1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 // Natural, Clamped, or Periodic Cubic Splines
22 // Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
23 // from a function, a_i = f(x_i). The function f is unknown. Boundary
25 // (1) Natural splines: f"(x_0) = f"(x_N) = 0
26 // (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
27 // (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
28 // required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
30 // Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
31 // spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
32 // x_i <= x < x_{i+1}.
34 // The natural and clamped algorithms were implemented from
36 // Numerical Analysis, 3rd edition
37 // Richard L. Burden and J. Douglas Faires
38 // Prindle, Weber & Schmidt
39 // Boston, 1985, pp. 122-124.
41 // The algorithm sets up a tridiagonal linear system of equations in the
42 // c_i values. This can be solved in O(N) time.
44 // The periodic spline algorithm was implemented from my own derivation. The
45 // linear system of equations is not tridiagonal. For now I use a standard
46 // linear solver that does not take advantage of the sparseness of the
47 // matrix. Therefore for very large N, you may have to worry about memory
50 #include <sal/config.h>
56 void NaturalSpline (int N
, const double* x
, const double* a
, std::unique_ptr
<double[]>& b
, std::unique_ptr
<double[]>& c
,
57 std::unique_ptr
<double[]>& d
)
59 const double oneThird
= 1.0/3.0;
62 std::unique_ptr
<double[]> h(new double[N
]);
63 std::unique_ptr
<double[]> hdiff(new double[N
]);
64 std::unique_ptr
<double[]> alpha(new double[N
]);
66 for (i
= 0; i
< N
; i
++){
70 for (i
= 1; i
< N
; i
++)
71 hdiff
[i
] = x
[i
+1]-x
[i
-1];
73 for (i
= 1; i
< N
; i
++)
75 double numer
= 3.0*(a
[i
+1]*h
[i
-1]-a
[i
]*hdiff
[i
]+a
[i
-1]*h
[i
]);
76 double denom
= h
[i
-1]*h
[i
];
77 alpha
[i
] = numer
/denom
;
80 std::unique_ptr
<double[]> ell(new double[N
+1]);
81 std::unique_ptr
<double[]> mu(new double[N
]);
82 std::unique_ptr
<double[]> z(new double[N
+1]);
89 for (i
= 1; i
< N
; i
++)
91 ell
[i
] = 2.0*hdiff
[i
]-h
[i
-1]*mu
[i
-1];
94 z
[i
] = recip
*(alpha
[i
]-h
[i
-1]*z
[i
-1]);
99 b
.reset(new double[N
]);
100 c
.reset(new double[N
+1]);
101 d
.reset(new double[N
]);
105 for (i
= N
-1; i
>= 0; i
--)
107 c
[i
] = z
[i
]-mu
[i
]*c
[i
+1];
109 b
[i
] = recip
*(a
[i
+1]-a
[i
])-h
[i
]*(c
[i
+1]+2.0*c
[i
])*oneThird
;
110 d
[i
] = oneThird
*recip
*(c
[i
+1]-c
[i
]);
114 void PeriodicSpline (int N
, const double* x
, const double* a
, std::unique_ptr
<double[]>& b
, std::unique_ptr
<double[]>& c
,
115 std::unique_ptr
<double[]>& d
)
117 std::unique_ptr
<double[]> h(new double[N
]);
119 for (i
= 0; i
< N
; i
++)
122 std::unique_ptr
<std::unique_ptr
<double[]>[]> mat
= mgcLinearSystemD::NewMatrix(N
+1); // guaranteed to be zeroed memory
123 c
= mgcLinearSystemD::NewVector(N
+1); // guaranteed to be zeroed memory
129 // h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
130 // 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
131 for (i
= 1; i
<= N
-1; i
++)
133 mat
[i
][i
-1] = h
[i
-1];
134 mat
[i
][i
] = 2.0f
*(h
[i
-1]+h
[i
]);
136 c
[i
] = 3.0f
*((a
[i
+1]-a
[i
])/h
[i
] - (a
[i
]-a
[i
-1])/h
[i
-1]);
139 // "wrap around equation" for periodicity
140 // h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
141 // 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
142 mat
[N
][N
-1] = h
[N
-1];
143 mat
[N
][0 ] = 2.0f
*(h
[N
-1]+h
[0]);
145 c
[N
] = 3.0f
*((a
[1]-a
[0])/h
[0] - (a
[0]-a
[N
-1])/h
[N
-1]);
147 // solve for c[0] through c[N]
148 mgcLinearSystemD::Solve(N
+1,mat
,c
.get());
150 const double oneThird
= 1.0/3.0;
151 b
.reset(new double[N
]);
152 d
.reset(new double[N
]);
153 for (i
= 0; i
< N
; i
++)
155 b
[i
] = (a
[i
+1]-a
[i
])/h
[i
] - oneThird
*(c
[i
+1]+2.0f
*c
[i
])*h
[i
];
156 d
[i
] = oneThird
*(c
[i
+1]-c
[i
])/h
[i
];
160 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */