Branch libreoffice-5-0-4
[LibreOffice.git] / tools / source / generic / bigint.cxx
blobff8ea889a4e343854d4f15ba34021e30718c0c8d
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <limits>
21 #include <math.h>
23 #include <rtl/ustrbuf.hxx>
24 #include <osl/diagnose.h>
25 #include <tools/bigint.hxx>
28 #include <string.h>
29 #include <ctype.h>
31 static const long MY_MAXLONG = 0x3fffffff;
32 static const long MY_MINLONG = -MY_MAXLONG;
33 static const long MY_MAXSHORT = 0x00007fff;
34 static const long MY_MINSHORT = -MY_MAXSHORT;
37 * The algorithms for Addition, Subtraction, Multiplication and Division
38 * of large numbers originate from SEMINUMERICAL ALGORITHMS by
39 * DONALD E. KNUTH in the series The Art of Computer Programming:
40 * chapter 4.3.1. The Classical Algorithms.
43 // TODO: Needs conversion to sal_uInt16/INT16/sal_uInt32/sal_Int32
44 void BigInt::MakeBigInt( const BigInt& rVal )
46 if ( rVal.bIsBig )
48 memcpy( (void*)this, (const void*)&rVal, sizeof( BigInt ) );
49 while ( nLen > 1 && nNum[nLen-1] == 0 )
50 nLen--;
52 else
54 long nTmp = rVal.nVal;
56 nVal = rVal.nVal;
57 bIsBig = true;
58 if ( nTmp < 0 )
60 bIsNeg = true;
61 nTmp = -nTmp;
63 else
64 bIsNeg = false;
66 nNum[0] = (sal_uInt16)(nTmp & 0xffffL);
67 nNum[1] = (sal_uInt16)(nTmp >> 16);
68 if ( nTmp & 0xffff0000L )
69 nLen = 2;
70 else
71 nLen = 1;
75 void BigInt::Normalize()
77 if ( bIsBig )
79 while ( nLen > 1 && nNum[nLen-1] == 0 )
80 nLen--;
82 if ( nLen < 3 )
84 if ( nLen < 2 )
85 nVal = nNum[0];
86 else if ( nNum[1] & 0x8000 )
87 return;
88 else
89 nVal = ((long)nNum[1] << 16) + nNum[0];
91 bIsBig = false;
93 if ( bIsNeg )
94 nVal = -nVal;
96 // else nVal is undefined !!! W.P.
98 // why? nVal is undefined ??? W.P.
99 else if ( nVal & 0xFFFF0000L )
100 nLen = 2;
101 else
102 nLen = 1;
105 void BigInt::Mult( const BigInt &rVal, sal_uInt16 nMul )
107 sal_uInt16 nK = 0;
108 for ( int i = 0; i < rVal.nLen; i++ )
110 sal_uInt32 nTmp = (sal_uInt32)rVal.nNum[i] * (sal_uInt32)nMul + nK;
111 nK = (sal_uInt16)(nTmp >> 16);
112 nNum[i] = (sal_uInt16)nTmp;
115 if ( nK )
117 nNum[rVal.nLen] = nK;
118 nLen = rVal.nLen + 1;
120 else
121 nLen = rVal.nLen;
123 bIsBig = true;
124 bIsNeg = rVal.bIsNeg;
127 void BigInt::Div( sal_uInt16 nDiv, sal_uInt16& rRem )
129 sal_uInt32 nK = 0;
130 for ( int i = nLen - 1; i >= 0; i-- )
132 sal_uInt32 nTmp = (sal_uInt32)nNum[i] + (nK << 16);
133 nNum[i] = (sal_uInt16)(nTmp / nDiv);
134 nK = nTmp % nDiv;
136 rRem = (sal_uInt16)nK;
138 if ( nNum[nLen-1] == 0 )
139 nLen -= 1;
142 bool BigInt::IsLess( const BigInt& rVal ) const
144 if ( rVal.nLen < nLen)
145 return true;
146 if ( rVal.nLen > nLen )
147 return false;
149 int i;
150 for ( i = nLen - 1; i > 0 && nNum[i] == rVal.nNum[i]; i-- )
153 return rVal.nNum[i] < nNum[i];
156 void BigInt::AddLong( BigInt& rB, BigInt& rErg )
158 if ( bIsNeg == rB.bIsNeg )
160 int i;
161 char len;
163 // if length of the two values differ, fill remaining positions
164 // of the smaller value with zeros.
165 if (nLen >= rB.nLen)
167 len = nLen;
168 for (i = rB.nLen; i < len; i++)
169 rB.nNum[i] = 0;
171 else
173 len = rB.nLen;
174 for (i = nLen; i < len; i++)
175 nNum[i] = 0;
178 // Add numerals, starting from the back
179 long k;
180 long nZ = 0;
181 for (i = 0, k = 0; i < len; i++) {
182 nZ = (long)nNum[i] + (long)rB.nNum[i] + k;
183 if (nZ & 0xff0000L)
184 k = 1;
185 else
186 k = 0;
187 rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL);
189 // If an overflow occurred, add to solution
190 if (nZ & 0xff0000L) // or if(k)
192 rErg.nNum[i] = 1;
193 len++;
195 // Set length and sign
196 rErg.nLen = len;
197 rErg.bIsNeg = bIsNeg && rB.bIsNeg;
198 rErg.bIsBig = true;
200 // If one of the values is negative, perform subtraction instead
201 else if (bIsNeg)
203 bIsNeg = false;
204 rB.SubLong(*this, rErg);
205 bIsNeg = true;
207 else
209 rB.bIsNeg = false;
210 SubLong(rB, rErg);
211 rB.bIsNeg = true;
215 void BigInt::SubLong( BigInt& rB, BigInt& rErg )
217 if ( bIsNeg == rB.bIsNeg )
219 int i;
220 char len;
221 long nZ, k;
223 // if length of the two values differ, fill remaining positions
224 // of the smaller value with zeros.
225 if (nLen >= rB.nLen)
227 len = nLen;
228 for (i = rB.nLen; i < len; i++)
229 rB.nNum[i] = 0;
231 else
233 len = rB.nLen;
234 for (i = nLen; i < len; i++)
235 nNum[i] = 0;
238 if ( IsLess(rB) )
240 for (i = 0, k = 0; i < len; i++)
242 nZ = (long)nNum[i] - (long)rB.nNum[i] + k;
243 if (nZ < 0)
244 k = -1;
245 else
246 k = 0;
247 rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL);
249 rErg.bIsNeg = bIsNeg;
251 else
253 for (i = 0, k = 0; i < len; i++)
255 nZ = (long)rB.nNum[i] - (long)nNum[i] + k;
256 if (nZ < 0)
257 k = -1;
258 else
259 k = 0;
260 rErg.nNum[i] = (sal_uInt16)(nZ & 0xffffL);
262 // if a < b, revert sign
263 rErg.bIsNeg = !bIsNeg;
265 rErg.nLen = len;
266 rErg.bIsBig = true;
268 // If one of the values is negative, perform addition instead
269 else if (bIsNeg)
271 bIsNeg = false;
272 AddLong(rB, rErg);
273 bIsNeg = true;
274 rErg.bIsNeg = true;
276 else
278 rB.bIsNeg = false;
279 AddLong(rB, rErg);
280 rB.bIsNeg = true;
281 rErg.bIsNeg = false;
285 void BigInt::MultLong( const BigInt& rB, BigInt& rErg ) const
287 int i, j;
288 sal_uInt32 nZ, k;
290 rErg.bIsNeg = bIsNeg != rB.bIsNeg;
291 rErg.bIsBig = true;
292 rErg.nLen = nLen + rB.nLen;
294 for (i = 0; i < rErg.nLen; i++)
295 rErg.nNum[i] = 0;
297 for (j = 0; j < rB.nLen; j++)
299 for (i = 0, k = 0; i < nLen; i++)
301 nZ = (sal_uInt32)nNum[i] * (sal_uInt32)rB.nNum[j] +
302 (sal_uInt32)rErg.nNum[i + j] + k;
303 rErg.nNum[i + j] = (sal_uInt16)(nZ & 0xffffUL);
304 k = nZ >> 16;
306 rErg.nNum[i + j] = (sal_uInt16)k;
310 void BigInt::DivLong( const BigInt& rB, BigInt& rErg ) const
312 int i, j;
313 sal_uInt16 nK, nQ, nMult;
314 short nLenB = rB.nLen;
315 short nLenB1 = rB.nLen - 1;
316 BigInt aTmpA, aTmpB;
318 nMult = (sal_uInt16)(0x10000L / ((long)rB.nNum[nLenB1] + 1));
320 aTmpA.Mult( *this, nMult );
321 if ( aTmpA.nLen == nLen )
323 aTmpA.nNum[aTmpA.nLen] = 0;
324 aTmpA.nLen++;
327 aTmpB.Mult( rB, nMult );
329 for (j = aTmpA.nLen - 1; j >= nLenB; j--)
330 { // guess divisor
331 long nTmp = ( (long)aTmpA.nNum[j] << 16 ) + aTmpA.nNum[j - 1];
332 if (aTmpA.nNum[j] == aTmpB.nNum[nLenB1])
333 nQ = 0xFFFF;
334 else
335 nQ = (sal_uInt16)(((sal_uInt32)nTmp) / aTmpB.nNum[nLenB1]);
337 if ( ((sal_uInt32)aTmpB.nNum[nLenB1 - 1] * nQ) >
338 ((((sal_uInt32)nTmp) - aTmpB.nNum[nLenB1] * nQ) << 16) + aTmpA.nNum[j - 2])
339 nQ--;
340 // Start division
341 nK = 0;
342 nTmp = 0;
343 for (i = 0; i < nLenB; i++)
345 nTmp = (long)aTmpA.nNum[j - nLenB + i]
346 - ((long)aTmpB.nNum[i] * nQ)
347 - nK;
348 aTmpA.nNum[j - nLenB + i] = (sal_uInt16)nTmp;
349 nK = (sal_uInt16) (nTmp >> 16);
350 if ( nK )
351 nK = (sal_uInt16)(0x10000UL - nK);
353 unsigned short& rNum( aTmpA.nNum[j - nLenB + i] );
354 rNum = rNum - nK; // MSVC yields a warning on -= here, so don't use it
355 if (aTmpA.nNum[j - nLenB + i] == 0)
356 rErg.nNum[j - nLenB] = nQ;
357 else
359 rErg.nNum[j - nLenB] = nQ - 1;
360 nK = 0;
361 for (i = 0; i < nLenB; i++)
363 nTmp = aTmpA.nNum[j - nLenB + i] + aTmpB.nNum[i] + nK;
364 aTmpA.nNum[j - nLenB + i] = (sal_uInt16)(nTmp & 0xFFFFL);
365 if (nTmp & 0xFFFF0000L)
366 nK = 1;
367 else
368 nK = 0;
373 rErg.bIsNeg = bIsNeg != rB.bIsNeg;
374 rErg.bIsBig = true;
375 rErg.nLen = nLen - rB.nLen + 1;
378 void BigInt::ModLong( const BigInt& rB, BigInt& rErg ) const
380 short i, j;
381 sal_uInt16 nK, nQ, nMult;
382 short nLenB = rB.nLen;
383 short nLenB1 = rB.nLen - 1;
384 BigInt aTmpA, aTmpB;
386 nMult = (sal_uInt16)(0x10000L / ((long)rB.nNum[nLenB1] + 1));
388 aTmpA.Mult( *this, nMult);
389 if ( aTmpA.nLen == nLen )
391 aTmpA.nNum[aTmpA.nLen] = 0;
392 aTmpA.nLen++;
395 aTmpB.Mult( rB, nMult);
397 for (j = aTmpA.nLen - 1; j >= nLenB; j--)
398 { // Guess divisor
399 long nTmp = ( (long)aTmpA.nNum[j] << 16 ) + aTmpA.nNum[j - 1];
400 if (aTmpA.nNum[j] == aTmpB.nNum[nLenB1])
401 nQ = 0xFFFF;
402 else
403 nQ = (sal_uInt16)(((sal_uInt32)nTmp) / aTmpB.nNum[nLenB1]);
405 if ( ((sal_uInt32)aTmpB.nNum[nLenB1 - 1] * nQ) >
406 ((((sal_uInt32)nTmp) - aTmpB.nNum[nLenB1] * nQ) << 16) + aTmpA.nNum[j - 2])
407 nQ--;
408 // Start division
409 nK = 0;
410 nTmp = 0;
411 for (i = 0; i < nLenB; i++)
413 nTmp = (long)aTmpA.nNum[j - nLenB + i]
414 - ((long)aTmpB.nNum[i] * nQ)
415 - nK;
416 aTmpA.nNum[j - nLenB + i] = (sal_uInt16)nTmp;
417 nK = (sal_uInt16) (nTmp >> 16);
418 if ( nK )
419 nK = (sal_uInt16)(0x10000UL - nK);
421 unsigned short& rNum( aTmpA.nNum[j - nLenB + i] );
422 rNum = rNum - nK;
423 if (aTmpA.nNum[j - nLenB + i] == 0)
424 rErg.nNum[j - nLenB] = nQ;
425 else
427 rErg.nNum[j - nLenB] = nQ - 1;
428 nK = 0;
429 for (i = 0; i < nLenB; i++) {
430 nTmp = aTmpA.nNum[j - nLenB + i] + aTmpB.nNum[i] + nK;
431 aTmpA.nNum[j - nLenB + i] = (sal_uInt16)(nTmp & 0xFFFFL);
432 if (nTmp & 0xFFFF0000L)
433 nK = 1;
434 else
435 nK = 0;
440 rErg = aTmpA;
441 rErg.Div( nMult, nQ );
444 bool BigInt::ABS_IsLess( const BigInt& rB ) const
446 if (bIsBig || rB.bIsBig)
448 BigInt nA, nB;
449 nA.MakeBigInt( *this );
450 nB.MakeBigInt( rB );
451 if (nA.nLen == nB.nLen)
453 int i;
454 for (i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i--)
457 return nA.nNum[i] < nB.nNum[i];
459 else
460 return nA.nLen < nB.nLen;
462 if ( nVal < 0 )
463 if ( rB.nVal < 0 )
464 return nVal > rB.nVal;
465 else
466 return nVal > -rB.nVal;
467 else
468 if ( rB.nVal < 0 )
469 return nVal < -rB.nVal;
470 else
471 return nVal < rB.nVal;
474 BigInt::BigInt( const BigInt& rBigInt )
475 : nLen(0)
476 , bIsNeg(false)
478 if ( rBigInt.bIsBig )
479 memcpy( (void*)this, (const void*)&rBigInt, sizeof( BigInt ) );
480 else
482 bIsSet = rBigInt.bIsSet;
483 bIsBig = false;
484 nVal = rBigInt.nVal;
488 BigInt::BigInt( const OUString& rString )
489 : nLen(0)
491 bIsSet = true;
492 bIsNeg = false;
493 bIsBig = false;
494 nVal = 0;
496 bool bNeg = false;
497 const sal_Unicode* p = rString.getStr();
498 if ( *p == '-' )
500 bNeg = true;
501 p++;
503 while( *p >= '0' && *p <= '9' )
505 *this *= 10;
506 *this += *p - '0';
507 p++;
509 if ( bIsBig )
510 bIsNeg = bNeg;
511 else if( bNeg )
512 nVal = -nVal;
515 BigInt::BigInt( double nValue )
516 : nVal(0)
518 bIsSet = true;
520 if ( nValue < 0 )
522 nValue *= -1;
523 bIsNeg = true;
525 else
527 bIsNeg = false;
530 if ( nValue < 1 )
532 bIsBig = false;
533 nVal = 0;
534 nLen = 0;
536 else
538 bIsBig = true;
540 int i=0;
542 while ( ( nValue > 65536.0 ) && ( i < MAX_DIGITS ) )
544 nNum[i] = (sal_uInt16) fmod( nValue, 65536.0 );
545 nValue -= nNum[i];
546 nValue /= 65536.0;
547 i++;
549 if ( i < MAX_DIGITS )
550 nNum[i++] = (sal_uInt16) nValue;
552 nLen = i;
554 if ( i < 3 )
555 Normalize();
559 BigInt::BigInt( sal_uInt32 nValue )
560 : nVal(0)
562 bIsSet = true;
563 if ( nValue & 0x80000000UL )
565 bIsBig = true;
566 bIsNeg = false;
567 nNum[0] = (sal_uInt16)(nValue & 0xffffUL);
568 nNum[1] = (sal_uInt16)(nValue >> 16);
569 nLen = 2;
571 else
573 bIsBig = false;
574 bIsNeg = false;
575 nVal = nValue;
576 nLen = 0;
580 #if SAL_TYPES_SIZEOFLONG < SAL_TYPES_SIZEOFLONGLONG
581 BigInt::BigInt( long long nValue )
582 : nVal(0)
584 bIsSet = true;
585 bIsNeg = nValue < 0;
586 nLen = 0;
588 if ((nValue >= std::numeric_limits<long>::min()) && (nValue <= std::numeric_limits<long>::max()))
590 bIsBig = false;
591 nVal = static_cast<long>(nValue);
593 else
595 bIsBig = true;
596 unsigned long long nUValue = static_cast<unsigned long long>(bIsNeg ? -nValue : nValue);
597 for (int i = 0; (i != sizeof(unsigned long long) / 2) && (nUValue != 0); ++i)
599 nNum[i] = static_cast<sal_uInt16>(nUValue & 0xffffUL);
600 nUValue = nUValue >> 16;
601 ++nLen;
605 #endif
607 BigInt::operator sal_uIntPtr() const
609 if ( !bIsBig )
610 return (sal_uInt32)nVal;
611 else if ( nLen == 2 )
613 sal_uInt32 nRet;
614 nRet = ((sal_uInt32)nNum[1]) << 16;
615 nRet += nNum[0];
616 return nRet;
618 return 0;
621 BigInt::operator double() const
623 if ( !bIsBig )
624 return (double) nVal;
625 else
627 int i = nLen-1;
628 double nRet = (double) ((sal_uInt32)nNum[i]);
630 while ( i )
632 nRet *= 65536.0;
633 i--;
634 nRet += (double) ((sal_uInt32)nNum[i]);
637 if ( bIsNeg )
638 nRet *= -1;
640 return nRet;
644 BigInt& BigInt::operator=( const BigInt& rBigInt )
646 if (this == &rBigInt)
647 return *this;
649 if ( rBigInt.bIsBig )
650 memcpy( (void*)this, (const void*)&rBigInt, sizeof( BigInt ) );
651 else
653 bIsSet = rBigInt.bIsSet;
654 bIsBig = false;
655 nVal = rBigInt.nVal;
657 return *this;
660 BigInt& BigInt::operator+=( const BigInt& rVal )
662 if ( !bIsBig && !rVal.bIsBig )
664 if( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG
665 && nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG )
666 { // No overflows may occur here
667 nVal += rVal.nVal;
668 return *this;
671 if( (nVal < 0) != (rVal.nVal < 0) )
672 { // No overflows may occur here
673 nVal += rVal.nVal;
674 return *this;
678 BigInt aTmp1, aTmp2;
679 aTmp1.MakeBigInt( *this );
680 aTmp2.MakeBigInt( rVal );
681 aTmp1.AddLong( aTmp2, *this );
682 Normalize();
683 return *this;
686 BigInt& BigInt::operator-=( const BigInt& rVal )
688 if ( !bIsBig && !rVal.bIsBig )
690 if ( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG &&
691 nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG )
692 { // No overflows may occur here
693 nVal -= rVal.nVal;
694 return *this;
697 if ( (nVal < 0) == (rVal.nVal < 0) )
698 { // No overflows may occur here
699 nVal -= rVal.nVal;
700 return *this;
704 BigInt aTmp1, aTmp2;
705 aTmp1.MakeBigInt( *this );
706 aTmp2.MakeBigInt( rVal );
707 aTmp1.SubLong( aTmp2, *this );
708 Normalize();
709 return *this;
712 BigInt& BigInt::operator*=( const BigInt& rVal )
714 if ( !bIsBig && !rVal.bIsBig
715 && nVal <= MY_MAXSHORT && rVal.nVal <= MY_MAXSHORT
716 && nVal >= MY_MINSHORT && rVal.nVal >= MY_MINSHORT )
717 // TODO: not optimal !!! W.P.
718 { // No overflows may occur here
719 nVal *= rVal.nVal;
721 else
723 BigInt aTmp1, aTmp2;
724 aTmp1.MakeBigInt( rVal );
725 aTmp2.MakeBigInt( *this );
726 aTmp1.MultLong(aTmp2, *this);
727 Normalize();
729 return *this;
732 BigInt& BigInt::operator/=( const BigInt& rVal )
734 if ( !rVal.bIsBig )
736 if ( rVal.nVal == 0 )
738 OSL_FAIL( "BigInt::operator/ --> divide by zero" );
739 return *this;
742 if ( !bIsBig )
744 // No overflows may occur here
745 nVal /= rVal.nVal;
746 return *this;
749 if ( rVal.nVal == 1 )
750 return *this;
752 if ( rVal.nVal == -1 )
754 bIsNeg = !bIsNeg;
755 return *this;
758 if ( rVal.nVal <= (long)0xFFFF && rVal.nVal >= -(long)0xFFFF )
760 // Divide BigInt with an sal_uInt16
761 sal_uInt16 nTmp;
762 if ( rVal.nVal < 0 )
764 nTmp = (sal_uInt16) -rVal.nVal;
765 bIsNeg = !bIsNeg;
767 else
768 nTmp = (sal_uInt16) rVal.nVal;
770 Div( nTmp, nTmp );
771 Normalize();
772 return *this;
776 if ( ABS_IsLess( rVal ) )
778 *this = BigInt( (long)0 );
779 return *this;
782 // Divide BigInt with BigInt
783 BigInt aTmp1, aTmp2;
784 aTmp1.MakeBigInt( *this );
785 aTmp2.MakeBigInt( rVal );
786 aTmp1.DivLong(aTmp2, *this);
787 Normalize();
788 return *this;
791 BigInt& BigInt::operator%=( const BigInt& rVal )
793 if ( !rVal.bIsBig )
795 if ( rVal.nVal == 0 )
797 OSL_FAIL( "BigInt::operator/ --> divide by zero" );
798 return *this;
801 if ( !bIsBig )
803 // No overflows may occur here
804 nVal %= rVal.nVal;
805 return *this;
808 if ( rVal.nVal <= (long)0xFFFF && rVal.nVal >= -(long)0xFFFF )
810 // Divide Bigint by short
811 sal_uInt16 nTmp;
812 if ( rVal.nVal < 0 )
814 nTmp = (sal_uInt16) -rVal.nVal;
815 bIsNeg = !bIsNeg;
817 else
818 nTmp = (sal_uInt16) rVal.nVal;
820 Div( nTmp, nTmp );
821 *this = BigInt( (long)nTmp );
822 return *this;
826 if ( ABS_IsLess( rVal ) )
827 return *this;
829 // Divide BigInt with BigInt
830 BigInt aTmp1, aTmp2;
831 aTmp1.MakeBigInt( *this );
832 aTmp2.MakeBigInt( rVal );
833 aTmp1.ModLong(aTmp2, *this);
834 Normalize();
835 return *this;
838 bool operator==( const BigInt& rVal1, const BigInt& rVal2 )
840 if ( rVal1.bIsBig || rVal2.bIsBig )
842 BigInt nA, nB;
843 nA.MakeBigInt( rVal1 );
844 nB.MakeBigInt( rVal2 );
845 if ( nA.bIsNeg == nB.bIsNeg )
847 if ( nA.nLen == nB.nLen )
849 int i;
850 for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- )
854 return nA.nNum[i] == nB.nNum[i];
856 return false;
858 return false;
860 return rVal1.nVal == rVal2.nVal;
863 bool operator<( const BigInt& rVal1, const BigInt& rVal2 )
865 if ( rVal1.bIsBig || rVal2.bIsBig )
867 BigInt nA, nB;
868 nA.MakeBigInt( rVal1 );
869 nB.MakeBigInt( rVal2 );
870 if ( nA.bIsNeg == nB.bIsNeg )
872 if ( nA.nLen == nB.nLen )
874 int i;
875 for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- )
879 if ( nA.bIsNeg )
880 return nA.nNum[i] > nB.nNum[i];
881 else
882 return nA.nNum[i] < nB.nNum[i];
884 if ( nA.bIsNeg )
885 return nA.nLen > nB.nLen;
886 else
887 return nA.nLen < nB.nLen;
889 return !nB.bIsNeg;
891 return rVal1.nVal < rVal2.nVal;
894 bool operator >(const BigInt& rVal1, const BigInt& rVal2 )
896 if ( rVal1.bIsBig || rVal2.bIsBig )
898 BigInt nA, nB;
899 nA.MakeBigInt( rVal1 );
900 nB.MakeBigInt( rVal2 );
901 if ( nA.bIsNeg == nB.bIsNeg )
903 if ( nA.nLen == nB.nLen )
905 int i;
906 for ( i = nA.nLen - 1; i > 0 && nA.nNum[i] == nB.nNum[i]; i-- )
910 if ( nA.bIsNeg )
911 return nA.nNum[i] < nB.nNum[i];
912 else
913 return nA.nNum[i] > nB.nNum[i];
915 if ( nA.bIsNeg )
916 return nA.nLen < nB.nLen;
917 else
918 return nA.nLen > nB.nLen;
920 return !nA.bIsNeg;
923 return rVal1.nVal > rVal2.nVal;
926 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */