1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <basegfx/polygon/b2dpolygonclipper.hxx>
21 #include <osl/diagnose.h>
22 #include <basegfx/polygon/b2dpolygontools.hxx>
23 #include <basegfx/numeric/ftools.hxx>
24 #include <basegfx/matrix/b2dhommatrix.hxx>
25 #include <basegfx/polygon/b2dpolypolygoncutter.hxx>
26 #include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
27 #include <basegfx/polygon/b2dpolypolygontools.hxx>
28 #include <basegfx/curve/b2dcubicbezier.hxx>
29 #include <basegfx/tools/rectcliptools.hxx>
30 #include <basegfx/matrix/b2dhommatrixtools.hxx>
36 B2DPolyPolygon
clipPolygonOnParallelAxis(const B2DPolygon
& rCandidate
, bool bParallelToXAxis
, bool bAboveAxis
, double fValueOnOtherAxis
, bool bStroke
)
38 B2DPolyPolygon aRetval
;
40 if(rCandidate
.count())
42 const B2DRange
aCandidateRange(getRange(rCandidate
));
44 if(bParallelToXAxis
&& fTools::moreOrEqual(aCandidateRange
.getMinY(), fValueOnOtherAxis
))
46 // completely above and on the clip line. also true for curves.
50 aRetval
.append(rCandidate
);
53 else if(bParallelToXAxis
&& fTools::lessOrEqual(aCandidateRange
.getMaxY(), fValueOnOtherAxis
))
55 // completely below and on the clip line. also true for curves.
59 aRetval
.append(rCandidate
);
62 else if(!bParallelToXAxis
&& fTools::moreOrEqual(aCandidateRange
.getMinX(), fValueOnOtherAxis
))
64 // completely right of and on the clip line. also true for curves.
68 aRetval
.append(rCandidate
);
71 else if(!bParallelToXAxis
&& fTools::lessOrEqual(aCandidateRange
.getMaxX(), fValueOnOtherAxis
))
73 // completely left of and on the clip line. also true for curves.
77 aRetval
.append(rCandidate
);
82 // add cuts with axis to polygon, including bezier segments
83 // Build edge to cut with. Make it a little big longer than needed for
84 // numerical stability. We want to cut against the edge seen as endless
85 // ray here, but addPointsAtCuts() will limit itself to the
86 // edge's range ]0.0 .. 1.0[.
87 const double fSmallExtension((aCandidateRange
.getWidth() + aCandidateRange
.getHeight()) * (0.5 * 0.1));
88 const B2DPoint
aStart(
89 bParallelToXAxis
? aCandidateRange
.getMinX() - fSmallExtension
: fValueOnOtherAxis
,
90 bParallelToXAxis
? fValueOnOtherAxis
: aCandidateRange
.getMinY() - fSmallExtension
);
92 bParallelToXAxis
? aCandidateRange
.getMaxX() + fSmallExtension
: fValueOnOtherAxis
,
93 bParallelToXAxis
? fValueOnOtherAxis
: aCandidateRange
.getMaxY() + fSmallExtension
);
94 const B2DPolygon
aCandidate(addPointsAtCuts(rCandidate
, aStart
, aEnd
));
95 const sal_uInt32
nPointCount(aCandidate
.count());
96 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1L);
100 for(sal_uInt32
a(0L); a
< nEdgeCount
; a
++)
102 aCandidate
.getBezierSegment(a
, aEdge
);
103 const B2DPoint
aTestPoint(aEdge
.interpolatePoint(0.5));
104 const bool bInside(bParallelToXAxis
?
105 fTools::moreOrEqual(aTestPoint
.getY(), fValueOnOtherAxis
) == bAboveAxis
:
106 fTools::moreOrEqual(aTestPoint
.getX(), fValueOnOtherAxis
) == bAboveAxis
);
110 if(!aRun
.count() || !aRun
.getB2DPoint(aRun
.count() - 1).equal(aEdge
.getStartPoint()))
112 aRun
.append(aEdge
.getStartPoint());
117 aRun
.appendBezierSegment(aEdge
.getControlPointA(), aEdge
.getControlPointB(), aEdge
.getEndPoint());
121 aRun
.append(aEdge
.getEndPoint());
126 if(bStroke
&& aRun
.count())
128 aRetval
.append(aRun
);
138 // try to merge this last and first polygon; they may have been
139 // the former polygon's start/end point
142 const B2DPolygon
aStartPolygon(aRetval
.getB2DPolygon(0));
144 if(aStartPolygon
.count() && aStartPolygon
.getB2DPoint(0).equal(aRun
.getB2DPoint(aRun
.count() - 1)))
146 // append start polygon to aRun, remove from result set
147 aRun
.append(aStartPolygon
); aRun
.removeDoublePoints();
152 aRetval
.append(aRun
);
156 // set closed flag and correct last point (which is added double now).
157 closeWithGeometryChange(aRun
);
158 aRetval
.append(aRun
);
167 B2DPolyPolygon
clipPolyPolygonOnParallelAxis(const B2DPolyPolygon
& rCandidate
, bool bParallelToXAxis
, bool bAboveAxis
, double fValueOnOtherAxis
, bool bStroke
)
169 const sal_uInt32
nPolygonCount(rCandidate
.count());
170 B2DPolyPolygon aRetval
;
172 for(sal_uInt32
a(0L); a
< nPolygonCount
; a
++)
174 const B2DPolyPolygon
aClippedPolyPolygon(clipPolygonOnParallelAxis(rCandidate
.getB2DPolygon(a
), bParallelToXAxis
, bAboveAxis
, fValueOnOtherAxis
, bStroke
));
176 if(aClippedPolyPolygon
.count())
178 aRetval
.append(aClippedPolyPolygon
);
185 B2DPolyPolygon
clipPolygonOnRange(const B2DPolygon
& rCandidate
, const B2DRange
& rRange
, bool bInside
, bool bStroke
)
187 const sal_uInt32
nCount(rCandidate
.count());
188 B2DPolyPolygon aRetval
;
200 // nothing is inside an empty range
205 // everything is outside an empty range
206 return B2DPolyPolygon(rCandidate
);
210 const B2DRange
aCandidateRange(getRange(rCandidate
));
212 if(rRange
.isInside(aCandidateRange
))
214 // candidate is completely inside given range
218 return B2DPolyPolygon(rCandidate
);
222 // nothing is outside, then
229 // cutting off the outer parts of filled polygons at parallell
230 // lines to the axes is only possible for the inner part, not for
231 // the outer part which means cutting a hole into the original polygon.
232 // This is because the inner part is a logical AND-operation of
233 // the four implied half-planes, but the outer part is not.
234 // It is possible for strokes, but with creating unnecessary extra
235 // cuts, so using clipPolygonOnPolyPolygon is better there, too.
236 // This needs to be done with the topology knowlegde and is unfurtunately
237 // more expensive, too.
238 const B2DPolygon
aClip(createPolygonFromRect(rRange
));
240 return clipPolygonOnPolyPolygon(rCandidate
, B2DPolyPolygon(aClip
), bInside
, bStroke
);
243 // clip against the four axes of the range
244 // against X-Axis, lower value
245 aRetval
= clipPolygonOnParallelAxis(rCandidate
, true, bInside
, rRange
.getMinY(), bStroke
);
249 // against Y-Axis, lower value
250 if(1L == aRetval
.count())
252 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), false, bInside
, rRange
.getMinX(), bStroke
);
256 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, false, bInside
, rRange
.getMinX(), bStroke
);
261 // against X-Axis, higher value
262 if(1L == aRetval
.count())
264 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), true, !bInside
, rRange
.getMaxY(), bStroke
);
268 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, true, !bInside
, rRange
.getMaxY(), bStroke
);
273 // against Y-Axis, higher value
274 if(1L == aRetval
.count())
276 aRetval
= clipPolygonOnParallelAxis(aRetval
.getB2DPolygon(0L), false, !bInside
, rRange
.getMaxX(), bStroke
);
280 aRetval
= clipPolyPolygonOnParallelAxis(aRetval
, false, !bInside
, rRange
.getMaxX(), bStroke
);
289 B2DPolyPolygon
clipPolyPolygonOnRange(const B2DPolyPolygon
& rCandidate
, const B2DRange
& rRange
, bool bInside
, bool bStroke
)
291 const sal_uInt32
nPolygonCount(rCandidate
.count());
292 B2DPolyPolygon aRetval
;
304 // nothing is inside an empty range
309 // everything is outside an empty range
316 for(sal_uInt32
a(0L); a
< nPolygonCount
; a
++)
318 const B2DPolyPolygon
aClippedPolyPolygon(clipPolygonOnRange(rCandidate
.getB2DPolygon(a
), rRange
, bInside
, bStroke
));
320 if(aClippedPolyPolygon
.count())
322 aRetval
.append(aClippedPolyPolygon
);
328 // for details, see comment in clipPolygonOnRange for the "cutting off
329 // the outer parts of filled polygons at parallell lines" explanations
330 const B2DPolygon
aClip(createPolygonFromRect(rRange
));
332 return clipPolyPolygonOnPolyPolygon(rCandidate
, B2DPolyPolygon(aClip
), bInside
, bStroke
);
338 B2DPolyPolygon
clipPolyPolygonOnPolyPolygon(const B2DPolyPolygon
& rCandidate
, const B2DPolyPolygon
& rClip
, bool bInside
, bool bStroke
)
340 B2DPolyPolygon aRetval
;
342 if(rCandidate
.count() && rClip
.count())
344 // one or both are no rectangle - go the hard way and clip PolyPolygon
345 // against PolyPolygon...
348 // line clipping, create line snippets by first adding all cut points and
349 // then marching along the edges and detecting if they are inside or outside
351 for(sal_uInt32
a(0); a
< rCandidate
.count(); a
++)
353 // add cuts with clip to polygon, including bezier segments
354 const B2DPolygon
aCandidate(addPointsAtCuts(rCandidate
.getB2DPolygon(a
), rClip
));
355 const sal_uInt32
nPointCount(aCandidate
.count());
356 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1L);
357 B2DCubicBezier aEdge
;
360 for(sal_uInt32
b(0); b
< nEdgeCount
; b
++)
362 aCandidate
.getBezierSegment(b
, aEdge
);
363 const B2DPoint
aTestPoint(aEdge
.interpolatePoint(0.5));
364 const bool bIsInside(tools::isInside(rClip
, aTestPoint
) == bInside
);
370 aRun
.append(aEdge
.getStartPoint());
375 aRun
.appendBezierSegment(aEdge
.getControlPointA(), aEdge
.getControlPointB(), aEdge
.getEndPoint());
379 aRun
.append(aEdge
.getEndPoint());
386 aRetval
.append(aRun
);
394 // try to merge this last and first polygon; they may have been
395 // the former polygon's start/end point
398 const B2DPolygon
aStartPolygon(aRetval
.getB2DPolygon(0));
400 if(aStartPolygon
.count() && aStartPolygon
.getB2DPoint(0).equal(aRun
.getB2DPoint(aRun
.count() - 1)))
402 // append start polygon to aRun, remove from result set
403 aRun
.append(aStartPolygon
); aRun
.removeDoublePoints();
408 aRetval
.append(aRun
);
414 // check for simplification with ranges if !bStroke (handling as stroke is more simple),
415 // but also only when bInside, else the simplification may lead to recursive calls (see
416 // calls to clipPolyPolygonOnPolyPolygon in clipPolyPolygonOnRange and clipPolygonOnRange)
419 // #i125349# detect if both given PolyPolygons are indeed ranges
420 bool bBothRectangle(false);
422 if(basegfx::tools::isRectangle(rCandidate
))
424 if(basegfx::tools::isRectangle(rClip
))
427 bBothRectangle
= true;
431 // rCandidate is rectangle -> clip rClip on rRectangle, use the much
432 // cheaper and numerically more stable clipping against a range
433 // This simplification (exchanging content and clip) is valid
434 // since we do a logical AND operation
435 return clipPolyPolygonOnRange(rClip
, rCandidate
.getB2DRange(), bInside
, bStroke
);
438 else if(basegfx::tools::isRectangle(rClip
))
440 if(basegfx::tools::isRectangle(rCandidate
))
443 bBothRectangle
= true;
447 // rClip is rectangle -> clip rCandidate on rRectangle, use the much
448 // cheaper and numerically more stable clipping against a range
449 return clipPolyPolygonOnRange(rCandidate
, rClip
.getB2DRange(), bInside
, bStroke
);
455 // both are rectangle
456 if(rCandidate
.getB2DRange().equal(rClip
.getB2DRange()))
458 // if both are equal -> no change
463 // not equal -> create new intersection from both ranges,
464 // but much cheaper based on the ranges
465 basegfx::B2DRange
aIntersectionRange(rCandidate
.getB2DRange());
467 aIntersectionRange
.intersect(rClip
.getB2DRange());
469 if(aIntersectionRange
.isEmpty())
471 // no common IntersectionRange -> the clip will be empty
472 return B2DPolyPolygon();
476 // use common aIntersectionRange as result, convert
477 // to expected tools::PolyPolygon form
478 return basegfx::B2DPolyPolygon(
479 basegfx::tools::createPolygonFromRect(aIntersectionRange
));
486 B2DPolyPolygon
aMergePolyPolygonA(rClip
);
488 // First solve all polygon-self and polygon-polygon intersections.
489 // Also get rid of some not-needed polygons (neutral, no area -> when
490 // no intersections, these are tubes).
491 // Now it is possible to correct the orientations in the cut-free
492 // polygons to values corresponding to painting the tools::PolyPolygon with
493 // a XOR-WindingRule.
494 aMergePolyPolygonA
= solveCrossovers(aMergePolyPolygonA
);
495 aMergePolyPolygonA
= stripNeutralPolygons(aMergePolyPolygonA
);
496 aMergePolyPolygonA
= correctOrientations(aMergePolyPolygonA
);
500 // if we want to get the outside of the clip polygon, make
501 // it a 'Hole' in topological sense
502 aMergePolyPolygonA
.flip();
505 B2DPolyPolygon
aMergePolyPolygonB(rCandidate
);
507 // prepare 2nd source polygon in same way
508 aMergePolyPolygonB
= solveCrossovers(aMergePolyPolygonB
);
509 aMergePolyPolygonB
= stripNeutralPolygons(aMergePolyPolygonB
);
510 aMergePolyPolygonB
= correctOrientations(aMergePolyPolygonB
);
512 // to clip against each other, concatenate and solve all
513 // polygon-polygon crossovers. polygon-self do not need to
514 // be solved again, they were solved in the preparation.
515 aRetval
.append(aMergePolyPolygonA
);
516 aRetval
.append(aMergePolyPolygonB
);
517 aRetval
= solveCrossovers(aRetval
);
519 // now remove neutral polygons (closed, but no area). In a last
520 // step throw away all polygons which have a depth of less than 1
521 // which means there was no logical AND at their position. For the
522 // not-inside solution, the clip was flipped to define it as 'Hole',
523 // so the removal rule is different here; remove all with a depth
524 // of less than 0 (aka holes).
525 aRetval
= stripNeutralPolygons(aRetval
);
526 aRetval
= stripDispensablePolygons(aRetval
, bInside
);
533 B2DPolyPolygon
clipPolygonOnPolyPolygon(const B2DPolygon
& rCandidate
, const B2DPolyPolygon
& rClip
, bool bInside
, bool bStroke
)
535 B2DPolyPolygon aRetval
;
537 if(rCandidate
.count() && rClip
.count())
539 aRetval
= clipPolyPolygonOnPolyPolygon(B2DPolyPolygon(rCandidate
), rClip
, bInside
, bStroke
);
546 * let a plane be defined as
550 * and a ray be defined as
554 * substitute and rearranging yields
556 * t = -(a.n+d)/(n.(b-a))
558 * if the denominator is zero, the line is either
559 * contained in the plane or parallel to the plane.
560 * in either case, there is no intersection.
561 * if numerator and denominator are both zero, the
562 * ray is contained in the plane.
565 struct scissor_plane
{
566 double nx
,ny
; // plane normal
567 double d
; // [-] minimum distance from origin
568 sal_uInt32 clipmask
; // clipping mask, e.g. 1000 1000
573 * polygon clipping rules (straight out of Foley and Van Dam)
574 * ===========================================================
575 * current |next |emit
576 * ____________________________________
577 * inside |inside |next
578 * inside |outside |intersect with clip plane
579 * outside |outside |nothing
580 * outside |inside |intersect with clip plane follwed by next
583 sal_uInt32
scissorLineSegment( ::basegfx::B2DPoint
*in_vertex
, // input buffer
584 sal_uInt32 in_count
, // number of verts in input buffer
585 ::basegfx::B2DPoint
*out_vertex
, // output buffer
586 scissor_plane
*pPlane
, // scissoring plane
587 const ::basegfx::B2DRectangle
&rR
) // clipping rectangle
590 sal_uInt32 out_count
=0;
592 // process all the verts
593 for(sal_uInt32 i
=0; i
<in_count
; i
++) {
595 // vertices are relative to the coordinate
596 // system defined by the rectangle.
597 ::basegfx::B2DPoint
*curr
= &in_vertex
[i
];
598 ::basegfx::B2DPoint
*next
= &in_vertex
[(i
+1)%in_count
];
600 // perform clipping judgement & mask against current plane.
601 sal_uInt32 clip
= pPlane
->clipmask
& ((getCohenSutherlandClipFlags(*curr
,rR
)<<4)|getCohenSutherlandClipFlags(*next
,rR
));
603 if(clip
==0) { // both verts are inside
604 out_vertex
[out_count
++] = *next
;
606 else if((clip
&0x0f) && (clip
&0xf0)) { // both verts are outside
608 else if((clip
&0x0f) && (clip
&0xf0)==0) { // curr is inside, next is outside
610 // direction vector from 'current' to 'next', *not* normalized
611 // to bring 't' into the [0<=x<=1] intervall.
612 ::basegfx::B2DPoint
dir((*next
)-(*curr
));
614 double denominator
= ( pPlane
->nx
*dir
.getX() +
615 pPlane
->ny
*dir
.getY() );
616 double numerator
= ( pPlane
->nx
*curr
->getX() +
617 pPlane
->ny
*curr
->getY() +
619 double t
= -numerator
/denominator
;
621 // calculate the actual point of intersection
622 ::basegfx::B2DPoint
intersection( curr
->getX()+t
*dir
.getX(),
623 curr
->getY()+t
*dir
.getY() );
625 out_vertex
[out_count
++] = intersection
;
627 else if((clip
&0x0f)==0 && (clip
&0xf0)) { // curr is outside, next is inside
629 // direction vector from 'current' to 'next', *not* normalized
630 // to bring 't' into the [0<=x<=1] intervall.
631 ::basegfx::B2DPoint
dir((*next
)-(*curr
));
633 double denominator
= ( pPlane
->nx
*dir
.getX() +
634 pPlane
->ny
*dir
.getY() );
635 double numerator
= ( pPlane
->nx
*curr
->getX() +
636 pPlane
->ny
*curr
->getY() +
638 double t
= -numerator
/denominator
;
640 // calculate the actual point of intersection
641 ::basegfx::B2DPoint
intersection( curr
->getX()+t
*dir
.getX(),
642 curr
->getY()+t
*dir
.getY() );
644 out_vertex
[out_count
++] = intersection
;
645 out_vertex
[out_count
++] = *next
;
652 B2DPolygon
clipTriangleListOnRange( const B2DPolygon
& rCandidate
,
653 const B2DRange
& rRange
)
657 if( !(rCandidate
.count()%3) )
659 const int scissor_plane_count
= 4;
661 scissor_plane sp
[scissor_plane_count
];
665 sp
[0].d
= -(rRange
.getMinX());
666 sp
[0].clipmask
= (RectClipFlags::LEFT
<< 4) | RectClipFlags::LEFT
; // 0001 0001
669 sp
[1].d
= +(rRange
.getMaxX());
670 sp
[1].clipmask
= (RectClipFlags::RIGHT
<< 4) | RectClipFlags::RIGHT
; // 0010 0010
673 sp
[2].d
= -(rRange
.getMinY());
674 sp
[2].clipmask
= (RectClipFlags::TOP
<< 4) | RectClipFlags::TOP
; // 0100 0100
677 sp
[3].d
= +(rRange
.getMaxY());
678 sp
[3].clipmask
= (RectClipFlags::BOTTOM
<< 4) | RectClipFlags::BOTTOM
; // 1000 1000
680 // retrieve the number of vertices of the triangulated polygon
681 const sal_uInt32 nVertexCount
= rCandidate
.count();
685 // Upper bound for the maximal number of vertices when intersecting an
686 // axis-aligned rectangle with a triangle in E2
688 // The rectangle and the triangle are in general position, and have 4 and 3
689 // vertices, respectively.
691 // Lemma: Since the rectangle is a convex polygon ( see
692 // http://mathworld.wolfram.com/ConvexPolygon.html for a definition), and
693 // has no holes, it follows that any straight line will intersect the
694 // rectangle's border line at utmost two times (with the usual
695 // tie-breaking rule, if the intersection exactly hits an already existing
696 // rectangle vertex, that this intersection is only attributed to one of
697 // the adjoining edges). Thus, having a rectangle intersected with
698 // a half-plane (one side of a straight line denotes 'inside', the
699 // other 'outside') will at utmost add _one_ vertex to the resulting
700 // intersection polygon (adding two intersection vertices, and removing at
701 // least one rectangle vertex):
704 // +--+-----------------+
710 // +--------------------+
712 // Proof: If the straight line intersects the rectangle two
713 // times, it does so for distinct edges, i.e. the intersection has
714 // minimally one of the rectangle's vertices on either side of the straight
715 // line (but maybe more). Thus, the intersection with a half-plane has
716 // minimally _one_ rectangle vertex removed from the resulting clip
717 // polygon, and therefore, a clip against a half-plane has the net effect
718 // of adding at utmost _one_ vertex to the resulting clip polygon.
720 // Theorem: The intersection of a rectangle and a triangle results in a
721 // polygon with at utmost 7 vertices.
723 // Proof: The inside of the triangle can be described as the consecutive
724 // intersection with three half-planes. Together with the lemma above, this
725 // results in at utmost 3 additional vertices added to the already existing 4
726 // rectangle vertices.
728 // This upper bound is attained with the following example configuration:
752 // As we need to scissor all triangles against the
753 // output rectangle we employ an output buffer for the
754 // resulting vertices. the question is how large this
755 // buffer needs to be compared to the number of
756 // incoming vertices. this buffer needs to hold at
757 // most the number of original vertices times '7'. see
758 // figure above for an example. scissoring triangles
759 // with the cohen-sutherland line clipping algorithm
760 // as implemented here will result in a triangle fan
761 // which will be rendered as separate triangles to
762 // avoid pipeline stalls for each scissored
763 // triangle. creating separate triangles from a
764 // triangle fan produces (n-2)*3 vertices where n is
765 // the number of vertices of the original triangle
766 // fan. for the maximum number of 7 vertices of
767 // resulting triangle fans we therefore need 15 times
768 // the number of original vertices.
770 //const size_t nBufferSize = sizeof(vertex)*(nVertexCount*16);
771 //vertex *pVertices = (vertex*)alloca(nBufferSize);
772 //sal_uInt32 nNumOutput = 0;
774 // we need to clip this triangle against the output rectangle
775 // to ensure that the resulting texture coordinates are in
776 // the valid range from [0<=st<=1]. under normal circustances
777 // we could use the BORDERCOLOR renderstate but some cards
778 // seem to ignore this feature.
779 ::basegfx::B2DPoint stack
[3];
780 unsigned int clipflag
= 0;
782 for(sal_uInt32 nIndex
=0; nIndex
<nVertexCount
; ++nIndex
)
787 stack
[2] = rCandidate
.getB2DPoint(nIndex
);
789 // clipping judgement
790 clipflag
|= unsigned(!(rRange
.isInside(stack
[2])));
794 // consume vertices until a single separate triangle has been visited.
797 // if any of the last three vertices was outside
798 // we need to scissor against the destination rectangle
801 ::basegfx::B2DPoint buf0
[16];
802 ::basegfx::B2DPoint buf1
[16];
804 sal_uInt32 vertex_count
= 3;
806 // clip against all 4 planes passing the result of
807 // each plane as the input to the next using a double buffer
808 vertex_count
= scissorLineSegment(stack
,vertex_count
,buf1
,&sp
[0],rRange
);
809 vertex_count
= scissorLineSegment(buf1
,vertex_count
,buf0
,&sp
[1],rRange
);
810 vertex_count
= scissorLineSegment(buf0
,vertex_count
,buf1
,&sp
[2],rRange
);
811 vertex_count
= scissorLineSegment(buf1
,vertex_count
,buf0
,&sp
[3],rRange
);
813 if(vertex_count
>= 3)
815 // convert triangle fan back to triangle list.
816 ::basegfx::B2DPoint
v0(buf0
[0]);
817 ::basegfx::B2DPoint
v1(buf0
[1]);
818 for(sal_uInt32 i
=2; i
<vertex_count
; ++i
)
820 ::basegfx::B2DPoint
v2(buf0
[i
]);
830 // the last triangle has not been altered, simply copy to result
831 for(sal_uInt32 i
=0; i
<3; ++i
)
832 aResult
.append(stack
[i
]);
845 } // end of namespace tools
846 } // end of namespace basegfx
848 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */