Bump version to 6.4-15
[LibreOffice.git] / tools / source / generic / fract.cxx
blob8ec17b94a477343a5fb76d3f6b08674dc60aca74
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <tools/fract.hxx>
21 #include <tools/debug.hxx>
22 #include <tools/stream.hxx>
23 #include <o3tl/safeint.hxx>
24 #include <sal/log.hxx>
25 #include <osl/diagnose.h>
27 #include <algorithm>
28 #include <cmath>
30 #include <boost/version.hpp>
31 #if BOOST_VERSION >= 106700
32 #include <boost/integer/common_factor_rt.hpp>
33 #else
34 #include <boost/math/common_factor_rt.hpp>
35 #endif
36 #include <boost/rational.hpp>
38 static boost::rational<sal_Int32> rational_FromDouble(double dVal);
40 static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits);
42 static boost::rational<sal_Int32> toRational(sal_Int32 n, sal_Int32 d)
44 return boost::rational<sal_Int32>(n, d);
47 // Initialized by setting nNum as nominator and nDen as denominator
48 // Negative values in the denominator are invalid and cause the
49 // inversion of both nominator and denominator signs
50 // in order to return the correct value.
51 Fraction::Fraction( sal_Int64 nNum, sal_Int64 nDen ) : mnNumerator(nNum), mnDenominator(nDen)
53 assert( nNum >= std::numeric_limits<sal_Int32>::min() );
54 assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
55 assert( nDen >= std::numeric_limits<sal_Int32>::min() );
56 assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
57 if ( nDen == 0 )
59 mbValid = false;
60 SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
61 return;
65 /**
66 * only here to prevent passing of NaN
68 Fraction::Fraction( double nNum, double nDen ) : mnNumerator(sal_Int64(nNum)), mnDenominator(sal_Int64(nDen))
70 assert( !std::isnan(nNum) );
71 assert( !std::isnan(nDen) );
72 assert( nNum >= std::numeric_limits<sal_Int32>::min() );
73 assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
74 assert( nDen >= std::numeric_limits<sal_Int32>::min() );
75 assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
76 if ( nDen == 0 )
78 mbValid = false;
79 SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
80 return;
84 Fraction::Fraction( double dVal )
86 try
88 boost::rational<sal_Int32> v = rational_FromDouble( dVal );
89 mnNumerator = v.numerator();
90 mnDenominator = v.denominator();
92 catch (const boost::bad_rational&)
94 mbValid = false;
95 SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" );
99 Fraction::operator double() const
101 if (!mbValid)
103 SAL_WARN( "tools.fraction", "'double()' on invalid fraction" );
104 return 0.0;
107 // https://github.com/boostorg/boost/issues/335 when these are std::numeric_limits<sal_Int32>::min
108 if (mnNumerator == mnDenominator)
109 return 1.0;
111 return boost::rational_cast<double>(toRational(mnNumerator, mnDenominator));
114 // This methods first validates both values.
115 // If one of the arguments is invalid, the whole operation is invalid.
116 // After computation detect if result overflows a sal_Int32 value
117 // which cause the operation to be marked as invalid
118 Fraction& Fraction::operator += ( const Fraction& rVal )
120 if ( !rVal.mbValid )
121 mbValid = false;
123 if ( !mbValid )
125 SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" );
126 return *this;
129 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
130 a += toRational(rVal.mnNumerator, rVal.mnDenominator);
131 mnNumerator = a.numerator();
132 mnDenominator = a.denominator();
134 return *this;
137 Fraction& Fraction::operator -= ( const Fraction& rVal )
139 if ( !rVal.mbValid )
140 mbValid = false;
142 if ( !mbValid )
144 SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" );
145 return *this;
148 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
149 a -= toRational(rVal.mnNumerator, rVal.mnDenominator);
150 mnNumerator = a.numerator();
151 mnDenominator = a.denominator();
153 return *this;
156 namespace
158 template<typename T> bool checked_multiply_by(boost::rational<T>& i, const boost::rational<T>& r)
160 // Protect against self-modification
161 T num = r.numerator();
162 T den = r.denominator();
164 // Avoid overflow and preserve normalization
165 #if BOOST_VERSION >= 106700
166 T gcd1 = boost::integer::gcd(i.numerator(), den);
167 T gcd2 = boost::integer::gcd(num, i.denominator());
168 #else
169 T gcd1 = boost::math::gcd(i.numerator(), den);
170 T gcd2 = boost::math::gcd(num, i.denominator());
171 #endif
173 bool fail = false;
174 fail |= o3tl::checked_multiply(i.numerator() / gcd1, num / gcd2, num);
175 fail |= o3tl::checked_multiply(i.denominator() / gcd2, den / gcd1, den);
177 if (!fail)
178 i.assign(num, den);
180 return fail;
184 Fraction& Fraction::operator *= ( const Fraction& rVal )
186 if ( !rVal.mbValid )
187 mbValid = false;
189 if ( !mbValid )
191 SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" );
192 return *this;
195 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
196 boost::rational<sal_Int32> b = toRational(rVal.mnNumerator, rVal.mnDenominator);
197 bool bFail = checked_multiply_by(a, b);
198 mnNumerator = a.numerator();
199 mnDenominator = a.denominator();
201 if (bFail)
203 mbValid = false;
206 return *this;
209 Fraction& Fraction::operator /= ( const Fraction& rVal )
211 if ( !rVal.mbValid )
212 mbValid = false;
214 if ( !mbValid )
216 SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" );
217 return *this;
220 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
221 a /= toRational(rVal.mnNumerator, rVal.mnDenominator);
222 mnNumerator = a.numerator();
223 mnDenominator = a.denominator();
225 return *this;
228 /** Inaccurate cancellation for a fraction.
230 Clip both nominator and denominator to said number of bits. If
231 either of those already have equal or less number of bits used,
232 this method does nothing.
234 @param nSignificantBits denotes, how many significant binary
235 digits to maintain, in both nominator and denominator.
237 @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
238 largest error occurs with the following pair of values:
240 binary 1000000011111111111111111111111b/1000000000000000000000000000000b
241 = 1082130431/1073741824
242 = approx. 1.007812499
244 A ReduceInaccurate(8) yields 1/1.
246 void Fraction::ReduceInaccurate( unsigned nSignificantBits )
248 if ( !mbValid )
250 SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" );
251 return;
254 if ( !mnNumerator )
255 return;
257 auto a = toRational(mnNumerator, mnDenominator);
258 rational_ReduceInaccurate(a, nSignificantBits);
259 mnNumerator = a.numerator();
260 mnDenominator = a.denominator();
263 sal_Int32 Fraction::GetNumerator() const
265 if ( !mbValid )
267 SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" );
268 return 0;
270 return mnNumerator;
273 sal_Int32 Fraction::GetDenominator() const
275 if ( !mbValid )
277 SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" );
278 return -1;
280 return mnDenominator;
283 Fraction::operator sal_Int32() const
285 if ( !mbValid )
287 SAL_WARN( "tools.fraction", "'operator sal_Int32()' on invalid fraction" );
288 return 0;
290 return boost::rational_cast<sal_Int32>(toRational(mnNumerator, mnDenominator));
293 Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 )
295 Fraction aErg( rVal1 );
296 aErg += rVal2;
297 return aErg;
300 Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 )
302 Fraction aErg( rVal1 );
303 aErg -= rVal2;
304 return aErg;
307 Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 )
309 Fraction aErg( rVal1 );
310 aErg *= rVal2;
311 return aErg;
314 Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 )
316 Fraction aErg( rVal1 );
317 aErg /= rVal2;
318 return aErg;
321 bool operator !=( const Fraction& rVal1, const Fraction& rVal2 )
323 return !(rVal1 == rVal2);
326 bool operator <=( const Fraction& rVal1, const Fraction& rVal2 )
328 return !(rVal1 > rVal2);
331 bool operator >=( const Fraction& rVal1, const Fraction& rVal2 )
333 return !(rVal1 < rVal2);
336 bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
338 if ( !rVal1.mbValid || !rVal2.mbValid )
340 SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" );
341 return false;
344 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) == toRational(rVal2.mnNumerator, rVal2.mnDenominator);
347 bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
349 if ( !rVal1.mbValid || !rVal2.mbValid )
351 SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" );
352 return false;
355 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) < toRational(rVal2.mnNumerator, rVal2.mnDenominator);
358 bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
360 if ( !rVal1.mbValid || !rVal2.mbValid )
362 SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" );
363 return false;
366 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) > toRational(rVal2.mnNumerator, rVal2.mnDenominator);
369 SvStream& ReadFraction( SvStream& rIStream, Fraction & rFract )
371 sal_Int32 num(0), den(0);
372 rIStream.ReadInt32( num );
373 rIStream.ReadInt32( den );
374 if ( den <= 0 )
376 SAL_WARN( "tools.fraction", "'ReadFraction()' read an invalid fraction" );
377 rFract.mbValid = false;
379 else
381 rFract.mnNumerator = num;
382 rFract.mnDenominator = den;
383 rFract.mbValid = true;
385 return rIStream;
388 SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
390 if ( !rFract.mbValid )
392 SAL_WARN( "tools.fraction", "'WriteFraction()' write an invalid fraction" );
393 rOStream.WriteInt32( 0 );
394 rOStream.WriteInt32( -1 );
395 } else {
396 rOStream.WriteInt32( rFract.mnNumerator );
397 rOStream.WriteInt32( rFract.mnDenominator );
399 return rOStream;
402 // If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
403 // Otherwise, dVal and denominator are multiplied by 10, until one of them
404 // is larger than (LONG_MAX / 10).
406 // NOTE: here we use 'sal_Int32' due that only values in sal_Int32 range are valid.
407 static boost::rational<sal_Int32> rational_FromDouble(double dVal)
409 if ( dVal > std::numeric_limits<sal_Int32>::max() ||
410 dVal < std::numeric_limits<sal_Int32>::min() ||
411 std::isnan(dVal) )
412 throw boost::bad_rational();
414 const sal_Int32 nMAX = std::numeric_limits<sal_Int32>::max() / 10;
415 sal_Int32 nDen = 1;
416 while ( std::abs( dVal ) < nMAX && nDen < nMAX ) {
417 dVal *= 10;
418 nDen *= 10;
420 return boost::rational<sal_Int32>( sal_Int32(dVal), nDen );
423 // Similar to clz_table that can be googled
424 const char nbits_table[32] =
426 32, 1, 23, 2, 29, 24, 14, 3,
427 30, 27, 25, 18, 20, 15, 10, 4,
428 31, 22, 28, 13, 26, 17, 19, 9,
429 21, 12, 16, 8, 11, 7, 6, 5
432 static int impl_NumberOfBits( sal_uInt32 nNum )
434 // http://en.wikipedia.org/wiki/De_Bruijn_sequence
435 // background paper: Using de Bruijn Sequences to Index a 1 in a
436 // Computer Word (1998) Charles E. Leiserson,
437 // Harald Prokop, Keith H. Randall
438 // (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
439 const sal_uInt32 nDeBruijn = 0x7DCD629;
441 if ( nNum == 0 )
442 return 0;
444 // Get it to form like 0000001111111111b
445 nNum |= ( nNum >> 1 );
446 nNum |= ( nNum >> 2 );
447 nNum |= ( nNum >> 4 );
448 nNum |= ( nNum >> 8 );
449 nNum |= ( nNum >> 16 );
451 sal_uInt32 nNumber;
452 int nBonus;
454 nNumber = nNum;
455 nBonus = 0;
457 // De facto shift left of nDeBruijn using multiplication (nNumber
458 // is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
459 // nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
460 // zero, sets the next bit to one, and thus effectively shift-left
461 // nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
462 // sequence in the msb for each distinct position of the last
463 // leading 0 bit - that's the property of a de Bruijn number.
464 nNumber = nDeBruijn + ( nDeBruijn * nNumber );
466 // 5-bit window indexes the result
467 return ( nbits_table[nNumber >> 27] ) + nBonus;
470 /** Inaccurate cancellation for a fraction.
472 Clip both nominator and denominator to said number of bits. If
473 either of those already have equal or less number of bits used,
474 this method does nothing.
476 @param nSignificantBits denotes, how many significant binary
477 digits to maintain, in both nominator and denominator.
479 @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
480 largest error occurs with the following pair of values:
482 binary 1000000011111111111111111111111b/1000000000000000000000000000000b
483 = 1082130431/1073741824
484 = approx. 1.007812499
486 A ReduceInaccurate(8) yields 1/1.
488 static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits)
490 if ( !rRational )
491 return;
493 // http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
494 const bool bNeg = ( rRational.numerator() < 0 );
495 sal_Int32 nMul = bNeg? -rRational.numerator(): rRational.numerator();
496 sal_Int32 nDiv = rRational.denominator();
498 DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
500 // How much bits can we lose?
501 const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
502 const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
504 const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
506 // Remove the bits
507 nMul >>= nToLose;
508 nDiv >>= nToLose;
510 if ( !nMul || !nDiv ) {
511 // Return without reduction
512 OSL_FAIL( "Oops, we reduced too much..." );
513 return;
516 rRational.assign( bNeg ? -nMul : nMul, nDiv );
519 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */