1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <drawinglayer/primitive2d/sceneprimitive2d.hxx>
21 #include <basegfx/polygon/b2dpolygontools.hxx>
22 #include <basegfx/polygon/b2dpolygon.hxx>
23 #include <basegfx/matrix/b2dhommatrix.hxx>
24 #include <drawinglayer/attribute/sdrlightattribute3d.hxx>
25 #include <drawinglayer/primitive2d/bitmapprimitive2d.hxx>
26 #include <drawinglayer/primitive2d/PolygonHairlinePrimitive2D.hxx>
27 #include <processor3d/zbufferprocessor3d.hxx>
28 #include <processor3d/shadow3dextractor.hxx>
29 #include <drawinglayer/geometry/viewinformation2d.hxx>
30 #include <drawinglayer/primitive2d/drawinglayer_primitivetypes2d.hxx>
31 #include <svtools/optionsdrawinglayer.hxx>
32 #include <processor3d/geometry2dextractor.hxx>
33 #include <basegfx/raster/bzpixelraster.hxx>
35 #include <vcl/BitmapTools.hxx>
36 #include <comphelper/threadpool.hxx>
37 #include <toolkit/helper/vclunohelper.hxx>
39 using namespace com::sun::star
;
43 BitmapEx
BPixelRasterToBitmapEx(const basegfx::BZPixelRaster
& rRaster
, sal_uInt16 mnAntiAlialize
)
46 const sal_uInt32
nWidth(mnAntiAlialize
? rRaster
.getWidth()/mnAntiAlialize
: rRaster
.getWidth());
47 const sal_uInt32
nHeight(mnAntiAlialize
? rRaster
.getHeight()/mnAntiAlialize
: rRaster
.getHeight());
51 const Size
aDestSize(nWidth
, nHeight
);
52 vcl::bitmap::RawBitmap
aContent(aDestSize
, 32);
56 const sal_uInt16
nDivisor(mnAntiAlialize
* mnAntiAlialize
);
58 for(sal_uInt32
y(0); y
< nHeight
; y
++)
60 for(sal_uInt32
x(0); x
< nWidth
; x
++)
66 sal_uInt32
nIndex(rRaster
.getIndexFromXY(x
* mnAntiAlialize
, y
* mnAntiAlialize
));
68 for(sal_uInt32
c(0); c
< mnAntiAlialize
; c
++)
70 for(sal_uInt32
d(0); d
< mnAntiAlialize
; d
++)
72 const basegfx::BPixel
& rPixel(rRaster
.getBPixel(nIndex
++));
73 nRed
+= rPixel
.getRed();
74 nGreen
+= rPixel
.getGreen();
75 nBlue
+= rPixel
.getBlue();
76 nAlpha
+= rPixel
.getAlpha();
79 nIndex
+= rRaster
.getWidth() - mnAntiAlialize
;
86 aContent
.SetPixel(y
, x
, Color(ColorAlpha
,
87 static_cast<sal_uInt8
>(nAlpha
),
88 static_cast<sal_uInt8
>(nRed
/ nDivisor
),
89 static_cast<sal_uInt8
>(nGreen
/ nDivisor
),
90 static_cast<sal_uInt8
>(nBlue
/ nDivisor
) ));
93 aContent
.SetPixel(y
, x
, Color(ColorAlpha
, 0, 0, 0, 0));
101 for(sal_uInt32
y(0); y
< nHeight
; y
++)
103 for(sal_uInt32
x(0); x
< nWidth
; x
++)
105 const basegfx::BPixel
& rPixel(rRaster
.getBPixel(nIndex
++));
107 if(rPixel
.getAlpha())
109 aContent
.SetPixel(y
, x
, Color(ColorAlpha
, rPixel
.getAlpha(), rPixel
.getRed(), rPixel
.getGreen(), rPixel
.getBlue()));
112 aContent
.SetPixel(y
, x
, Color(ColorAlpha
, 0, 0, 0, 0));
117 aRetval
= vcl::bitmap::CreateFromData(std::move(aContent
));
119 // #i101811# set PrefMapMode and PrefSize at newly created Bitmap
120 aRetval
.SetPrefMapMode(MapMode(MapUnit::MapPixel
));
121 aRetval
.SetPrefSize(Size(nWidth
, nHeight
));
126 } // end of anonymous namespace
128 namespace drawinglayer::primitive2d
130 bool ScenePrimitive2D::impGetShadow3D() const
133 if(!mbShadow3DChecked
&& !getChildren3D().empty())
135 basegfx::B3DVector aLightNormal
;
136 const double fShadowSlant(getSdrSceneAttribute().getShadowSlant());
137 const basegfx::B3DRange
aScene3DRange(getChildren3D().getB3DRange(getViewInformation3D()));
139 if(!maSdrLightingAttribute
.getLightVector().empty())
141 // get light normal from first light and normalize
142 aLightNormal
= maSdrLightingAttribute
.getLightVector()[0].getDirection();
143 aLightNormal
.normalize();
146 // create shadow extraction processor
147 processor3d::Shadow3DExtractingProcessor
aShadowProcessor(
148 getViewInformation3D(),
149 getObjectTransformation(),
154 // process local primitives
155 aShadowProcessor
.process(getChildren3D());
157 // fetch result and set checked flag
158 const_cast< ScenePrimitive2D
* >(this)->maShadowPrimitives
= aShadowProcessor
.getPrimitive2DSequence();
159 const_cast< ScenePrimitive2D
* >(this)->mbShadow3DChecked
= true;
162 // return if there are shadow primitives
163 return !maShadowPrimitives
.empty();
166 void ScenePrimitive2D::calculateDiscreteSizes(
167 const geometry::ViewInformation2D
& rViewInformation
,
168 basegfx::B2DRange
& rDiscreteRange
,
169 basegfx::B2DRange
& rVisibleDiscreteRange
,
170 basegfx::B2DRange
& rUnitVisibleRange
) const
172 // use unit range and transform to discrete coordinates
173 rDiscreteRange
= basegfx::B2DRange(0.0, 0.0, 1.0, 1.0);
174 rDiscreteRange
.transform(rViewInformation
.getObjectToViewTransformation() * getObjectTransformation());
176 // clip it against discrete Viewport (if set)
177 rVisibleDiscreteRange
= rDiscreteRange
;
179 if(!rViewInformation
.getViewport().isEmpty())
181 rVisibleDiscreteRange
.intersect(rViewInformation
.getDiscreteViewport());
184 if(rVisibleDiscreteRange
.isEmpty())
186 rUnitVisibleRange
= rVisibleDiscreteRange
;
190 // create UnitVisibleRange containing unit range values [0.0 .. 1.0] describing
191 // the relative position of rVisibleDiscreteRange inside rDiscreteRange
192 const double fDiscreteScaleFactorX(basegfx::fTools::equalZero(rDiscreteRange
.getWidth()) ? 1.0 : 1.0 / rDiscreteRange
.getWidth());
193 const double fDiscreteScaleFactorY(basegfx::fTools::equalZero(rDiscreteRange
.getHeight()) ? 1.0 : 1.0 / rDiscreteRange
.getHeight());
195 const double fMinX(basegfx::fTools::equal(rVisibleDiscreteRange
.getMinX(), rDiscreteRange
.getMinX())
197 : (rVisibleDiscreteRange
.getMinX() - rDiscreteRange
.getMinX()) * fDiscreteScaleFactorX
);
198 const double fMinY(basegfx::fTools::equal(rVisibleDiscreteRange
.getMinY(), rDiscreteRange
.getMinY())
200 : (rVisibleDiscreteRange
.getMinY() - rDiscreteRange
.getMinY()) * fDiscreteScaleFactorY
);
202 const double fMaxX(basegfx::fTools::equal(rVisibleDiscreteRange
.getMaxX(), rDiscreteRange
.getMaxX())
204 : (rVisibleDiscreteRange
.getMaxX() - rDiscreteRange
.getMinX()) * fDiscreteScaleFactorX
);
205 const double fMaxY(basegfx::fTools::equal(rVisibleDiscreteRange
.getMaxY(), rDiscreteRange
.getMaxY())
207 : (rVisibleDiscreteRange
.getMaxY() - rDiscreteRange
.getMinY()) * fDiscreteScaleFactorY
);
209 rUnitVisibleRange
= basegfx::B2DRange(fMinX
, fMinY
, fMaxX
, fMaxY
);
213 void ScenePrimitive2D::create2DDecomposition(Primitive2DContainer
& rContainer
, const geometry::ViewInformation2D
& rViewInformation
) const
215 // create 2D shadows from contained 3D primitives. This creates the shadow primitives on demand and tells if
216 // there are some or not. Do this at start, the shadow might still be visible even when the scene is not
220 const basegfx::B2DRange
aShadow2DRange(maShadowPrimitives
.getB2DRange(rViewInformation
));
221 const basegfx::B2DRange
aViewRange(
222 rViewInformation
.getViewport());
224 if(aViewRange
.isEmpty() || aShadow2DRange
.overlaps(aViewRange
))
226 // add extracted 2d shadows (before 3d scene creations itself)
227 rContainer
.append(maShadowPrimitives
);
231 // get the involved ranges (see helper method calculateDiscreteSizes for details)
232 basegfx::B2DRange aDiscreteRange
;
233 basegfx::B2DRange aVisibleDiscreteRange
;
234 basegfx::B2DRange aUnitVisibleRange
;
236 calculateDiscreteSizes(rViewInformation
, aDiscreteRange
, aVisibleDiscreteRange
, aUnitVisibleRange
);
238 if(aVisibleDiscreteRange
.isEmpty())
241 // test if discrete view size (pixel) maybe too big and limit it
242 double fViewSizeX(aVisibleDiscreteRange
.getWidth());
243 double fViewSizeY(aVisibleDiscreteRange
.getHeight());
244 const double fViewVisibleArea(fViewSizeX
* fViewSizeY
);
245 const double fMaximumVisibleArea(SvtOptionsDrawinglayer::GetQuadratic3DRenderLimit());
246 double fReduceFactor(1.0);
248 if(fViewVisibleArea
> fMaximumVisibleArea
)
250 fReduceFactor
= sqrt(fMaximumVisibleArea
/ fViewVisibleArea
);
251 fViewSizeX
*= fReduceFactor
;
252 fViewSizeY
*= fReduceFactor
;
255 if(rViewInformation
.getReducedDisplayQuality())
257 // when reducing the visualisation is allowed (e.g. an OverlayObject
258 // only needed for dragging), reduce resolution extra
259 // to speed up dragging interactions
260 const double fArea(fViewSizeX
* fViewSizeY
);
263 double fReducedVisualisationFactor(1.0 / (sqrt(fArea
) * (1.0 / 170.0)));
265 if(fReducedVisualisationFactor
> 1.0)
267 fReducedVisualisationFactor
= 1.0;
269 else if(fReducedVisualisationFactor
< 0.20)
271 fReducedVisualisationFactor
= 0.20;
274 if(fReducedVisualisationFactor
!= 1.0)
276 fReduceFactor
*= fReducedVisualisationFactor
;
281 // determine the oversample value
282 static const sal_uInt16
nDefaultOversampleValue(3);
283 const sal_uInt16
nOversampleValue(SvtOptionsDrawinglayer::IsAntiAliasing() ? nDefaultOversampleValue
: 0);
285 geometry::ViewInformation3D
aViewInformation3D(getViewInformation3D());
287 // calculate a transformation from DiscreteRange to evtl. rotated/sheared content.
288 // Start with full transformation from object to discrete units
289 basegfx::B2DHomMatrix
aObjToUnit(rViewInformation
.getObjectToViewTransformation() * getObjectTransformation());
291 // bring to unit coordinates by applying inverse DiscreteRange
292 aObjToUnit
.translate(-aDiscreteRange
.getMinX(), -aDiscreteRange
.getMinY());
293 if (aDiscreteRange
.getWidth() != 0.0 && aDiscreteRange
.getHeight() != 0.0)
295 aObjToUnit
.scale(1.0 / aDiscreteRange
.getWidth(), 1.0 / aDiscreteRange
.getHeight());
298 // calculate transformed user coordinate system
299 const basegfx::B2DPoint
aStandardNull(0.0, 0.0);
300 const basegfx::B2DPoint
aUnitRangeTopLeft(aObjToUnit
* aStandardNull
);
301 const basegfx::B2DVector
aStandardXAxis(1.0, 0.0);
302 const basegfx::B2DVector
aUnitRangeXAxis(aObjToUnit
* aStandardXAxis
);
303 const basegfx::B2DVector
aStandardYAxis(0.0, 1.0);
304 const basegfx::B2DVector
aUnitRangeYAxis(aObjToUnit
* aStandardYAxis
);
306 if(!aUnitRangeTopLeft
.equal(aStandardNull
) || !aUnitRangeXAxis
.equal(aStandardXAxis
) || !aUnitRangeYAxis
.equal(aStandardYAxis
))
308 // build transformation from unit range to user coordinate system; the unit range
309 // X and Y axes are the column vectors, the null point is the offset
310 basegfx::B2DHomMatrix aUnitRangeToUser
;
312 aUnitRangeToUser
.set3x2(
313 aUnitRangeXAxis
.getX(), aUnitRangeYAxis
.getX(), aUnitRangeTopLeft
.getX(),
314 aUnitRangeXAxis
.getY(), aUnitRangeYAxis
.getY(), aUnitRangeTopLeft
.getY());
316 // decompose to allow to apply this to the 3D transformation
317 basegfx::B2DVector aScale
, aTranslate
;
318 double fRotate
, fShearX
;
319 aUnitRangeToUser
.decompose(aScale
, aTranslate
, fRotate
, fShearX
);
321 // apply before DeviceToView and after Projection, 3D is in range [-1.0 .. 1.0] in X,Y and Z
322 // and not yet flipped in Y
323 basegfx::B3DHomMatrix
aExtendedProjection(aViewInformation3D
.getProjection());
325 // bring to unit coordinates, flip Y, leave Z unchanged
326 aExtendedProjection
.scale(0.5, -0.5, 1.0);
327 aExtendedProjection
.translate(0.5, 0.5, 0.0);
329 // apply extra; Y is flipped now, go with positive shear and rotate values
330 aExtendedProjection
.scale(aScale
.getX(), aScale
.getY(), 1.0);
331 aExtendedProjection
.shearXZ(fShearX
, 0.0);
332 aExtendedProjection
.rotate(0.0, 0.0, fRotate
);
333 aExtendedProjection
.translate(aTranslate
.getX(), aTranslate
.getY(), 0.0);
335 // back to state after projection
336 aExtendedProjection
.translate(-0.5, -0.5, 0.0);
337 aExtendedProjection
.scale(2.0, -2.0, 1.0);
339 aViewInformation3D
= geometry::ViewInformation3D(
340 aViewInformation3D
.getObjectTransformation(),
341 aViewInformation3D
.getOrientation(),
343 aViewInformation3D
.getDeviceToView(),
344 aViewInformation3D
.getViewTime(),
345 aViewInformation3D
.getExtendedInformationSequence());
349 // calculate logic render size in world coordinates for usage in renderer
350 const basegfx::B2DHomMatrix
& aInverseOToV(rViewInformation
.getInverseObjectToViewTransformation());
351 const double fLogicX((aInverseOToV
* basegfx::B2DVector(aDiscreteRange
.getWidth() * fReduceFactor
, 0.0)).getLength());
352 const double fLogicY((aInverseOToV
* basegfx::B2DVector(0.0, aDiscreteRange
.getHeight() * fReduceFactor
)).getLength());
354 // generate ViewSizes
355 const double fFullViewSizeX((rViewInformation
.getObjectToViewTransformation() * basegfx::B2DVector(fLogicX
, 0.0)).getLength());
356 const double fFullViewSizeY((rViewInformation
.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fLogicY
)).getLength());
358 // generate RasterWidth and RasterHeight for visible part
359 const sal_Int32
nRasterWidth(basegfx::fround(fFullViewSizeX
* aUnitVisibleRange
.getWidth()) + 1);
360 const sal_Int32
nRasterHeight(basegfx::fround(fFullViewSizeY
* aUnitVisibleRange
.getHeight()) + 1);
362 if(!(nRasterWidth
&& nRasterHeight
))
365 // create view unit buffer
366 basegfx::BZPixelRaster
aBZPixelRaster(
367 nOversampleValue
? nRasterWidth
* nOversampleValue
: nRasterWidth
,
368 nOversampleValue
? nRasterHeight
* nOversampleValue
: nRasterHeight
);
370 // check for parallel execution possibilities
371 static bool bMultithreadAllowed
= false; // loplugin:constvars:ignore
372 sal_Int32
nThreadCount(0);
373 comphelper::ThreadPool
& rThreadPool(comphelper::ThreadPool::getSharedOptimalPool());
375 if(bMultithreadAllowed
)
377 nThreadCount
= rThreadPool
.getWorkerCount();
381 // at least use 10px per processor, so limit number of processors to
382 // target pixel size divided by 10 (which might be zero what is okay)
383 nThreadCount
= std::min(nThreadCount
, nRasterHeight
/ 10);
389 class Executor
: public comphelper::ThreadTask
392 std::unique_ptr
<processor3d::ZBufferProcessor3D
> mpZBufferProcessor3D
;
393 const primitive3d::Primitive3DContainer
& mrChildren3D
;
397 std::shared_ptr
<comphelper::ThreadTaskTag
> const & rTag
,
398 std::unique_ptr
<processor3d::ZBufferProcessor3D
> pZBufferProcessor3D
,
399 const primitive3d::Primitive3DContainer
& rChildren3D
)
400 : comphelper::ThreadTask(rTag
),
401 mpZBufferProcessor3D(std::move(pZBufferProcessor3D
)),
402 mrChildren3D(rChildren3D
)
406 virtual void doWork() override
408 mpZBufferProcessor3D
->process(mrChildren3D
);
409 mpZBufferProcessor3D
->finish();
410 mpZBufferProcessor3D
.reset();
414 const sal_uInt32
nLinesPerThread(aBZPixelRaster
.getHeight() / nThreadCount
);
415 std::shared_ptr
<comphelper::ThreadTaskTag
> aTag
= comphelper::ThreadPool::createThreadTaskTag();
417 for(sal_Int32
a(0); a
< nThreadCount
; a
++)
419 std::unique_ptr
<processor3d::ZBufferProcessor3D
> pNewZBufferProcessor3D(new processor3d::ZBufferProcessor3D(
421 getSdrSceneAttribute(),
422 getSdrLightingAttribute(),
429 a
+ 1 == nThreadCount
? aBZPixelRaster
.getHeight() : nLinesPerThread
* (a
+ 1)));
430 std::unique_ptr
<Executor
> pExecutor(new Executor(aTag
, std::move(pNewZBufferProcessor3D
), getChildren3D()));
431 rThreadPool
.pushTask(std::move(pExecutor
));
434 rThreadPool
.waitUntilDone(aTag
);
438 // use default 3D primitive processor to create BitmapEx for aUnitVisiblePart and process
439 processor3d::ZBufferProcessor3D
aZBufferProcessor3D(
441 getSdrSceneAttribute(),
442 getSdrLightingAttribute(),
449 aBZPixelRaster
.getHeight());
451 aZBufferProcessor3D
.process(getChildren3D());
452 aZBufferProcessor3D
.finish();
455 const_cast< ScenePrimitive2D
* >(this)->maOldRenderedBitmap
= BPixelRasterToBitmapEx(aBZPixelRaster
, nOversampleValue
);
456 const Size
aBitmapSizePixel(maOldRenderedBitmap
.GetSizePixel());
458 if(!(aBitmapSizePixel
.getWidth() && aBitmapSizePixel
.getHeight()))
461 // create transform for the created bitmap in discrete coordinates first.
462 basegfx::B2DHomMatrix aNew2DTransform
;
464 aNew2DTransform
.set(0, 0, aVisibleDiscreteRange
.getWidth());
465 aNew2DTransform
.set(1, 1, aVisibleDiscreteRange
.getHeight());
466 aNew2DTransform
.set(0, 2, aVisibleDiscreteRange
.getMinX());
467 aNew2DTransform
.set(1, 2, aVisibleDiscreteRange
.getMinY());
469 // transform back to world coordinates for usage in primitive creation
470 aNew2DTransform
*= aInverseOToV
;
472 // create bitmap primitive and add
473 rContainer
.push_back(
474 new BitmapPrimitive2D(
478 // test: Allow to add an outline in the debugger when tests are needed
479 static bool bAddOutlineToCreated3DSceneRepresentation(false); // loplugin:constvars:ignore
481 if(bAddOutlineToCreated3DSceneRepresentation
)
483 basegfx::B2DPolygon
aOutline(basegfx::utils::createUnitPolygon());
484 aOutline
.transform(aNew2DTransform
);
485 rContainer
.push_back(new PolygonHairlinePrimitive2D(std::move(aOutline
), basegfx::BColor(1.0, 0.0, 0.0)));
489 Primitive2DContainer
ScenePrimitive2D::getGeometry2D() const
491 Primitive2DContainer aRetval
;
493 // create 2D projected geometry from 3D geometry
494 if(!getChildren3D().empty())
496 // create 2D geometry extraction processor
497 processor3d::Geometry2DExtractingProcessor
aGeometryProcessor(
498 getViewInformation3D(),
499 getObjectTransformation());
501 // process local primitives
502 aGeometryProcessor
.process(getChildren3D());
505 aRetval
= aGeometryProcessor
.getPrimitive2DSequence();
511 Primitive2DContainer
ScenePrimitive2D::getShadow2D() const
513 Primitive2DContainer aRetval
;
515 // create 2D shadows from contained 3D primitives
518 // add extracted 2d shadows (before 3d scene creations itself)
519 aRetval
= maShadowPrimitives
;
525 bool ScenePrimitive2D::tryToCheckLastVisualisationDirectHit(const basegfx::B2DPoint
& rLogicHitPoint
, bool& o_rResult
) const
527 if(maOldRenderedBitmap
.IsEmpty() || maOldUnitVisiblePart
.isEmpty())
530 basegfx::B2DHomMatrix
aInverseSceneTransform(getObjectTransformation());
531 aInverseSceneTransform
.invert();
532 const basegfx::B2DPoint
aRelativePoint(aInverseSceneTransform
* rLogicHitPoint
);
534 if(!maOldUnitVisiblePart
.isInside(aRelativePoint
))
537 // calculate coordinates relative to visualized part
538 double fDivisorX(maOldUnitVisiblePart
.getWidth());
539 double fDivisorY(maOldUnitVisiblePart
.getHeight());
541 if(basegfx::fTools::equalZero(fDivisorX
))
546 if(basegfx::fTools::equalZero(fDivisorY
))
551 const double fRelativeX((aRelativePoint
.getX() - maOldUnitVisiblePart
.getMinX()) / fDivisorX
);
552 const double fRelativeY((aRelativePoint
.getY() - maOldUnitVisiblePart
.getMinY()) / fDivisorY
);
554 // combine with real BitmapSizePixel to get bitmap coordinates
555 const Size
aBitmapSizePixel(maOldRenderedBitmap
.GetSizePixel());
556 const sal_Int32
nX(basegfx::fround(fRelativeX
* aBitmapSizePixel
.Width()));
557 const sal_Int32
nY(basegfx::fround(fRelativeY
* aBitmapSizePixel
.Height()));
559 // try to get a statement about transparency in that pixel
560 o_rResult
= (0 != maOldRenderedBitmap
.GetAlpha(nX
, nY
));
564 ScenePrimitive2D::ScenePrimitive2D(
565 primitive3d::Primitive3DContainer aChildren3D
,
566 attribute::SdrSceneAttribute aSdrSceneAttribute
,
567 attribute::SdrLightingAttribute aSdrLightingAttribute
,
568 basegfx::B2DHomMatrix aObjectTransformation
,
569 geometry::ViewInformation3D aViewInformation3D
)
570 : mxChildren3D(std::move(aChildren3D
)),
571 maSdrSceneAttribute(std::move(aSdrSceneAttribute
)),
572 maSdrLightingAttribute(std::move(aSdrLightingAttribute
)),
573 maObjectTransformation(std::move(aObjectTransformation
)),
574 maViewInformation3D(std::move(aViewInformation3D
)),
575 mbShadow3DChecked(false),
576 mfOldDiscreteSizeX(0.0),
577 mfOldDiscreteSizeY(0.0)
581 bool ScenePrimitive2D::operator==(const BasePrimitive2D
& rPrimitive
) const
583 if(BufferedDecompositionPrimitive2D::operator==(rPrimitive
))
585 const ScenePrimitive2D
& rCompare
= static_cast<const ScenePrimitive2D
&>(rPrimitive
);
587 return (getChildren3D() == rCompare
.getChildren3D()
588 && getSdrSceneAttribute() == rCompare
.getSdrSceneAttribute()
589 && getSdrLightingAttribute() == rCompare
.getSdrLightingAttribute()
590 && getObjectTransformation() == rCompare
.getObjectTransformation()
591 && getViewInformation3D() == rCompare
.getViewInformation3D());
597 basegfx::B2DRange
ScenePrimitive2D::getB2DRange(const geometry::ViewInformation2D
& rViewInformation
) const
599 // transform unit range to discrete coordinate range
600 basegfx::B2DRange
aRetval(0.0, 0.0, 1.0, 1.0);
601 aRetval
.transform(rViewInformation
.getObjectToViewTransformation() * getObjectTransformation());
603 // force to discrete expanded bounds (it grows, so expanding works perfectly well)
604 aRetval
.expand(basegfx::B2DTuple(floor(aRetval
.getMinX()), floor(aRetval
.getMinY())));
605 aRetval
.expand(basegfx::B2DTuple(ceil(aRetval
.getMaxX()), ceil(aRetval
.getMaxY())));
607 // transform back from discrete (view) to world coordinates
608 aRetval
.transform(rViewInformation
.getInverseObjectToViewTransformation());
610 // expand by evtl. existing shadow primitives
613 const basegfx::B2DRange
aShadow2DRange(maShadowPrimitives
.getB2DRange(rViewInformation
));
615 if(!aShadow2DRange
.isEmpty())
617 aRetval
.expand(aShadow2DRange
);
624 void ScenePrimitive2D::get2DDecomposition(Primitive2DDecompositionVisitor
& rVisitor
, const geometry::ViewInformation2D
& rViewInformation
) const
626 // get the involved ranges (see helper method calculateDiscreteSizes for details)
627 basegfx::B2DRange aDiscreteRange
;
628 basegfx::B2DRange aUnitVisibleRange
;
629 bool bNeedNewDecomposition(false);
630 bool bDiscreteSizesAreCalculated(false);
632 if(!getBuffered2DDecomposition().empty())
634 basegfx::B2DRange aVisibleDiscreteRange
;
635 calculateDiscreteSizes(rViewInformation
, aDiscreteRange
, aVisibleDiscreteRange
, aUnitVisibleRange
);
636 bDiscreteSizesAreCalculated
= true;
638 // needs to be painted when the new part is not part of the last
640 if(!maOldUnitVisiblePart
.isInside(aUnitVisibleRange
))
642 bNeedNewDecomposition
= true;
645 // display has changed and cannot be reused when resolution got bigger. It
646 // can be reused when resolution got smaller, though.
647 if(!bNeedNewDecomposition
)
649 if(basegfx::fTools::more(aDiscreteRange
.getWidth(), mfOldDiscreteSizeX
) ||
650 basegfx::fTools::more(aDiscreteRange
.getHeight(), mfOldDiscreteSizeY
))
652 bNeedNewDecomposition
= true;
657 if(bNeedNewDecomposition
)
659 // conditions of last local decomposition have changed, delete
660 const_cast< ScenePrimitive2D
* >(this)->setBuffered2DDecomposition(Primitive2DContainer());
663 if(getBuffered2DDecomposition().empty())
665 if(!bDiscreteSizesAreCalculated
)
667 basegfx::B2DRange aVisibleDiscreteRange
;
668 calculateDiscreteSizes(rViewInformation
, aDiscreteRange
, aVisibleDiscreteRange
, aUnitVisibleRange
);
671 // remember last used NewDiscreteSize and NewUnitVisiblePart
672 ScenePrimitive2D
* pThat
= const_cast< ScenePrimitive2D
* >(this);
673 pThat
->mfOldDiscreteSizeX
= aDiscreteRange
.getWidth();
674 pThat
->mfOldDiscreteSizeY
= aDiscreteRange
.getHeight();
675 pThat
->maOldUnitVisiblePart
= aUnitVisibleRange
;
678 // use parent implementation
679 BufferedDecompositionPrimitive2D::get2DDecomposition(rVisitor
, rViewInformation
);
683 sal_uInt32
ScenePrimitive2D::getPrimitive2DID() const
685 return PRIMITIVE2D_ID_SCENEPRIMITIVE2D
;
688 } // end of namespace
690 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */