calc: on editing invalidation of view with different zoom is wrong
[LibreOffice.git] / tools / source / generic / fract.cxx
blob4acd46cec40485a33d5f406a1ba9ad74381f7418
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <tools/fract.hxx>
21 #include <tools/debug.hxx>
22 #include <o3tl/hash_combine.hxx>
23 #include <o3tl/safeint.hxx>
24 #include <sal/log.hxx>
25 #include <osl/diagnose.h>
27 #include <algorithm>
28 #include <cmath>
29 #include <numeric>
31 #include <boost/rational.hpp>
33 #ifdef _MSC_VER
34 #include <intrin.h>
35 #endif
37 static boost::rational<sal_Int32> rational_FromDouble(double dVal);
38 static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits);
39 static int impl_NumberOfBits( sal_uInt32 nNum );
41 static boost::rational<sal_Int32> toRational(sal_Int32 n, sal_Int32 d)
43 // https://github.com/boostorg/boost/issues/335 when these are std::numeric_limits<sal_Int32>::min
44 if (n == d)
45 return 1;
46 // tdf#144319 avoid boost::bad_rational e.g. if numerator=-476741369, denominator=-2147483648
47 if (d < -std::numeric_limits<sal_Int32>::max())
48 return 0;
49 return boost::rational<sal_Int32>(n, d);
52 // Initialized by setting nNum as nominator and nDen as denominator
53 // Negative values in the denominator are invalid and cause the
54 // inversion of both nominator and denominator signs
55 // in order to return the correct value.
56 Fraction::Fraction( sal_Int64 nNum, sal_Int64 nDen ) : mnNumerator(nNum), mnDenominator(nDen)
58 assert( nNum >= std::numeric_limits<sal_Int32>::min() );
59 assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
60 assert( nDen >= std::numeric_limits<sal_Int32>::min() );
61 assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
62 if ( nDen == 0 )
64 mbValid = false;
65 SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
66 return;
68 if ((nDen == -1 && nNum == std::numeric_limits<sal_Int32>::min()) ||
69 (nNum == -1 && nDen == std::numeric_limits<sal_Int32>::min()))
71 mbValid = false;
72 SAL_WARN("tools.fraction", "'Fraction(" << nNum << "," << nDen << ")' invalid fraction created");
73 return;
77 /**
78 * only here to prevent passing of NaN
80 Fraction::Fraction( double nNum, double nDen ) : mnNumerator(sal_Int64(nNum)), mnDenominator(sal_Int64(nDen))
82 assert( !std::isnan(nNum) );
83 assert( !std::isnan(nDen) );
84 assert( nNum >= std::numeric_limits<sal_Int32>::min() );
85 assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
86 assert( nDen >= std::numeric_limits<sal_Int32>::min() );
87 assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
88 if ( nDen == 0 )
90 mbValid = false;
91 SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
92 return;
96 Fraction::Fraction( double dVal )
98 try
100 boost::rational<sal_Int32> v = rational_FromDouble( dVal );
101 mnNumerator = v.numerator();
102 mnDenominator = v.denominator();
104 catch (const boost::bad_rational&)
106 mbValid = false;
107 SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" );
111 Fraction::operator double() const
113 if (!mbValid)
115 SAL_WARN( "tools.fraction", "'double()' on invalid fraction" );
116 return 0.0;
119 return boost::rational_cast<double>(toRational(mnNumerator, mnDenominator));
122 // This methods first validates both values.
123 // If one of the arguments is invalid, the whole operation is invalid.
124 // After computation detect if result overflows a sal_Int32 value
125 // which cause the operation to be marked as invalid
126 Fraction& Fraction::operator += ( const Fraction& rVal )
128 if ( !rVal.mbValid )
129 mbValid = false;
131 if ( !mbValid )
133 SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" );
134 return *this;
137 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
138 a += toRational(rVal.mnNumerator, rVal.mnDenominator);
139 mnNumerator = a.numerator();
140 mnDenominator = a.denominator();
142 return *this;
145 Fraction& Fraction::operator -= ( const Fraction& rVal )
147 if ( !rVal.mbValid )
148 mbValid = false;
150 if ( !mbValid )
152 SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" );
153 return *this;
156 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
157 a -= toRational(rVal.mnNumerator, rVal.mnDenominator);
158 mnNumerator = a.numerator();
159 mnDenominator = a.denominator();
161 return *this;
164 namespace
166 bool checked_multiply_by(boost::rational<sal_Int32>& i, const boost::rational<sal_Int32>& r)
168 // Protect against self-modification
169 sal_Int32 num = r.numerator();
170 sal_Int32 den = r.denominator();
172 // Fast-path if the number of bits in input is < the number of bits in the output, overflow cannot happen
173 // This is considerably faster than repeated std::gcd() operations
174 if ((impl_NumberOfBits(std::abs(i.numerator())) + impl_NumberOfBits(std::abs(r.numerator()))) < 32 &&
175 (impl_NumberOfBits(std::abs(i.denominator())) + impl_NumberOfBits(std::abs(r.denominator()))) < 32)
177 i *= r;
178 return false;
181 // Avoid overflow and preserve normalization
182 sal_Int32 gcd1 = std::gcd(i.numerator(), den);
183 sal_Int32 gcd2 = std::gcd(num, i.denominator());
185 if (!gcd1 || !gcd2)
186 return true;
188 bool fail = false;
189 fail |= o3tl::checked_multiply(i.numerator() / gcd1, num / gcd2, num);
190 fail |= o3tl::checked_multiply(i.denominator() / gcd2, den / gcd1, den);
192 if (!fail)
193 i.assign(num, den);
195 return fail;
199 Fraction& Fraction::operator *= ( const Fraction& rVal )
201 if ( !rVal.mbValid )
202 mbValid = false;
204 if ( !mbValid )
206 SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" );
207 return *this;
210 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
211 boost::rational<sal_Int32> b = toRational(rVal.mnNumerator, rVal.mnDenominator);
212 bool bFail = checked_multiply_by(a, b);
213 mnNumerator = a.numerator();
214 mnDenominator = a.denominator();
216 if (bFail)
218 mbValid = false;
221 return *this;
224 Fraction& Fraction::operator /= ( const Fraction& rVal )
226 if ( !rVal.mbValid )
227 mbValid = false;
229 if ( !mbValid )
231 SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" );
232 return *this;
235 boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
236 a /= toRational(rVal.mnNumerator, rVal.mnDenominator);
237 mnNumerator = a.numerator();
238 mnDenominator = a.denominator();
240 return *this;
243 /** Inaccurate cancellation for a fraction.
245 Clip both nominator and denominator to said number of bits. If
246 either of those already have equal or less number of bits used,
247 this method does nothing.
249 @param nSignificantBits denotes, how many significant binary
250 digits to maintain, in both nominator and denominator.
252 @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
253 largest error occurs with the following pair of values:
255 binary 1000000011111111111111111111111b/1000000000000000000000000000000b
256 = 1082130431/1073741824
257 = approx. 1.007812499
259 A ReduceInaccurate(8) yields 1/1.
261 void Fraction::ReduceInaccurate( unsigned nSignificantBits )
263 if ( !mbValid )
265 SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" );
266 return;
269 if ( !mnNumerator )
270 return;
272 auto a = toRational(mnNumerator, mnDenominator);
273 rational_ReduceInaccurate(a, nSignificantBits);
274 mnNumerator = a.numerator();
275 mnDenominator = a.denominator();
278 sal_Int32 Fraction::GetNumerator() const
280 if ( !mbValid )
282 SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" );
283 return 0;
285 return mnNumerator;
288 sal_Int32 Fraction::GetDenominator() const
290 if ( !mbValid )
292 SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" );
293 return -1;
295 return mnDenominator;
298 Fraction::operator sal_Int32() const
300 if ( !mbValid )
302 SAL_WARN( "tools.fraction", "'operator sal_Int32()' on invalid fraction" );
303 return 0;
305 return boost::rational_cast<sal_Int32>(toRational(mnNumerator, mnDenominator));
308 Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 )
310 Fraction aErg( rVal1 );
311 aErg += rVal2;
312 return aErg;
315 Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 )
317 Fraction aErg( rVal1 );
318 aErg -= rVal2;
319 return aErg;
322 Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 )
324 Fraction aErg( rVal1 );
325 aErg *= rVal2;
326 return aErg;
329 Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 )
331 Fraction aErg( rVal1 );
332 aErg /= rVal2;
333 return aErg;
336 bool operator !=( const Fraction& rVal1, const Fraction& rVal2 )
338 return !(rVal1 == rVal2);
341 bool operator <=( const Fraction& rVal1, const Fraction& rVal2 )
343 return !(rVal1 > rVal2);
346 bool operator >=( const Fraction& rVal1, const Fraction& rVal2 )
348 return !(rVal1 < rVal2);
351 bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
353 if ( !rVal1.mbValid || !rVal2.mbValid )
355 SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" );
356 return false;
359 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) == toRational(rVal2.mnNumerator, rVal2.mnDenominator);
362 bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
364 if ( !rVal1.mbValid || !rVal2.mbValid )
366 SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" );
367 return false;
370 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) < toRational(rVal2.mnNumerator, rVal2.mnDenominator);
373 bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
375 if ( !rVal1.mbValid || !rVal2.mbValid )
377 SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" );
378 return false;
381 return toRational(rVal1.mnNumerator, rVal1.mnDenominator) > toRational(rVal2.mnNumerator, rVal2.mnDenominator);
384 // If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
385 // Otherwise, dVal and denominator are multiplied by 10, until one of them
386 // is larger than (LONG_MAX / 10).
388 // NOTE: here we use 'sal_Int32' due that only values in sal_Int32 range are valid.
389 static boost::rational<sal_Int32> rational_FromDouble(double dVal)
391 if ( dVal > std::numeric_limits<sal_Int32>::max() ||
392 dVal < std::numeric_limits<sal_Int32>::min() ||
393 std::isnan(dVal) )
394 throw boost::bad_rational();
396 const sal_Int32 nMAX = std::numeric_limits<sal_Int32>::max() / 10;
397 sal_Int32 nDen = 1;
398 while ( std::abs( dVal ) < nMAX && nDen < nMAX ) {
399 dVal *= 10;
400 nDen *= 10;
402 return boost::rational<sal_Int32>( sal_Int32(dVal), nDen );
406 * Find the number of bits required to represent this number, using the CLZ intrinsic
408 static int impl_NumberOfBits( sal_uInt32 nNum )
410 if (nNum == 0)
411 return 0;
412 #ifdef _MSC_VER
413 unsigned long r = 0;
414 _BitScanReverse(&r, nNum);
415 return r + 1;
416 #else
417 return 32 - __builtin_clz(nNum);
418 #endif
421 /** Inaccurate cancellation for a fraction.
423 Clip both nominator and denominator to said number of bits. If
424 either of those already have equal or less number of bits used,
425 this method does nothing.
427 @param nSignificantBits denotes, how many significant binary
428 digits to maintain, in both nominator and denominator.
430 @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
431 largest error occurs with the following pair of values:
433 binary 1000000011111111111111111111111b/1000000000000000000000000000000b
434 = 1082130431/1073741824
435 = approx. 1.007812499
437 A ReduceInaccurate(8) yields 1/1.
439 static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits)
441 if ( !rRational )
442 return;
444 // http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
445 sal_Int32 nMul = rRational.numerator();
446 if (nMul == std::numeric_limits<sal_Int32>::min())
448 // ofz#32973 Integer-overflow
449 return;
451 const bool bNeg = nMul < 0;
452 if (bNeg)
453 nMul = -nMul;
454 sal_Int32 nDiv = rRational.denominator();
456 DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
458 // How much bits can we lose?
459 const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
460 const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
462 const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
464 // Remove the bits
465 nMul >>= nToLose;
466 nDiv >>= nToLose;
468 if ( !nMul || !nDiv ) {
469 // Return without reduction
470 OSL_FAIL( "Oops, we reduced too much..." );
471 return;
474 rRational.assign( bNeg ? -nMul : nMul, nDiv );
477 size_t Fraction::GetHashValue() const
479 size_t hash = 0;
480 o3tl::hash_combine( hash, mnNumerator );
481 o3tl::hash_combine( hash, mnDenominator );
482 o3tl::hash_combine( hash, mbValid );
483 return hash;
486 Fraction Fraction::MakeFraction( tools::Long nN1, tools::Long nN2, tools::Long nD1, tools::Long nD2 )
488 if( nD1 == 0 || nD2 == 0 ) //under these bad circumstances the following while loop will be endless
490 SAL_WARN("tools.fraction", "Invalid parameter for ImplMakeFraction");
491 return Fraction( 1, 1 );
494 tools::Long i = 1;
496 if ( nN1 < 0 ) { i = -i; nN1 = -nN1; }
497 if ( nN2 < 0 ) { i = -i; nN2 = -nN2; }
498 if ( nD1 < 0 ) { i = -i; nD1 = -nD1; }
499 if ( nD2 < 0 ) { i = -i; nD2 = -nD2; }
500 // all positive; i sign
502 assert( nN1 >= std::numeric_limits<sal_Int32>::min() );
503 assert( nN1 <= std::numeric_limits<sal_Int32>::max( ));
504 assert( nD1 >= std::numeric_limits<sal_Int32>::min() );
505 assert( nD1 <= std::numeric_limits<sal_Int32>::max( ));
506 assert( nN2 >= std::numeric_limits<sal_Int32>::min() );
507 assert( nN2 <= std::numeric_limits<sal_Int32>::max( ));
508 assert( nD2 >= std::numeric_limits<sal_Int32>::min() );
509 assert( nD2 <= std::numeric_limits<sal_Int32>::max( ));
511 boost::rational<sal_Int32> a = toRational(i*nN1, nD1);
512 boost::rational<sal_Int32> b = toRational(nN2, nD2);
513 bool bFail = checked_multiply_by(a, b);
515 while ( bFail ) {
516 if ( nN1 > nN2 )
517 nN1 = (nN1 + 1) / 2;
518 else
519 nN2 = (nN2 + 1) / 2;
520 if ( nD1 > nD2 )
521 nD1 = (nD1 + 1) / 2;
522 else
523 nD2 = (nD2 + 1) / 2;
525 a = toRational(i*nN1, nD1);
526 b = toRational(nN2, nD2);
527 bFail = checked_multiply_by(a, b);
530 return Fraction(a.numerator(), a.denominator());
533 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */