyphs
[n
], aPos
, nStartNew
[n
]);
1242 // break after last glyph of active layout
1245 // performance optimization (when a fallback layout is no longer needed)
1251 //If the next character is one which belongs to the next level, then we
1252 //are finished here for now, and we'll pick up after the next level has
1254 if ((n
+1 < nLevel
) && (pGlyphs
[n
]->charPos() != nOrigCharPos
))
1256 if (nOrigCharPos
< pGlyphs
[n
]->charPos())
1258 if (pGlyphs
[n
+1]->charPos() > nOrigCharPos
&& (pGlyphs
[n
+1]->charPos() < pGlyphs
[n
]->charPos()))
1261 else if (nOrigCharPos
> pGlyphs
[n
]->charPos())
1263 if (pGlyphs
[n
+1]->charPos() > pGlyphs
[n
]->charPos() && (pGlyphs
[n
+1]->charPos() < nOrigCharPos
))
1268 // break at end of layout run
1271 // skip until end of fallback run
1272 if (!maFallbackRuns
[n
-1].PosIsInRun(pGlyphs
[n
]->charPos()))
1277 // break when a fallback is needed and available
1278 bool bNeedFallback
= maFallbackRuns
[0].PosIsInRun(pGlyphs
[nFirstValid
]->charPos());
1280 if (!maFallbackRuns
[nLevel
-1].PosIsInRun(pGlyphs
[nFirstValid
]->charPos()))
1282 // break when change from resolved to unresolved base layout run
1283 if( bKeepNotDef
&& !bNeedFallback
)
1284 { maFallbackRuns
[0].NextRun(); break; }
1285 bKeepNotDef
= bNeedFallback
;
1287 // check for reordered glyphs
1288 if (aMultiArgs
.mpDXArray
&&
1289 nRunVisibleEndChar
< mnEndCharPos
&&
1290 nRunVisibleEndChar
>= mnMinCharPos
&&
1291 pGlyphs
[n
]->charPos() < mnEndCharPos
&&
1292 pGlyphs
[n
]->charPos() >= mnMinCharPos
)
1294 if (vRtl
[nActiveCharPos
- mnMinCharPos
])
1296 if (aMultiArgs
.mpDXArray
[nRunVisibleEndChar
-mnMinCharPos
]
1297 >= aMultiArgs
.mpDXArray
[pGlyphs
[n
]->charPos() - mnMinCharPos
])
1299 nRunVisibleEndChar
= pGlyphs
[n
]->charPos();
1302 else if (aMultiArgs
.mpDXArray
[nRunVisibleEndChar
-mnMinCharPos
]
1303 <= aMultiArgs
.mpDXArray
[pGlyphs
[n
]->charPos() - mnMinCharPos
])
1305 nRunVisibleEndChar
= pGlyphs
[n
]->charPos();
1310 // if a justification array is available
1311 // => use it directly to calculate the corresponding run width
1312 if( aMultiArgs
.mpDXArray
)
1314 // the run advance is the width from the first char
1315 // in the run to the first char in the next run
1317 nActiveCharIndex
= nActiveCharPos
- mnMinCharPos
;
1318 if (nActiveCharIndex
>= 0 && vRtl
[nActiveCharIndex
])
1320 if (nRunVisibleEndChar
> mnMinCharPos
&& nRunVisibleEndChar
<= mnEndCharPos
)
1321 nRunAdvance
-= aMultiArgs
.mpDXArray
[nRunVisibleEndChar
- 1 - mnMinCharPos
];
1322 if (nLastRunEndChar
> mnMinCharPos
&& nLastRunEndChar
<= mnEndCharPos
)
1323 nRunAdvance
+= aMultiArgs
.mpDXArray
[nLastRunEndChar
- 1 - mnMinCharPos
];
1327 if (nRunVisibleEndChar
>= mnMinCharPos
)
1328 nRunAdvance
+= aMultiArgs
.mpDXArray
[nRunVisibleEndChar
- mnMinCharPos
];
1329 if (nLastRunEndChar
>= mnMinCharPos
)
1330 nRunAdvance
-= aMultiArgs
.mpDXArray
[nLastRunEndChar
- mnMinCharPos
];
1332 nLastRunEndChar
= nRunVisibleEndChar
;
1333 nRunVisibleEndChar
= pGlyphs
[nFirstValid
]->charPos();
1334 // the requested width is still in pixel units
1335 // => convert it to base level font units
1336 nRunAdvance
*= mnUnitsPerPixel
;
1340 // the measured width is still in fallback font units
1341 // => convert it to base level font units
1342 if( n
> 0 ) // optimization: because (fUnitMul==1.0) for (n==0)
1343 nRunAdvance
= static_cast<long>(nRunAdvance
*fUnitMul
+ 0.5);
1346 // calculate new x position (in base level units)
1347 nXPos
+= nRunAdvance
;
1349 // prepare for next fallback run
1350 nActiveCharPos
= pGlyphs
[nFirstValid
]->charPos();
1351 // it essential that the runs don't get ahead of themselves and in the
1352 // if( bKeepNotDef && !bNeedFallback ) statement above, the next run may
1353 // have already been reached on the base level
1354 for( int i
= nFBLevel
; --i
>= 0;)
1356 if (maFallbackRuns
[i
].GetRun(&nRunStart
, &nRunEnd
, &bRtl
))
1360 if (nRunStart
> nActiveCharPos
)
1361 maFallbackRuns
[i
].NextRun();
1365 if (nRunEnd
<= nActiveCharPos
)
1366 maFallbackRuns
[i
].NextRun();
1372 mpLayouts
[0]->Simplify( true );
1375 void MultiSalLayout::InitFont() const
1378 mpLayouts
[0]->InitFont();
1381 void MultiSalLayout::DrawText( SalGraphics
& rGraphics
) const
1383 for( int i
= mnLevel
; --i
>= 0; )
1385 SalLayout
& rLayout
= *mpLayouts
[ i
];
1386 rLayout
.DrawBase() += maDrawBase
;
1387 rLayout
.DrawOffset() += maDrawOffset
;
1389 rLayout
.DrawText( rGraphics
);
1390 rLayout
.DrawOffset() -= maDrawOffset
;
1391 rLayout
.DrawBase() -= maDrawBase
;
1393 // NOTE: now the baselevel font is active again
1396 sal_Int32
MultiSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth
, DeviceCoordinate nCharExtra
, int nFactor
) const
1401 return mpLayouts
[0]->GetTextBreak( nMaxWidth
, nCharExtra
, nFactor
);
1403 int nCharCount
= mnEndCharPos
- mnMinCharPos
;
1404 std::unique_ptr
<DeviceCoordinate
[]> const pCharWidths(new DeviceCoordinate
[nCharCount
]);
1405 std::unique_ptr
<DeviceCoordinate
[]> const pFallbackCharWidths(new DeviceCoordinate
[nCharCount
]);
1406 mpLayouts
[0]->FillDXArray( pCharWidths
.get() );
1408 for( int n
= 1; n
< mnLevel
; ++n
)
1410 SalLayout
& rLayout
= *mpLayouts
[ n
];
1411 rLayout
.FillDXArray( pFallbackCharWidths
.get() );
1412 double fUnitMul
= mnUnitsPerPixel
;
1413 fUnitMul
/= rLayout
.GetUnitsPerPixel();
1414 for( int i
= 0; i
< nCharCount
; ++i
)
1416 if( pCharWidths
[ i
] == 0 )
1418 DeviceCoordinate w
= pFallbackCharWidths
[i
];
1419 w
= static_cast<DeviceCoordinate
>(w
* fUnitMul
+ 0.5);
1420 pCharWidths
[ i
] = w
;
1425 DeviceCoordinate nWidth
= 0;
1426 for( int i
= 0; i
< nCharCount
; ++i
)
1428 nWidth
+= pCharWidths
[ i
] * nFactor
;
1429 if( nWidth
> nMaxWidth
)
1430 return (i
+ mnMinCharPos
);
1431 nWidth
+= nCharExtra
;
1437 DeviceCoordinate
MultiSalLayout::FillDXArray( DeviceCoordinate
* pCharWidths
) const
1439 DeviceCoordinate nMaxWidth
= 0;
1441 // prepare merging of fallback levels
1442 std::unique_ptr
<DeviceCoordinate
[]> pTempWidths
;
1443 const int nCharCount
= mnEndCharPos
- mnMinCharPos
;
1446 for( int i
= 0; i
< nCharCount
; ++i
)
1448 pTempWidths
.reset(new DeviceCoordinate
[nCharCount
]);
1451 for( int n
= mnLevel
; --n
>= 0; )
1453 // query every fallback level
1454 DeviceCoordinate nTextWidth
= mpLayouts
[n
]->FillDXArray( pTempWidths
.get() );
1457 // merge results from current level
1458 double fUnitMul
= mnUnitsPerPixel
;
1459 fUnitMul
/= mpLayouts
[n
]->GetUnitsPerPixel();
1460 nTextWidth
= static_cast<DeviceCoordinate
>(nTextWidth
* fUnitMul
+ 0.5);
1461 if( nMaxWidth
< nTextWidth
)
1462 nMaxWidth
= nTextWidth
;
1465 // calculate virtual char widths using most probable fallback layout
1466 for( int i
= 0; i
< nCharCount
; ++i
)
1468 // #i17359# restriction:
1469 // one char cannot be resolved from different fallbacks
1470 if( pCharWidths
[i
] != 0 )
1472 DeviceCoordinate nCharWidth
= pTempWidths
[i
];
1475 nCharWidth
= static_cast<DeviceCoordinate
>(nCharWidth
* fUnitMul
+ 0.5);
1476 pCharWidths
[i
] = nCharWidth
;
1483 void MultiSalLayout::GetCaretPositions( int nMaxIndex
, long* pCaretXArray
) const
1485 SalLayout
& rLayout
= *mpLayouts
[ 0 ];
1486 rLayout
.GetCaretPositions( nMaxIndex
, pCaretXArray
);
1490 std::unique_ptr
<long[]> const pTempPos(new long[nMaxIndex
]);
1491 for( int n
= 1; n
< mnLevel
; ++n
)
1493 mpLayouts
[ n
]->GetCaretPositions( nMaxIndex
, pTempPos
.get() );
1494 double fUnitMul
= mnUnitsPerPixel
;
1495 fUnitMul
/= mpLayouts
[n
]->GetUnitsPerPixel();
1496 for( int i
= 0; i
< nMaxIndex
; ++i
)
1497 if( pTempPos
[i
] >= 0 )
1499 long w
= pTempPos
[i
];
1500 w
= static_cast<long>(w
*fUnitMul
+ 0.5);
1501 pCaretXArray
[i
] = w
;
1507 bool MultiSalLayout::GetNextGlyph(const GlyphItem
** pGlyph
,
1508 Point
& rPos
, int& nStart
,
1509 const PhysicalFontFace
** pFallbackFont
,
1510 int* const pFallbackLevel
) const
1512 // NOTE: nStart is tagged with current font index
1513 int nLevel
= static_cast<unsigned>(nStart
) >> GF_FONTSHIFT
;
1514 nStart
&= ~GF_FONTMASK
;
1515 for(; nLevel
< mnLevel
; ++nLevel
, nStart
=0 )
1517 GenericSalLayout
& rLayout
= *mpLayouts
[ nLevel
];
1519 const PhysicalFontFace
* pFontFace
= rLayout
.GetFont().GetFontFace();
1520 if (rLayout
.GetNextGlyph(pGlyph
, rPos
, nStart
))
1522 int nFontTag
= nLevel
<< GF_FONTSHIFT
;
1525 *pFallbackFont
= pFontFace
;
1527 *pFallbackLevel
= nLevel
;
1529 rPos
+= maDrawOffset
;
1534 // #111016# reset to base level font when done
1535 mpLayouts
[0]->InitFont();
1539 bool MultiSalLayout::GetOutline(basegfx::B2DPolyPolygonVector
& rPPV
) const
1543 for( int i
= mnLevel
; --i
>= 0; )
1545 SalLayout
& rLayout
= *mpLayouts
[ i
];
1546 rLayout
.DrawBase() = maDrawBase
;
1547 rLayout
.DrawOffset() += maDrawOffset
;
1549 bRet
|= rLayout
.GetOutline(rPPV
);
1550 rLayout
.DrawOffset() -= maDrawOffset
;
1556 bool MultiSalLayout::IsKashidaPosValid(int nCharPos
) const
1558 // Check the base layout
1559 bool bValid
= mpLayouts
[0]->IsKashidaPosValid(nCharPos
);
1561 // If base layout returned false, it might be because the character was not
1562 // supported there, so we check fallback layouts.
1565 for (int i
= 1; i
< mnLevel
; ++i
)
1567 // - 1 because there is no fallback run for the base layout, IIUC.
1568 if (maFallbackRuns
[i
- 1].PosIsInAnyRun(nCharPos
))
1570 bValid
= mpLayouts
[i
]->IsKashidaPosValid(nCharPos
);
1579 const SalLayoutGlyphs
* SalLayout::GetGlyphs() const
1581 // No access to the glyphs by default.
1585 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */