Version 4.0.0.1, tag libreoffice-4.0.0.1
[LibreOffice.git] / i18npool / source / calendar / calendar_hijri.cxx
blob511929575c4d08e7978d961b9363b76f3a3dce4f
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
21 #include <stdlib.h>
22 #include <math.h>
24 #include "calendar_hijri.hxx"
26 using namespace ::com::sun::star::uno;
27 using namespace ::com::sun::star::lang;
29 #define ERROR RuntimeException()
31 #define GREGORIAN_CROSSOVER 2299161
33 namespace com { namespace sun { namespace star { namespace i18n {
35 // not used
36 //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call.
38 // radians per degree (pi/180)
39 const double Calendar_hijri::RadPerDeg = 0.01745329251994329577;
41 // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
42 const double Calendar_hijri::SynPeriod = 29.53058868;
43 const double Calendar_hijri::SynMonth = 365.25/29.53058868; // Solar days in a year/SynPeriod
45 // Julian day on Jan 1, 1900
46 const double Calendar_hijri::jd1900 = 2415020.75933;
48 // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
49 const sal_Int32 Calendar_hijri::SynRef = 1252;
50 const sal_Int32 Calendar_hijri::GregRef = 1422;
52 // Local time specific to Saudi Arabia
53 const double Calendar_hijri::SA_TimeZone = 3.0;
55 const double Calendar_hijri::EveningPeriod = 6.0;
57 const sal_Int32 Calendar_hijri::LeapYear[] = {
58 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
61 Calendar_hijri::Calendar_hijri()
63 cCalendar = "com.sun.star.i18n.Calendar_hijri";
66 #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
68 // map field value from hijri calendar to gregorian calendar
69 void Calendar_hijri::mapToGregorian() throw(RuntimeException)
71 if (fieldSet & FIELDS) {
72 sal_Int32 day = (sal_Int32)fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH];
73 sal_Int32 month = (sal_Int32)fieldSetValue[CalendarFieldIndex::MONTH] + 1;
74 sal_Int32 year = (sal_Int32)fieldSetValue[CalendarFieldIndex::YEAR];
75 if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
76 year *= -1;
78 ToGregorian(&day, &month, &year);
80 fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
81 fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
82 fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16) day;
83 fieldSetValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
84 fieldSet |= FIELDS;
88 // map field value from gregorian calendar to hijri calendar
89 void Calendar_hijri::mapFromGregorian() throw(RuntimeException)
91 sal_Int32 month, day, year;
93 day = (sal_Int32)fieldValue[CalendarFieldIndex::DAY_OF_MONTH];
94 month = (sal_Int32)fieldValue[CalendarFieldIndex::MONTH] + 1;
95 year = (sal_Int32)fieldValue[CalendarFieldIndex::YEAR];
96 if (fieldValue[CalendarFieldIndex::ERA] == 0)
97 year *= -1;
99 // Get Hijri date
100 getHijri(&day, &month, &year);
102 fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16)day;
103 fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
104 fieldValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
105 fieldValue[CalendarFieldIndex::ERA] = (sal_Int16) year < 1 ? 0 : 1;
109 // This function returns the Julian date/time of the Nth new moon since
110 // January 1900. The synodic month is passed as parameter.
112 // Adapted from "Astronomical Formulae for Calculators" by
113 // Jean Meeus, Third Edition, Willmann-Bell, 1985.
115 double
116 Calendar_hijri::NewMoon(sal_Int32 n)
118 double jd, t, t2, t3, k, ma, sa, tf, xtra;
119 k = n;
120 t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
121 t2 = t * t;
122 t3 = t2 * t;
124 // Mean time of phase
125 jd = jd1900
126 + SynPeriod * k
127 - 0.0001178 * t2
128 - 0.000000155 * t3
129 + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2));
131 // Sun's mean anomaly in radian
132 sa = RadPerDeg * (359.2242
133 + 29.10535608 * k
134 - 0.0000333 * t2
135 - 0.00000347 * t3);
137 // Moon's mean anomaly
138 ma = RadPerDeg * (306.0253
139 + 385.81691806 * k
140 + 0.0107306 * t2
141 + 0.00001236 * t3);
143 // Moon's argument of latitude
144 tf = RadPerDeg * 2.0 * (21.2964
145 + 390.67050646 * k
146 - 0.0016528 * t2
147 - 0.00000239 * t3);
149 // should reduce to interval between 0 to 1.0 before calculating further
150 // Corrections for New Moon
151 xtra = (0.1734 - 0.000393 * t) * sin(sa)
152 + 0.0021 * sin(sa * 2)
153 - 0.4068 * sin(ma)
154 + 0.0161 * sin(2 * ma)
155 - 0.0004 * sin(3 * ma)
156 + 0.0104 * sin(tf)
157 - 0.0051 * sin(sa + ma)
158 - 0.0074 * sin(sa - ma)
159 + 0.0004 * sin(tf + sa)
160 - 0.0004 * sin(tf - sa)
161 - 0.0006 * sin(tf + ma)
162 + 0.0010 * sin(tf - ma)
163 + 0.0005 * sin(sa + 2 * ma);
165 // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
166 jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
168 return (jd);
171 // Get Hijri Date
172 void
173 Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
175 double prevday;
176 // double dayfraction;
177 sal_Int32 syndiff;
178 sal_Int32 newsyn;
179 double newjd;
180 double julday;
181 sal_Int32 synmonth;
183 // Get Julian Day from Gregorian
184 julday = getJulianDay(*day, *month, *year);
186 // obtain approx. of how many Synodic months since the beginning of the year 1900
187 synmonth = (sal_Int32)(0.5 + (julday - jd1900)/SynPeriod);
189 newsyn = synmonth;
190 prevday = (sal_Int32)julday - 0.5;
192 do {
193 newjd = NewMoon(newsyn);
195 // Decrement syndonic months
196 newsyn--;
197 } while (newjd > prevday);
198 newsyn++;
200 // difference from reference point
201 syndiff = newsyn - SynRef;
203 // Round up the day
204 *day = (sal_Int32)(((sal_Int32)julday) - newjd + 0.5);
205 *month = (syndiff % 12) + 1;
207 // currently not supported
208 //dayOfYear = (sal_Int32)(month * SynPeriod + day);
209 *year = GregRef + (sal_Int32)(syndiff / 12);
211 // If month negative, consider it previous year
212 if (syndiff != 0 && *month <= 0) {
213 *month += 12;
214 (*year)--;
217 // If Before Hijri subtract 1
218 if (*year <= 0) (*year)--;
221 void
222 Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
224 sal_Int32 nmonth;
225 // double dayfraction;
226 double jday;
227 // sal_Int32 dayint;
229 if ( *year < 0 ) (*year)++;
231 // Number of month from reference point
232 nmonth = *month + *year * 12 - (GregRef * 12 + 1);
234 // Add Synodic Reference point
235 nmonth += SynRef;
237 // Get Julian days add time too
238 jday = NewMoon(nmonth) + *day;
240 // Round-up
241 jday = (double)((sal_Int32)(jday + 0.5));
243 // Use algorithm from "Numerical Recipes in C"
244 getGregorianDay((sal_Int32)jday, day, month, year);
246 // Julian -> Gregorian only works for non-negative year
247 if ( *year <= 0 ) {
248 *day = -1;
249 *month = -1;
250 *year = -1;
254 /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
255 /* this algorithm only valid for non-negative gregorian year */
256 void
257 Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
259 /* working variables */
260 long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
262 /* test whether to adjust for the Gregorian calendar crossover */
263 if (lJulianDay >= GREGORIAN_CROSSOVER) {
264 /* calculate a small adjustment */
265 long lAdjust = (long) (((float) (lJulianDay - 1867216) - 0.25) / 36524.25);
267 lFactorA = lJulianDay + 1 + lAdjust - ((long) (0.25 * lAdjust));
269 } else {
270 /* no adjustment needed */
271 lFactorA = lJulianDay;
274 lFactorB = lFactorA + 1524;
275 lFactorC = (long) (6680.0 + ((float) (lFactorB - 2439870) - 122.1) / 365.25);
276 lFactorD = (long) (365 * lFactorC + (0.25 * lFactorC));
277 lFactorE = (long) ((lFactorB - lFactorD) / 30.6001);
279 /* now, pull out the day number */
280 *pnDay = lFactorB - lFactorD - (long) (30.6001 * lFactorE);
282 /* ...and the month, adjusting it if necessary */
283 *pnMonth = lFactorE - 1;
284 if (*pnMonth > 12)
285 (*pnMonth) -= 12;
287 /* ...and similarly for the year */
288 *pnYear = lFactorC - 4715;
289 if (*pnMonth > 2)
290 (*pnYear)--;
292 // Negative year adjustments
293 if (*pnYear <= 0)
294 (*pnYear)--;
297 double
298 Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
300 double jy, jm;
302 if( year == 0 ) {
303 return -1.0;
306 if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
307 return -1.0;
310 if( month > 2 ) {
311 jy = year;
312 jm = month + 1;
313 } else {
314 jy = year - 1;
315 jm = month + 13;
318 sal_Int32 intgr = (sal_Int32)((sal_Int32)(365.25 * jy) + (sal_Int32)(30.6001 * jm) + day + 1720995 );
320 //check for switch to Gregorian calendar
321 double gregcal = 15 + 31 * ( 10 + 12 * 1582 );
323 if( day + 31 * (month + 12 * year) >= gregcal ) {
324 double ja;
325 ja = (sal_Int32)(0.01 * jy);
326 intgr += (sal_Int32)(2 - ja + (sal_Int32)(0.25 * ja));
329 return (double) intgr;
332 }}}}
334 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */