1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include "PlottingPositionHelper.hxx"
21 #include "CommonConverters.hxx"
22 #include "ViewDefines.hxx"
23 #include "Linear3DTransformation.hxx"
24 #include "VPolarTransformation.hxx"
25 #include "AbstractShapeFactory.hxx"
26 #include "PropertyMapper.hxx"
27 #include "DateHelper.hxx"
28 #include "defines.hxx"
30 #include <com/sun/star/chart/TimeUnit.hpp>
31 #include <com/sun/star/chart2/AxisType.hpp>
32 #include <com/sun/star/drawing/DoubleSequence.hpp>
33 #include <com/sun/star/drawing/Position3D.hpp>
35 #include <rtl/math.hxx>
39 using namespace ::com::sun::star
;
40 using namespace ::com::sun::star::chart2
;
42 PlottingPositionHelper::PlottingPositionHelper()
44 , m_aMatrixScreenToScene()
45 , m_xTransformationLogicToScene(NULL
)
46 , m_bSwapXAndY( false )
47 , m_nXResolution( 1000 )
48 , m_nYResolution( 1000 )
49 , m_nZResolution( 1000 )
50 , m_bMaySkipPointsInRegressionCalculation( true )
52 , m_nTimeResolution( ::com::sun::star::chart::TimeUnit::DAY
)
53 , m_aNullDate(30,12,1899)
54 , m_fScaledCategoryWidth(1.0)
55 , m_bAllowShiftXAxisPos(false)
56 , m_bAllowShiftZAxisPos(false)
59 PlottingPositionHelper::PlottingPositionHelper( const PlottingPositionHelper
& rSource
)
60 : m_aScales( rSource
.m_aScales
)
61 , m_aMatrixScreenToScene( rSource
.m_aMatrixScreenToScene
)
62 , m_xTransformationLogicToScene( NULL
) //should be recalculated
63 , m_bSwapXAndY( rSource
.m_bSwapXAndY
)
64 , m_nXResolution( rSource
.m_nXResolution
)
65 , m_nYResolution( rSource
.m_nYResolution
)
66 , m_nZResolution( rSource
.m_nZResolution
)
67 , m_bMaySkipPointsInRegressionCalculation( rSource
.m_bMaySkipPointsInRegressionCalculation
)
68 , m_bDateAxis( rSource
.m_bDateAxis
)
69 , m_nTimeResolution( rSource
.m_nTimeResolution
)
70 , m_aNullDate( rSource
.m_aNullDate
)
71 , m_fScaledCategoryWidth( rSource
.m_fScaledCategoryWidth
)
72 , m_bAllowShiftXAxisPos( rSource
.m_bAllowShiftXAxisPos
)
73 , m_bAllowShiftZAxisPos( rSource
.m_bAllowShiftZAxisPos
)
77 PlottingPositionHelper::~PlottingPositionHelper()
82 PlottingPositionHelper
* PlottingPositionHelper::clone() const
84 PlottingPositionHelper
* pRet
= new PlottingPositionHelper(*this);
88 PlottingPositionHelper
* PlottingPositionHelper::createSecondaryPosHelper( const ExplicitScaleData
& rSecondaryScale
)
90 PlottingPositionHelper
* pRet
= this->clone();
91 pRet
->m_aScales
[1]=rSecondaryScale
;
95 void PlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix
& rMatrix
)
97 m_aMatrixScreenToScene
= HomogenMatrixToB3DHomMatrix(rMatrix
);
98 m_xTransformationLogicToScene
= NULL
;
101 void PlottingPositionHelper::setScales( const std::vector
< ExplicitScaleData
>& rScales
, bool bSwapXAndYAxis
)
104 m_bSwapXAndY
= bSwapXAndYAxis
;
105 m_xTransformationLogicToScene
= NULL
;
108 uno::Reference
< XTransformation
> PlottingPositionHelper::getTransformationScaledLogicToScene() const
110 //this is a standard transformation for a cartesian coordinate system
112 //transformation from 2) to 4) //@todo 2) and 4) need a ink to a document
114 //we need to apply this transformation to each geometric object because of a bug/problem
115 //of the old drawing layer (the UNO_NAME_3D_EXTRUDE_DEPTH is an integer value instead of an double )
116 if(!m_xTransformationLogicToScene
.is())
118 ::basegfx::B3DHomMatrix aMatrix
;
119 double MinX
= getLogicMinX();
120 double MinY
= getLogicMinY();
121 double MinZ
= getLogicMinZ();
122 double MaxX
= getLogicMaxX();
123 double MaxY
= getLogicMaxY();
124 double MaxZ
= getLogicMaxZ();
126 AxisOrientation nXAxisOrientation
= m_aScales
[0].Orientation
;
127 AxisOrientation nYAxisOrientation
= m_aScales
[1].Orientation
;
128 AxisOrientation nZAxisOrientation
= m_aScales
[2].Orientation
;
131 doUnshiftedLogicScaling( &MinX
, &MinY
, &MinZ
);
132 doUnshiftedLogicScaling( &MaxX
, &MaxY
, &MaxZ
);
136 std::swap(MinX
,MinY
);
137 std::swap(MaxX
,MaxY
);
138 std::swap(nXAxisOrientation
,nYAxisOrientation
);
141 double fWidthX
= MaxX
- MinX
;
142 double fWidthY
= MaxY
- MinY
;
143 double fWidthZ
= MaxZ
- MinZ
;
145 double fScaleDirectionX
= AxisOrientation_MATHEMATICAL
==nXAxisOrientation
? 1.0 : -1.0;
146 double fScaleDirectionY
= AxisOrientation_MATHEMATICAL
==nYAxisOrientation
? 1.0 : -1.0;
147 double fScaleDirectionZ
= AxisOrientation_MATHEMATICAL
==nZAxisOrientation
? -1.0 : 1.0;
149 double fScaleX
= fScaleDirectionX
*FIXED_SIZE_FOR_3D_CHART_VOLUME
/fWidthX
;
150 double fScaleY
= fScaleDirectionY
*FIXED_SIZE_FOR_3D_CHART_VOLUME
/fWidthY
;
151 double fScaleZ
= fScaleDirectionZ
*FIXED_SIZE_FOR_3D_CHART_VOLUME
/fWidthZ
;
153 aMatrix
.scale(fScaleX
, fScaleY
, fScaleZ
);
155 if( AxisOrientation_MATHEMATICAL
==nXAxisOrientation
)
156 aMatrix
.translate(-MinX
*fScaleX
, 0.0, 0.0);
158 aMatrix
.translate(-MaxX
*fScaleX
, 0.0, 0.0);
159 if( AxisOrientation_MATHEMATICAL
==nYAxisOrientation
)
160 aMatrix
.translate(0.0, -MinY
*fScaleY
, 0.0);
162 aMatrix
.translate(0.0, -MaxY
*fScaleY
, 0.0);
163 if( AxisOrientation_MATHEMATICAL
==nZAxisOrientation
)
164 aMatrix
.translate(0.0, 0.0, -MaxZ
*fScaleZ
);//z direction in draw is reverse mathematical direction
166 aMatrix
.translate(0.0, 0.0, -MinZ
*fScaleZ
);
168 aMatrix
= m_aMatrixScreenToScene
*aMatrix
;
170 m_xTransformationLogicToScene
= new Linear3DTransformation(B3DHomMatrixToHomogenMatrix( aMatrix
),m_bSwapXAndY
);
172 return m_xTransformationLogicToScene
;
175 drawing::Position3D
PlottingPositionHelper::transformLogicToScene(
176 double fX
, double fY
, double fZ
, bool bClip
) const
178 this->doLogicScaling( &fX
,&fY
,&fZ
);
180 this->clipScaledLogicValues( &fX
,&fY
,&fZ
);
182 return this->transformScaledLogicToScene( fX
, fY
, fZ
, false );
185 drawing::Position3D
PlottingPositionHelper::transformScaledLogicToScene(
186 double fX
, double fY
, double fZ
, bool bClip
) const
189 this->clipScaledLogicValues( &fX
,&fY
,&fZ
);
191 drawing::Position3D
aPos( fX
, fY
, fZ
);
193 uno::Reference
< XTransformation
> xTransformation
=
194 this->getTransformationScaledLogicToScene();
195 uno::Sequence
< double > aSeq
=
196 xTransformation
->transform( Position3DToSequence(aPos
) );
197 return SequenceToPosition3D(aSeq
);
200 awt::Point
PlottingPositionHelper::transformSceneToScreenPosition( const drawing::Position3D
& rScenePosition3D
201 , const uno::Reference
< drawing::XShapes
>& xSceneTarget
202 , AbstractShapeFactory
* pShapeFactory
203 , sal_Int32 nDimensionCount
)
205 //@todo would like to have a cheaper method to do this transformation
206 awt::Point
aScreenPoint( static_cast<sal_Int32
>(rScenePosition3D
.PositionX
), static_cast<sal_Int32
>(rScenePosition3D
.PositionY
) );
208 //transformation from scene to screen (only necessary for 3D):
209 if(3==nDimensionCount
)
211 //create 3D anchor shape
212 tPropertyNameMap aDummyPropertyNameMap
;
213 uno::Reference
< drawing::XShape
> xShape3DAnchor
= pShapeFactory
->createCube( xSceneTarget
214 , rScenePosition3D
,drawing::Direction3D(1,1,1)
215 , 0, 0, aDummyPropertyNameMap
);
216 //get 2D position from xShape3DAnchor
217 aScreenPoint
= xShape3DAnchor
->getPosition();
218 xSceneTarget
->remove(xShape3DAnchor
);
223 void PlottingPositionHelper::transformScaledLogicToScene( drawing::PolyPolygonShape3D
& rPolygon
) const
225 drawing::Position3D aScenePosition
;
226 for( sal_Int32 nS
= rPolygon
.SequenceX
.getLength(); nS
--;)
228 drawing::DoubleSequence
& xValues
= rPolygon
.SequenceX
[nS
];
229 drawing::DoubleSequence
& yValues
= rPolygon
.SequenceY
[nS
];
230 drawing::DoubleSequence
& zValues
= rPolygon
.SequenceZ
[nS
];
231 for( sal_Int32 nP
= xValues
.getLength(); nP
--; )
233 double& fX
= xValues
[nP
];
234 double& fY
= yValues
[nP
];
235 double& fZ
= zValues
[nP
];
236 aScenePosition
= this->transformScaledLogicToScene( fX
,fY
,fZ
,true );
237 fX
= aScenePosition
.PositionX
;
238 fY
= aScenePosition
.PositionY
;
239 fZ
= aScenePosition
.PositionZ
;
244 void PlottingPositionHelper::clipScaledLogicValues( double* pX
, double* pY
, double* pZ
) const
246 //get logic clip values:
247 double MinX
= getLogicMinX();
248 double MinY
= getLogicMinY();
249 double MinZ
= getLogicMinZ();
250 double MaxX
= getLogicMaxX();
251 double MaxY
= getLogicMaxY();
252 double MaxZ
= getLogicMaxZ();
255 doUnshiftedLogicScaling( &MinX
, &MinY
, &MinZ
);
256 doUnshiftedLogicScaling( &MaxX
, &MaxY
, &MaxZ
);
262 else if( *pX
> MaxX
)
269 else if( *pY
> MaxY
)
276 else if( *pZ
> MaxZ
)
281 basegfx::B2DRectangle
PlottingPositionHelper::getScaledLogicClipDoubleRect() const
283 //get logic clip values:
284 double MinX
= getLogicMinX();
285 double MinY
= getLogicMinY();
286 double MinZ
= getLogicMinZ();
287 double MaxX
= getLogicMaxX();
288 double MaxY
= getLogicMaxY();
289 double MaxZ
= getLogicMaxZ();
292 doUnshiftedLogicScaling( &MinX
, &MinY
, &MinZ
);
293 doUnshiftedLogicScaling( &MaxX
, &MaxY
, &MaxZ
);
295 basegfx::B2DRectangle
aRet( MinX
, MaxY
, MaxX
, MinY
);
299 drawing::Direction3D
PlottingPositionHelper::getScaledLogicWidth() const
301 drawing::Direction3D aRet
;
303 double MinX
= getLogicMinX();
304 double MinY
= getLogicMinY();
305 double MinZ
= getLogicMinZ();
306 double MaxX
= getLogicMaxX();
307 double MaxY
= getLogicMaxY();
308 double MaxZ
= getLogicMaxZ();
310 doLogicScaling( &MinX
, &MinY
, &MinZ
);
311 doLogicScaling( &MaxX
, &MaxY
, &MaxZ
);
313 aRet
.DirectionX
= MaxX
- MinX
;
314 aRet
.DirectionY
= MaxY
- MinY
;
315 aRet
.DirectionZ
= MaxZ
- MinZ
;
319 PolarPlottingPositionHelper::PolarPlottingPositionHelper( NormalAxis eNormalAxis
)
320 : m_fRadiusOffset(0.0)
321 , m_fAngleDegreeOffset(90.0)
322 , m_aUnitCartesianToScene()
323 , m_eNormalAxis(eNormalAxis
)
325 m_bMaySkipPointsInRegressionCalculation
= false;
328 PolarPlottingPositionHelper::PolarPlottingPositionHelper( const PolarPlottingPositionHelper
& rSource
)
329 : PlottingPositionHelper(rSource
)
330 , m_fRadiusOffset( rSource
.m_fRadiusOffset
)
331 , m_fAngleDegreeOffset( rSource
.m_fAngleDegreeOffset
)
332 , m_aUnitCartesianToScene( rSource
.m_aUnitCartesianToScene
)
333 , m_eNormalAxis( rSource
.m_eNormalAxis
)
337 PolarPlottingPositionHelper::~PolarPlottingPositionHelper()
341 PlottingPositionHelper
* PolarPlottingPositionHelper::clone() const
343 PolarPlottingPositionHelper
* pRet
= new PolarPlottingPositionHelper(*this);
347 void PolarPlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix
& rMatrix
)
349 PlottingPositionHelper::setTransformationSceneToScreen( rMatrix
);
350 m_aUnitCartesianToScene
=impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene
);
352 void PolarPlottingPositionHelper::setScales( const std::vector
< ExplicitScaleData
>& rScales
, bool bSwapXAndYAxis
)
354 PlottingPositionHelper::setScales( rScales
, bSwapXAndYAxis
);
355 m_aUnitCartesianToScene
=impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene
);
358 ::basegfx::B3DHomMatrix
PolarPlottingPositionHelper::impl_calculateMatrixUnitCartesianToScene( const ::basegfx::B3DHomMatrix
& rMatrixScreenToScene
) const
360 ::basegfx::B3DHomMatrix aRet
;
362 if( m_aScales
.empty() )
365 double fTranslate
=1.0;
366 double fScale
=FIXED_SIZE_FOR_3D_CHART_VOLUME
/2.0;
368 double fTranslateLogicZ
=fTranslate
;
369 double fScaleLogicZ
=fScale
;
371 double fScaleDirectionZ
= AxisOrientation_MATHEMATICAL
==m_aScales
[2].Orientation
? 1.0 : -1.0;
372 double MinZ
= getLogicMinZ();
373 double MaxZ
= getLogicMaxZ();
374 doLogicScaling( 0, 0, &MinZ
);
375 doLogicScaling( 0, 0, &MaxZ
);
376 double fWidthZ
= MaxZ
- MinZ
;
378 if( AxisOrientation_MATHEMATICAL
==m_aScales
[2].Orientation
)
379 fTranslateLogicZ
=MinZ
;
381 fTranslateLogicZ
=MaxZ
;
382 fScaleLogicZ
= fScaleDirectionZ
*FIXED_SIZE_FOR_3D_CHART_VOLUME
/fWidthZ
;
385 double fTranslateX
= fTranslate
;
386 double fTranslateY
= fTranslate
;
387 double fTranslateZ
= fTranslate
;
389 double fScaleX
= fScale
;
390 double fScaleY
= fScale
;
391 double fScaleZ
= fScale
;
393 switch(m_eNormalAxis
)
397 fTranslateX
= fTranslateLogicZ
;
398 fScaleX
= fScaleLogicZ
;
403 fTranslateY
= fTranslateLogicZ
;
404 fScaleY
= fScaleLogicZ
;
407 default: //NormalAxis_Z:
409 fTranslateZ
= fTranslateLogicZ
;
410 fScaleZ
= fScaleLogicZ
;
415 aRet
.translate(fTranslateX
, fTranslateY
, fTranslateZ
);//x first
416 aRet
.scale(fScaleX
, fScaleY
, fScaleZ
);//x first
418 aRet
= rMatrixScreenToScene
* aRet
;
422 uno::Reference
< XTransformation
> PolarPlottingPositionHelper::getTransformationScaledLogicToScene() const
424 if( !m_xTransformationLogicToScene
.is() )
425 m_xTransformationLogicToScene
= new VPolarTransformation(*this);
426 return m_xTransformationLogicToScene
;
429 double PolarPlottingPositionHelper::getWidthAngleDegree( double& fStartLogicValueOnAngleAxis
, double& fEndLogicValueOnAngleAxis
) const
431 const ExplicitScaleData
& rAngleScale
= m_bSwapXAndY
? m_aScales
[1] : m_aScales
[0];
432 if( AxisOrientation_MATHEMATICAL
!= rAngleScale
.Orientation
)
434 double fHelp
= fEndLogicValueOnAngleAxis
;
435 fEndLogicValueOnAngleAxis
= fStartLogicValueOnAngleAxis
;
436 fStartLogicValueOnAngleAxis
= fHelp
;
439 double fStartAngleDegree
= this->transformToAngleDegree( fStartLogicValueOnAngleAxis
);
440 double fEndAngleDegree
= this->transformToAngleDegree( fEndLogicValueOnAngleAxis
);
441 double fWidthAngleDegree
= fEndAngleDegree
- fStartAngleDegree
;
443 if( ::rtl::math::approxEqual( fStartAngleDegree
, fEndAngleDegree
)
444 && !::rtl::math::approxEqual( fStartLogicValueOnAngleAxis
, fEndLogicValueOnAngleAxis
) )
445 fWidthAngleDegree
= 360.0;
447 while(fWidthAngleDegree
<0.0)
448 fWidthAngleDegree
+=360.0;
449 while(fWidthAngleDegree
>360.0)
450 fWidthAngleDegree
-=360.0;
452 return fWidthAngleDegree
;
455 //This method does a lot of computation for understanding which scale to
456 //utilize and if reverse orientation should be used. Indeed, for a pie or donut,
457 //the final result is as simple as multiplying by 360 and adding
458 //`m_fAngleDegreeOffset`.
459 double PolarPlottingPositionHelper::transformToAngleDegree( double fLogicValueOnAngleAxis
, bool bDoScaling
) const
463 double fAxisAngleScaleDirection
= 1.0;
465 const ExplicitScaleData
& rScale
= m_bSwapXAndY
? m_aScales
[1] : m_aScales
[0];
466 if(AxisOrientation_MATHEMATICAL
!= rScale
.Orientation
)
467 fAxisAngleScaleDirection
*= -1.0;
470 double MinAngleValue
= 0.0;
471 double MaxAngleValue
= 0.0;
473 double MinX
= getLogicMinX();
474 double MinY
= getLogicMinY();
475 double MaxX
= getLogicMaxX();
476 double MaxY
= getLogicMaxY();
477 double MinZ
= getLogicMinZ();
478 double MaxZ
= getLogicMaxZ();
480 doLogicScaling( &MinX
, &MinY
, &MinZ
);
481 doLogicScaling( &MaxX
, &MaxY
, &MaxZ
);
483 MinAngleValue
= m_bSwapXAndY
? MinY
: MinX
;
484 MaxAngleValue
= m_bSwapXAndY
? MaxY
: MaxX
;
487 double fScaledLogicAngleValue
= 0.0;
490 double fX
= m_bSwapXAndY
? getLogicMaxX() : fLogicValueOnAngleAxis
;
491 double fY
= m_bSwapXAndY
? fLogicValueOnAngleAxis
: getLogicMaxY();
492 double fZ
= getLogicMaxZ();
493 clipLogicValues( &fX
, &fY
, &fZ
);
494 doLogicScaling( &fX
, &fY
, &fZ
);
495 fScaledLogicAngleValue
= m_bSwapXAndY
? fY
: fX
;
498 fScaledLogicAngleValue
= fLogicValueOnAngleAxis
;
500 fRet
= m_fAngleDegreeOffset
501 + fAxisAngleScaleDirection
*(fScaledLogicAngleValue
-MinAngleValue
)*360.0
502 /fabs(MaxAngleValue
-MinAngleValue
);
511 * Given a value in the radius axis scale range, it returns, in the simplest
512 * case (that is when `m_fRadiusOffset` is zero), the normalized value; when
513 * `m_fRadiusOffset` is not zero (e.g. as in the case of a donut), the interval
514 * used for normalization is extended by `m_fRadiusOffset`: if the axis
515 * orientation is not reversed the new interval becomes
516 * [scale.Minimum - m_fRadiusOffset, scale.Maximum] else it becomes
517 * [scale.Minimum, scale.Maximum + m_fRadiusOffset].
518 * Pay attention here! For the latter case, since the axis orientation is
519 * reversed, the normalization is reversed too. Indeed, we have
520 * `transformToRadius(scale.Maximum + m_fRadiusOffset) = 0` and
521 * `transformToRadius(scale.Minimum) = 1`.
523 * For a pie chart the radius axis scale range is initialized by the
524 * `getMinimum` and `getMaximum` methods of the `PieChart` object (see notes
525 * for `VCoordinateSystem::prepareAutomaticAxisScaling`).
526 * So we have scale.Minimum = 0.5 (always constant!) and
527 * scale.Maximum = 0.5 + number_of_rings + max_offset
528 * (see notes for `PieChart::getMaxOffset`).
529 * Hence we get the following general formulas for computing normalized inner
532 * 1- transformToRadius(inner_radius) =
533 * (number_of_rings - (ring_index + 1) + m_fRadiusOffset)
534 * / (number_of_rings + max_offset + m_fRadiusOffset)
536 * 2- transformToRadius(outer_radius) =
537 * (1 + number_of_rings - (ring_index + 1) + m_fRadiusOffset)
538 * / (number_of_rings + max_offset + m_fRadiusOffset).
540 * Here you have to take into account that values for inner and outer radius
541 * are swapped since the radius axis is reversed (See notes for
542 * `PiePositionHelper::getInnerAndOuterRadius`). So indeed inner_radius is
543 * the outer and outer_radius is the inner. Anyway still because of the reverse
544 * orientation, the normalization performed by `transformToRadius` is reversed
545 * too, as we have seen above. Hence `transformToRadius(inner_radius)` is
546 * really the normalized inner radius and `transformToRadius(outer_radius)` is
547 * really the normalized outer radius.
549 * Some basic examples where we apply the above formulas:
550 * 1- For a non-exploded pie chart we have:
551 * `transformToRadius(inner_radius) = 0`,
552 * `transformToRadius(outer_radius) = 1`.
553 * 2- For a non-exploded donut with a single ring we have:
554 * `transformToRadius(inner_radius) =
555 * m_fRadiusOffset/(1 + m_fRadiusOffset)`,
556 * `transformToRadius(outer_radius) =
557 * (1 + m_fRadiusOffset)/(1 + m_fRadiusOffset) = 1`.
558 * 3- For an exploded pie chart we have:
559 * `transformToRadius(inner_radius) = 0/(1 + max_offset) = 0`,
560 * `transformToRadius(outer_radius) = 1/(1 + max_offset)`.
562 * The third example needs some remark. Both the logical inner and outer
563 * radius passed to `transformToRadius` are offset by `max_offset`.
564 * However the returned normalized values do not contain any (normalized)
565 * offset term at all, otherwise the returned values would be
566 * `max_offset/(1 + max_offset)` and `1`. Hence, for exploded pie/donut,
567 * `transformToRadius` returns the normalized value of radii without any
568 * offset term. These values are smaller than in the non-exploded case by an
569 * amount equals to the value of the normalized maximum offset
570 * (`max_offset/(1 + max_offset)` in the example above). That is due to the
571 * fact that the normalization keeps into account the space needed for the
572 * offset. This is the correct behavior, in fact the offset for the current
573 * slice could be different from the maximum offset.
574 * These remarks should clarify why the `PieChart::createDataPoint` and
575 * `PieChart::createTextLabelShape` methods add the normalized offset (for the
576 * current slice) to the normalized radii in order to achieve the correct
577 * placement of slice and text shapes.
579 double PolarPlottingPositionHelper::transformToRadius( double fLogicValueOnRadiusAxis
, bool bDoScaling
) const
581 double fNormalRadius
= 0.0;
583 double fScaledLogicRadiusValue
= 0.0;
584 double fX
= m_bSwapXAndY
? fLogicValueOnRadiusAxis
: getLogicMaxX();
585 double fY
= m_bSwapXAndY
? getLogicMaxY() : fLogicValueOnRadiusAxis
;
587 doLogicScaling( &fX
, &fY
, 0 );
589 fScaledLogicRadiusValue
= m_bSwapXAndY
? fX
: fY
;
591 bool bMinIsInnerRadius
= true;
592 const ExplicitScaleData
& rScale
= m_bSwapXAndY
? m_aScales
[0] : m_aScales
[1];
593 if(AxisOrientation_MATHEMATICAL
!= rScale
.Orientation
)
594 bMinIsInnerRadius
= false;
596 double fInnerScaledLogicRadius
=0.0;
597 double fOuterScaledLogicRadius
=0.0;
599 double MinX
= getLogicMinX();
600 double MinY
= getLogicMinY();
601 doLogicScaling( &MinX
, &MinY
, 0 );
602 double MaxX
= getLogicMaxX();
603 double MaxY
= getLogicMaxY();
604 doLogicScaling( &MaxX
, &MaxY
, 0 );
606 double fMin
= m_bSwapXAndY
? MinX
: MinY
;
607 double fMax
= m_bSwapXAndY
? MaxX
: MaxY
;
609 fInnerScaledLogicRadius
= bMinIsInnerRadius
? fMin
: fMax
;
610 fOuterScaledLogicRadius
= bMinIsInnerRadius
? fMax
: fMin
;
613 if( bMinIsInnerRadius
)
614 fInnerScaledLogicRadius
-= fabs(m_fRadiusOffset
);
616 fInnerScaledLogicRadius
+= fabs(m_fRadiusOffset
);
617 fNormalRadius
= (fScaledLogicRadiusValue
-fInnerScaledLogicRadius
)/(fOuterScaledLogicRadius
-fInnerScaledLogicRadius
);
619 return fNormalRadius
;
622 drawing::Position3D
PolarPlottingPositionHelper::transformLogicToScene( double fX
, double fY
, double fZ
, bool bClip
) const
625 this->clipLogicValues( &fX
,&fY
,&fZ
);
626 double fLogicValueOnAngleAxis
= m_bSwapXAndY
? fY
: fX
;
627 double fLogicValueOnRadiusAxis
= m_bSwapXAndY
? fX
: fY
;
628 return this->transformAngleRadiusToScene( fLogicValueOnAngleAxis
, fLogicValueOnRadiusAxis
, fZ
, true );
631 drawing::Position3D
PolarPlottingPositionHelper::transformScaledLogicToScene( double fX
, double fY
, double fZ
, bool bClip
) const
634 this->clipScaledLogicValues( &fX
,&fY
,&fZ
);
635 double fLogicValueOnAngleAxis
= m_bSwapXAndY
? fY
: fX
;
636 double fLogicValueOnRadiusAxis
= m_bSwapXAndY
? fX
: fY
;
637 return this->transformAngleRadiusToScene( fLogicValueOnAngleAxis
, fLogicValueOnRadiusAxis
, fZ
, false );
639 drawing::Position3D
PolarPlottingPositionHelper::transformUnitCircleToScene( double fUnitAngleDegree
, double fUnitRadius
640 , double fLogicZ
, bool /* bDoScaling */ ) const
642 double fAnglePi
= fUnitAngleDegree
*F_PI
/180.0;
644 double fX
=fUnitRadius
*rtl::math::cos(fAnglePi
);
645 double fY
=fUnitRadius
*rtl::math::sin(fAnglePi
);
648 switch(m_eNormalAxis
)
657 default: //NormalAxis_Z
661 //!! applying matrix to vector does ignore translation, so it is important to use a B3DPoint here instead of B3DVector
662 ::basegfx::B3DPoint
aPoint(fX
,fY
,fZ
);
663 ::basegfx::B3DPoint aRet
= m_aUnitCartesianToScene
* aPoint
;
664 return B3DPointToPosition3D(aRet
);
667 drawing::Position3D
PolarPlottingPositionHelper::transformAngleRadiusToScene( double fLogicValueOnAngleAxis
, double fLogicValueOnRadiusAxis
, double fLogicZ
, bool bDoScaling
) const
669 double fUnitAngleDegree
= this->transformToAngleDegree(fLogicValueOnAngleAxis
,bDoScaling
);
670 double fUnitRadius
= this->transformToRadius(fLogicValueOnRadiusAxis
,bDoScaling
);
672 return transformUnitCircleToScene( fUnitAngleDegree
, fUnitRadius
, fLogicZ
, bDoScaling
);
675 double PolarPlottingPositionHelper::getOuterLogicRadius() const
677 const ExplicitScaleData
& rScale
= m_bSwapXAndY
? m_aScales
[0] : m_aScales
[1];
678 if( AxisOrientation_MATHEMATICAL
==rScale
.Orientation
)
679 return rScale
.Maximum
;
681 return rScale
.Minimum
;
684 bool PlottingPositionHelper::isPercentY() const
686 return m_aScales
[1].AxisType
==AxisType::PERCENT
;
689 double PlottingPositionHelper::getBaseValueY() const
691 return m_aScales
[1].Origin
;
694 void PlottingPositionHelper::setTimeResolution( long nTimeResolution
, const Date
& rNullDate
)
696 m_nTimeResolution
= nTimeResolution
;
697 m_aNullDate
= rNullDate
;
699 //adapt category width
700 double fCategoryWidth
= 1.0;
701 if( !m_aScales
.empty() )
703 if( m_aScales
[0].AxisType
== ::com::sun::star::chart2::AxisType::DATE
)
706 if( nTimeResolution
== ::com::sun::star::chart::TimeUnit::YEAR
)
708 const double fMonthCount
= 12.0;//todo: this depends on the DateScaling and must be adjusted in case we use more generic calendars in future
709 fCategoryWidth
= fMonthCount
;
713 setScaledCategoryWidth(fCategoryWidth
);
716 void PlottingPositionHelper::setScaledCategoryWidth( double fScaledCategoryWidth
)
718 m_fScaledCategoryWidth
= fScaledCategoryWidth
;
720 void PlottingPositionHelper::AllowShiftXAxisPos( bool bAllowShift
)
722 m_bAllowShiftXAxisPos
= bAllowShift
;
724 void PlottingPositionHelper::AllowShiftZAxisPos( bool bAllowShift
)
726 m_bAllowShiftZAxisPos
= bAllowShift
;
731 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */