1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <basegfx/numeric/ftools.hxx>
21 #include <basegfx/polygon/b2dpolygontools.hxx>
22 #include <osl/diagnose.h>
23 #include <rtl/math.hxx>
24 #include <sal/log.hxx>
25 #include <basegfx/polygon/b2dpolygon.hxx>
26 #include <basegfx/polygon/b2dpolypolygon.hxx>
27 #include <basegfx/range/b2drange.hxx>
28 #include <basegfx/curve/b2dcubicbezier.hxx>
29 #include <basegfx/point/b3dpoint.hxx>
30 #include <basegfx/matrix/b3dhommatrix.hxx>
31 #include <basegfx/matrix/b2dhommatrix.hxx>
32 #include <basegfx/curve/b2dbeziertools.hxx>
33 #include <basegfx/matrix/b2dhommatrixtools.hxx>
38 #define ANGLE_BOUND_START_VALUE (2.25)
39 #define ANGLE_BOUND_MINIMUM_VALUE (0.1)
40 #define STEPSPERQUARTER (3)
46 void openWithGeometryChange(B2DPolygon
& rCandidate
)
48 if(rCandidate
.isClosed())
50 if(rCandidate
.count())
52 rCandidate
.append(rCandidate
.getB2DPoint(0));
54 if(rCandidate
.areControlPointsUsed() && rCandidate
.isPrevControlPointUsed(0))
56 rCandidate
.setPrevControlPoint(rCandidate
.count() - 1, rCandidate
.getPrevControlPoint(0));
57 rCandidate
.resetPrevControlPoint(0);
61 rCandidate
.setClosed(false);
65 void closeWithGeometryChange(B2DPolygon
& rCandidate
)
67 if(!rCandidate
.isClosed())
69 while(rCandidate
.count() > 1 && rCandidate
.getB2DPoint(0) == rCandidate
.getB2DPoint(rCandidate
.count() - 1))
71 if(rCandidate
.areControlPointsUsed() && rCandidate
.isPrevControlPointUsed(rCandidate
.count() - 1))
73 rCandidate
.setPrevControlPoint(0, rCandidate
.getPrevControlPoint(rCandidate
.count() - 1));
76 rCandidate
.remove(rCandidate
.count() - 1);
79 rCandidate
.setClosed(true);
83 void checkClosed(B2DPolygon
& rCandidate
)
85 // #i80172# Removed unnecessary assertion
86 // OSL_ENSURE(!rCandidate.isClosed(), "checkClosed: already closed (!)");
88 if(rCandidate
.count() > 1 && rCandidate
.getB2DPoint(0) == rCandidate
.getB2DPoint(rCandidate
.count() - 1))
90 closeWithGeometryChange(rCandidate
);
94 // Get successor and predecessor indices. Returning the same index means there
95 // is none. Same for successor.
96 sal_uInt32
getIndexOfPredecessor(sal_uInt32 nIndex
, const B2DPolygon
& rCandidate
)
98 OSL_ENSURE(nIndex
< rCandidate
.count(), "getIndexOfPredecessor: Access to polygon out of range (!)");
104 else if(rCandidate
.count())
106 return rCandidate
.count() - 1;
114 sal_uInt32
getIndexOfSuccessor(sal_uInt32 nIndex
, const B2DPolygon
& rCandidate
)
116 OSL_ENSURE(nIndex
< rCandidate
.count(), "getIndexOfPredecessor: Access to polygon out of range (!)");
118 if(nIndex
+ 1 < rCandidate
.count())
122 else if(nIndex
+ 1 == rCandidate
.count())
132 B2VectorOrientation
getOrientation(const B2DPolygon
& rCandidate
)
134 B2VectorOrientation
eRetval(B2VectorOrientation::Neutral
);
136 if(rCandidate
.count() > 2 || rCandidate
.areControlPointsUsed())
138 const double fSignedArea(getSignedArea(rCandidate
));
140 if(fTools::equalZero(fSignedArea
))
142 // B2VectorOrientation::Neutral, already set
144 if(fSignedArea
> 0.0)
146 eRetval
= B2VectorOrientation::Positive
;
148 else if(fSignedArea
< 0.0)
150 eRetval
= B2VectorOrientation::Negative
;
157 B2VectorContinuity
getContinuityInPoint(const B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
159 return rCandidate
.getContinuityInPoint(nIndex
);
162 B2DPolygon
adaptiveSubdivideByDistance(const B2DPolygon
& rCandidate
, double fDistanceBound
)
164 if(rCandidate
.areControlPointsUsed())
166 const sal_uInt32
nPointCount(rCandidate
.count());
171 // prepare edge-oriented loop
172 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
173 B2DCubicBezier aBezier
;
174 aBezier
.setStartPoint(rCandidate
.getB2DPoint(0));
176 // perf: try to avoid too many realloctions by guessing the result's pointcount
177 aRetval
.reserve(nPointCount
*4);
179 // add start point (always)
180 aRetval
.append(aBezier
.getStartPoint());
182 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
184 // get next and control points
185 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
186 aBezier
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
187 aBezier
.setControlPointA(rCandidate
.getNextControlPoint(a
));
188 aBezier
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
189 aBezier
.testAndSolveTrivialBezier();
191 if(aBezier
.isBezier())
193 // add curved edge and generate DistanceBound
196 if(fDistanceBound
== 0.0)
198 // If not set, use B2DCubicBezier functionality to guess a rough value
199 const double fRoughLength((aBezier
.getEdgeLength() + aBezier
.getControlPolygonLength()) / 2.0);
201 // take 1/100th of the rough curve length
202 fBound
= fRoughLength
* 0.01;
206 // use given bound value
207 fBound
= fDistanceBound
;
210 // make sure bound value is not too small. The base units are 1/100th mm, thus
211 // just make sure it's not smaller then 1/100th of that
217 // call adaptive subdivide which adds edges to aRetval accordingly
218 aBezier
.adaptiveSubdivideByDistance(aRetval
, fBound
);
222 // add non-curved edge
223 aRetval
.append(aBezier
.getEndPoint());
227 aBezier
.setStartPoint(aBezier
.getEndPoint());
230 if(rCandidate
.isClosed())
232 // set closed flag and correct last point (which is added double now).
233 closeWithGeometryChange(aRetval
);
245 B2DPolygon
adaptiveSubdivideByAngle(const B2DPolygon
& rCandidate
, double fAngleBound
)
247 if(rCandidate
.areControlPointsUsed())
249 const sal_uInt32
nPointCount(rCandidate
.count());
254 // prepare edge-oriented loop
255 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
256 B2DCubicBezier aBezier
;
257 aBezier
.setStartPoint(rCandidate
.getB2DPoint(0));
259 // perf: try to avoid too many realloctions by guessing the result's pointcount
260 aRetval
.reserve(nPointCount
*4);
262 // add start point (always)
263 aRetval
.append(aBezier
.getStartPoint());
265 // #i37443# prepare convenient AngleBound if none was given
266 if(fAngleBound
== 0.0)
268 fAngleBound
= ANGLE_BOUND_START_VALUE
;
270 else if(fTools::less(fAngleBound
, ANGLE_BOUND_MINIMUM_VALUE
))
275 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
277 // get next and control points
278 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
279 aBezier
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
280 aBezier
.setControlPointA(rCandidate
.getNextControlPoint(a
));
281 aBezier
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
282 aBezier
.testAndSolveTrivialBezier();
284 if(aBezier
.isBezier())
286 // call adaptive subdivide
287 aBezier
.adaptiveSubdivideByAngle(aRetval
, fAngleBound
);
291 // add non-curved edge
292 aRetval
.append(aBezier
.getEndPoint());
296 aBezier
.setStartPoint(aBezier
.getEndPoint());
299 if(rCandidate
.isClosed())
301 // set closed flag and correct last point (which is added double now).
302 closeWithGeometryChange(aRetval
);
314 bool isInside(const B2DPolygon
& rCandidate
, const B2DPoint
& rPoint
, bool bWithBorder
)
316 const B2DPolygon
aCandidate(rCandidate
.areControlPointsUsed() ? rCandidate
.getDefaultAdaptiveSubdivision() : rCandidate
);
318 if(bWithBorder
&& isPointOnPolygon(aCandidate
, rPoint
))
325 const sal_uInt32
nPointCount(aCandidate
.count());
329 B2DPoint
aCurrentPoint(aCandidate
.getB2DPoint(nPointCount
- 1));
331 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
333 const B2DPoint
aPreviousPoint(aCurrentPoint
);
334 aCurrentPoint
= aCandidate
.getB2DPoint(a
);
337 const bool bCompYA(fTools::more(aPreviousPoint
.getY(), rPoint
.getY()));
338 const bool bCompYB(fTools::more(aCurrentPoint
.getY(), rPoint
.getY()));
340 if(bCompYA
!= bCompYB
)
343 const bool bCompXA(fTools::more(aPreviousPoint
.getX(), rPoint
.getX()));
344 const bool bCompXB(fTools::more(aCurrentPoint
.getX(), rPoint
.getX()));
346 if(bCompXA
== bCompXB
)
355 const double fCompare(
356 aCurrentPoint
.getX() - (aCurrentPoint
.getY() - rPoint
.getY()) *
357 (aPreviousPoint
.getX() - aCurrentPoint
.getX()) /
358 (aPreviousPoint
.getY() - aCurrentPoint
.getY()));
360 if(fTools::more(fCompare
, rPoint
.getX()))
373 bool isInside(const B2DPolygon
& rCandidate
, const B2DPolygon
& rPolygon
, bool bWithBorder
)
375 const B2DPolygon
aCandidate(rCandidate
.areControlPointsUsed() ? rCandidate
.getDefaultAdaptiveSubdivision() : rCandidate
);
376 const B2DPolygon
aPolygon(rPolygon
.areControlPointsUsed() ? rPolygon
.getDefaultAdaptiveSubdivision() : rPolygon
);
377 const sal_uInt32
nPointCount(aPolygon
.count());
379 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
381 const B2DPoint
aTestPoint(aPolygon
.getB2DPoint(a
));
383 if(!isInside(aCandidate
, aTestPoint
, bWithBorder
))
392 B2DRange
getRange(const B2DPolygon
& rCandidate
)
394 // changed to use internally buffered version at B2DPolygon
395 return rCandidate
.getB2DRange();
398 double getSignedArea(const B2DPolygon
& rCandidate
)
400 const B2DPolygon
aCandidate(rCandidate
.areControlPointsUsed() ? rCandidate
.getDefaultAdaptiveSubdivision() : rCandidate
);
402 const sal_uInt32
nPointCount(aCandidate
.count());
406 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
408 const B2DPoint
aPreviousPoint(aCandidate
.getB2DPoint((!a
) ? nPointCount
- 1 : a
- 1));
409 const B2DPoint
aCurrentPoint(aCandidate
.getB2DPoint(a
));
411 fRetval
+= aPreviousPoint
.getX() * aCurrentPoint
.getY();
412 fRetval
-= aPreviousPoint
.getY() * aCurrentPoint
.getX();
415 // correct to zero if small enough. Also test the quadratic
416 // of the result since the precision is near quadratic due to
418 if(fTools::equalZero(fRetval
) || fTools::equalZero(fRetval
* fRetval
))
427 double getArea(const B2DPolygon
& rCandidate
)
431 if(rCandidate
.count() > 2 || rCandidate
.areControlPointsUsed())
433 fRetval
= getSignedArea(rCandidate
);
434 const double fZero(0.0);
436 if(fTools::less(fRetval
, fZero
))
445 double getEdgeLength(const B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
447 const sal_uInt32
nPointCount(rCandidate
.count());
448 OSL_ENSURE(nIndex
< nPointCount
, "getEdgeLength: Access to polygon out of range (!)");
453 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
455 if(rCandidate
.areControlPointsUsed())
457 B2DCubicBezier aEdge
;
459 aEdge
.setStartPoint(rCandidate
.getB2DPoint(nIndex
));
460 aEdge
.setControlPointA(rCandidate
.getNextControlPoint(nIndex
));
461 aEdge
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
462 aEdge
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
464 fRetval
= aEdge
.getLength();
468 const B2DPoint
aCurrent(rCandidate
.getB2DPoint(nIndex
));
469 const B2DPoint
aNext(rCandidate
.getB2DPoint(nNextIndex
));
471 fRetval
= B2DVector(aNext
- aCurrent
).getLength();
478 double getLength(const B2DPolygon
& rCandidate
)
481 const sal_uInt32
nPointCount(rCandidate
.count());
485 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
487 if(rCandidate
.areControlPointsUsed())
489 B2DCubicBezier aEdge
;
490 aEdge
.setStartPoint(rCandidate
.getB2DPoint(0));
492 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
494 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
495 aEdge
.setControlPointA(rCandidate
.getNextControlPoint(a
));
496 aEdge
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
497 aEdge
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
499 fRetval
+= aEdge
.getLength();
500 aEdge
.setStartPoint(aEdge
.getEndPoint());
505 B2DPoint
aCurrent(rCandidate
.getB2DPoint(0));
507 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
509 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
510 const B2DPoint
aNext(rCandidate
.getB2DPoint(nNextIndex
));
512 fRetval
+= B2DVector(aNext
- aCurrent
).getLength();
521 B2DPoint
getPositionAbsolute(const B2DPolygon
& rCandidate
, double fDistance
, double fLength
)
524 const sal_uInt32
nPointCount(rCandidate
.count());
526 if( nPointCount
== 1 )
528 // only one point (i.e. no edge) - simply take that point
529 aRetval
= rCandidate
.getB2DPoint(0);
531 else if(nPointCount
> 1)
533 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
534 sal_uInt32
nIndex(0);
535 bool bIndexDone(false);
537 // get length if not given
538 if(fTools::equalZero(fLength
))
540 fLength
= getLength(rCandidate
);
543 if(fTools::less(fDistance
, 0.0))
545 // handle fDistance < 0.0
546 if(rCandidate
.isClosed())
548 // if fDistance < 0.0 increment with multiple of fLength
549 sal_uInt32
nCount(sal_uInt32(-fDistance
/ fLength
));
550 fDistance
+= double(nCount
+ 1) * fLength
;
554 // crop to polygon start
559 else if(fTools::moreOrEqual(fDistance
, fLength
))
561 // handle fDistance >= fLength
562 if(rCandidate
.isClosed())
564 // if fDistance >= fLength decrement with multiple of fLength
565 sal_uInt32
nCount(sal_uInt32(fDistance
/ fLength
));
566 fDistance
-= static_cast<double>(nCount
) * fLength
;
570 // crop to polygon end
577 // look for correct index. fDistance is now [0.0 .. fLength[
578 double fEdgeLength(getEdgeLength(rCandidate
, nIndex
));
582 // edge found must be on the half-open range
584 // Note that in theory, we cannot move beyond
585 // the last polygon point, since fDistance>=fLength
586 // is checked above. Unfortunately, with floating-
587 // point calculations, this case might happen.
588 // Handled by nIndex check below
589 if (nIndex
+1 < nEdgeCount
&& fTools::moreOrEqual(fDistance
, fEdgeLength
))
592 fDistance
-= fEdgeLength
;
593 fEdgeLength
= getEdgeLength(rCandidate
, ++nIndex
);
597 // it's on this edge, stop
602 // get the point using nIndex
603 aRetval
= rCandidate
.getB2DPoint(nIndex
);
605 // if fDistance != 0.0, move that length on the edge. The edge
606 // length is in fEdgeLength.
607 if(!fTools::equalZero(fDistance
))
609 if(fTools::moreOrEqual(fDistance
, fEdgeLength
))
611 // end point of chosen edge
612 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
613 aRetval
= rCandidate
.getB2DPoint(nNextIndex
);
615 else if(fTools::equalZero(fDistance
))
617 // start point of chosen edge
622 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
623 const B2DPoint
aNextPoint(rCandidate
.getB2DPoint(nNextIndex
));
626 // add calculated average value to the return value
627 if(rCandidate
.areControlPointsUsed())
629 // get as bezier segment
630 const B2DCubicBezier
aBezierSegment(
631 aRetval
, rCandidate
.getNextControlPoint(nIndex
),
632 rCandidate
.getPrevControlPoint(nNextIndex
), aNextPoint
);
634 if(aBezierSegment
.isBezier())
636 // use B2DCubicBezierHelper to bridge the non-linear gap between
637 // length and bezier distances
638 const B2DCubicBezierHelper
aBezierSegmentHelper(aBezierSegment
);
639 const double fBezierDistance(aBezierSegmentHelper
.distanceToRelative(fDistance
));
641 aRetval
= aBezierSegment
.interpolatePoint(fBezierDistance
);
648 const double fRelativeInEdge(fDistance
/ fEdgeLength
);
649 aRetval
= interpolate(aRetval
, aNextPoint
, fRelativeInEdge
);
658 B2DPoint
getPositionRelative(const B2DPolygon
& rCandidate
, double fDistance
, double fLength
)
660 // get length if not given
661 if(fTools::equalZero(fLength
))
663 fLength
= getLength(rCandidate
);
666 // multiply fDistance with real length to get absolute position and
667 // use getPositionAbsolute
668 return getPositionAbsolute(rCandidate
, fDistance
* fLength
, fLength
);
671 B2DPolygon
getSnippetAbsolute(const B2DPolygon
& rCandidate
, double fFrom
, double fTo
, double fLength
)
673 const sal_uInt32
nPointCount(rCandidate
.count());
677 // get length if not given
678 if(fTools::equalZero(fLength
))
680 fLength
= getLength(rCandidate
);
683 // test and correct fFrom
684 if(fTools::less(fFrom
, 0.0))
689 // test and correct fTo
690 if(fTools::more(fTo
, fLength
))
695 // test and correct relationship of fFrom, fTo
696 if(fTools::more(fFrom
, fTo
))
698 fFrom
= fTo
= (fFrom
+ fTo
) / 2.0;
701 if(fTools::equalZero(fFrom
) && fTools::equal(fTo
, fLength
))
703 // no change, result is the whole polygon
709 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
710 double fPositionOfStart(0.0);
711 bool bStartDone(false);
712 bool bEndDone(false);
714 for(sal_uInt32
a(0); !(bStartDone
&& bEndDone
) && a
< nEdgeCount
; a
++)
716 const double fEdgeLength(getEdgeLength(rCandidate
, a
));
720 if(fTools::equalZero(fFrom
))
722 aRetval
.append(rCandidate
.getB2DPoint(a
));
724 if(rCandidate
.areControlPointsUsed())
726 aRetval
.setNextControlPoint(aRetval
.count() - 1, rCandidate
.getNextControlPoint(a
));
731 else if(fTools::moreOrEqual(fFrom
, fPositionOfStart
) && fTools::less(fFrom
, fPositionOfStart
+ fEdgeLength
))
733 // calculate and add start point
734 if(fTools::equalZero(fEdgeLength
))
736 aRetval
.append(rCandidate
.getB2DPoint(a
));
738 if(rCandidate
.areControlPointsUsed())
740 aRetval
.setNextControlPoint(aRetval
.count() - 1, rCandidate
.getNextControlPoint(a
));
745 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
746 const B2DPoint
aStart(rCandidate
.getB2DPoint(a
));
747 const B2DPoint
aEnd(rCandidate
.getB2DPoint(nNextIndex
));
750 if(rCandidate
.areControlPointsUsed())
752 const B2DCubicBezier
aBezierSegment(
753 aStart
, rCandidate
.getNextControlPoint(a
),
754 rCandidate
.getPrevControlPoint(nNextIndex
), aEnd
);
756 if(aBezierSegment
.isBezier())
758 // use B2DCubicBezierHelper to bridge the non-linear gap between
759 // length and bezier distances
760 const B2DCubicBezierHelper
aBezierSegmentHelper(aBezierSegment
);
761 const double fBezierDistance(aBezierSegmentHelper
.distanceToRelative(fFrom
- fPositionOfStart
));
762 B2DCubicBezier aRight
;
764 aBezierSegment
.split(fBezierDistance
, nullptr, &aRight
);
765 aRetval
.append(aRight
.getStartPoint());
766 aRetval
.setNextControlPoint(aRetval
.count() - 1, aRight
.getControlPointA());
773 const double fRelValue((fFrom
- fPositionOfStart
) / fEdgeLength
);
774 aRetval
.append(interpolate(aStart
, aEnd
, fRelValue
));
780 // if same point, end is done, too.
781 if(rtl::math::approxEqual(fFrom
, fTo
))
788 if(!bEndDone
&& fTools::moreOrEqual(fTo
, fPositionOfStart
) && fTools::less(fTo
, fPositionOfStart
+ fEdgeLength
))
790 // calculate and add end point
791 if(fTools::equalZero(fEdgeLength
))
793 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
794 aRetval
.append(rCandidate
.getB2DPoint(nNextIndex
));
796 if(rCandidate
.areControlPointsUsed())
798 aRetval
.setPrevControlPoint(aRetval
.count() - 1, rCandidate
.getPrevControlPoint(nNextIndex
));
803 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
804 const B2DPoint
aStart(rCandidate
.getB2DPoint(a
));
805 const B2DPoint
aEnd(rCandidate
.getB2DPoint(nNextIndex
));
808 if(rCandidate
.areControlPointsUsed())
810 const B2DCubicBezier
aBezierSegment(
811 aStart
, rCandidate
.getNextControlPoint(a
),
812 rCandidate
.getPrevControlPoint(nNextIndex
), aEnd
);
814 if(aBezierSegment
.isBezier())
816 // use B2DCubicBezierHelper to bridge the non-linear gap between
817 // length and bezier distances
818 const B2DCubicBezierHelper
aBezierSegmentHelper(aBezierSegment
);
819 const double fBezierDistance(aBezierSegmentHelper
.distanceToRelative(fTo
- fPositionOfStart
));
820 B2DCubicBezier aLeft
;
822 aBezierSegment
.split(fBezierDistance
, &aLeft
, nullptr);
823 aRetval
.append(aLeft
.getEndPoint());
824 aRetval
.setPrevControlPoint(aRetval
.count() - 1, aLeft
.getControlPointB());
831 const double fRelValue((fTo
- fPositionOfStart
) / fEdgeLength
);
832 aRetval
.append(interpolate(aStart
, aEnd
, fRelValue
));
843 // add segments end point
844 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
845 aRetval
.append(rCandidate
.getB2DPoint(nNextIndex
));
847 if(rCandidate
.areControlPointsUsed())
849 aRetval
.setPrevControlPoint(aRetval
.count() - 1, rCandidate
.getPrevControlPoint(nNextIndex
));
850 aRetval
.setNextControlPoint(aRetval
.count() - 1, rCandidate
.getNextControlPoint(nNextIndex
));
854 // increment fPositionOfStart
855 fPositionOfStart
+= fEdgeLength
;
867 CutFlagValue
findCut(
868 const B2DPoint
& rEdge1Start
, const B2DVector
& rEdge1Delta
,
869 const B2DPoint
& rEdge2Start
, const B2DVector
& rEdge2Delta
,
870 CutFlagValue aCutFlags
,
871 double* pCut1
, double* pCut2
)
873 CutFlagValue
aRetval(CutFlagValue::NONE
);
876 bool bFinished(!static_cast<bool>(aCutFlags
& CutFlagValue::ALL
));
878 // test for same points?
880 && (aCutFlags
& (CutFlagValue::START1
|CutFlagValue::END1
))
881 && (aCutFlags
& (CutFlagValue::START2
|CutFlagValue::END2
)))
884 if((aCutFlags
& (CutFlagValue::START1
|CutFlagValue::START2
)) == (CutFlagValue::START1
|CutFlagValue::START2
))
886 if(rEdge1Start
.equal(rEdge2Start
))
889 aRetval
= (CutFlagValue::START1
|CutFlagValue::START2
);
894 if(!bFinished
&& (aCutFlags
& (CutFlagValue::END1
|CutFlagValue::END2
)) == (CutFlagValue::END1
|CutFlagValue::END2
))
896 const B2DPoint
aEnd1(rEdge1Start
+ rEdge1Delta
);
897 const B2DPoint
aEnd2(rEdge2Start
+ rEdge2Delta
);
899 if(aEnd1
.equal(aEnd2
))
902 aRetval
= (CutFlagValue::END1
|CutFlagValue::END2
);
907 // startpoint1 == endpoint2?
908 if(!bFinished
&& (aCutFlags
& (CutFlagValue::START1
|CutFlagValue::END2
)) == (CutFlagValue::START1
|CutFlagValue::END2
))
910 const B2DPoint
aEnd2(rEdge2Start
+ rEdge2Delta
);
912 if(rEdge1Start
.equal(aEnd2
))
915 aRetval
= (CutFlagValue::START1
|CutFlagValue::END2
);
921 // startpoint2 == endpoint1?
922 if(!bFinished
&& (aCutFlags
& (CutFlagValue::START2
|CutFlagValue::END1
)) == (CutFlagValue::START2
|CutFlagValue::END1
))
924 const B2DPoint
aEnd1(rEdge1Start
+ rEdge1Delta
);
926 if(rEdge2Start
.equal(aEnd1
))
929 aRetval
= (CutFlagValue::START2
|CutFlagValue::END1
);
936 if(!bFinished
&& (aCutFlags
& CutFlagValue::LINE
))
938 if(aCutFlags
& CutFlagValue::START1
)
940 // start1 on line 2 ?
941 if(isPointOnEdge(rEdge1Start
, rEdge2Start
, rEdge2Delta
, &fCut2
))
944 aRetval
= (CutFlagValue::LINE
|CutFlagValue::START1
);
948 if(!bFinished
&& (aCutFlags
& CutFlagValue::START2
))
950 // start2 on line 1 ?
951 if(isPointOnEdge(rEdge2Start
, rEdge1Start
, rEdge1Delta
, &fCut1
))
954 aRetval
= (CutFlagValue::LINE
|CutFlagValue::START2
);
958 if(!bFinished
&& (aCutFlags
& CutFlagValue::END1
))
961 const B2DPoint
aEnd1(rEdge1Start
+ rEdge1Delta
);
963 if(isPointOnEdge(aEnd1
, rEdge2Start
, rEdge2Delta
, &fCut2
))
966 aRetval
= (CutFlagValue::LINE
|CutFlagValue::END1
);
970 if(!bFinished
&& (aCutFlags
& CutFlagValue::END2
))
973 const B2DPoint
aEnd2(rEdge2Start
+ rEdge2Delta
);
975 if(isPointOnEdge(aEnd2
, rEdge1Start
, rEdge1Delta
, &fCut1
))
978 aRetval
= (CutFlagValue::LINE
|CutFlagValue::END2
);
984 // cut in line1, line2 ?
985 fCut1
= (rEdge1Delta
.getX() * rEdge2Delta
.getY()) - (rEdge1Delta
.getY() * rEdge2Delta
.getX());
987 if(!fTools::equalZero(fCut1
))
989 fCut1
= (rEdge2Delta
.getY() * (rEdge2Start
.getX() - rEdge1Start
.getX())
990 + rEdge2Delta
.getX() * (rEdge1Start
.getY() - rEdge2Start
.getY())) / fCut1
;
992 const double fZero(0.0);
993 const double fOne(1.0);
995 // inside parameter range edge1 AND fCut2 is calculable
996 if(fTools::more(fCut1
, fZero
) && fTools::less(fCut1
, fOne
)
997 && (!fTools::equalZero(rEdge2Delta
.getX()) || !fTools::equalZero(rEdge2Delta
.getY())))
999 // take the more precise calculation of the two possible
1000 if(fabs(rEdge2Delta
.getX()) > fabs(rEdge2Delta
.getY()))
1002 fCut2
= (rEdge1Start
.getX() + fCut1
1003 * rEdge1Delta
.getX() - rEdge2Start
.getX()) / rEdge2Delta
.getX();
1007 fCut2
= (rEdge1Start
.getY() + fCut1
1008 * rEdge1Delta
.getY() - rEdge2Start
.getY()) / rEdge2Delta
.getY();
1011 // inside parameter range edge2, too
1012 if(fTools::more(fCut2
, fZero
) && fTools::less(fCut2
, fOne
))
1014 aRetval
= CutFlagValue::LINE
;
1021 // copy values if wanted
1036 const B2DPoint
& rPoint
,
1037 const B2DPoint
& rEdgeStart
,
1038 const B2DVector
& rEdgeDelta
,
1041 bool bDeltaXIsZero(fTools::equalZero(rEdgeDelta
.getX()));
1042 bool bDeltaYIsZero(fTools::equalZero(rEdgeDelta
.getY()));
1043 const double fZero(0.0);
1044 const double fOne(1.0);
1046 if(bDeltaXIsZero
&& bDeltaYIsZero
)
1048 // no line, just a point
1051 else if(bDeltaXIsZero
)
1054 if(fTools::equal(rPoint
.getX(), rEdgeStart
.getX()))
1056 double fValue
= (rPoint
.getY() - rEdgeStart
.getY()) / rEdgeDelta
.getY();
1058 if(fTools::more(fValue
, fZero
) && fTools::less(fValue
, fOne
))
1069 else if(bDeltaYIsZero
)
1072 if(fTools::equal(rPoint
.getY(), rEdgeStart
.getY()))
1074 double fValue
= (rPoint
.getX() - rEdgeStart
.getX()) / rEdgeDelta
.getX();
1076 if(fTools::more(fValue
, fZero
) && fTools::less(fValue
, fOne
))
1090 double fTOne
= (rPoint
.getX() - rEdgeStart
.getX()) / rEdgeDelta
.getX();
1091 double fTTwo
= (rPoint
.getY() - rEdgeStart
.getY()) / rEdgeDelta
.getY();
1093 if(fTools::equal(fTOne
, fTTwo
))
1095 // same parameter representation, point is on line. Take
1096 // middle value for better results
1097 double fValue
= (fTOne
+ fTTwo
) / 2.0;
1099 if(fTools::more(fValue
, fZero
) && fTools::less(fValue
, fOne
))
1101 // point is inside line bounds, too
1115 void applyLineDashing(const B2DPolygon
& rCandidate
, const std::vector
<double>& rDotDashArray
, B2DPolyPolygon
* pLineTarget
, B2DPolyPolygon
* pGapTarget
, double fDotDashLength
)
1117 const sal_uInt32
nPointCount(rCandidate
.count());
1118 const sal_uInt32
nDotDashCount(rDotDashArray
.size());
1120 if(fTools::lessOrEqual(fDotDashLength
, 0.0))
1122 fDotDashLength
= std::accumulate(rDotDashArray
.begin(), rDotDashArray
.end(), 0.0);
1125 if(fTools::more(fDotDashLength
, 0.0) && (pLineTarget
|| pGapTarget
) && nPointCount
)
1130 pLineTarget
->clear();
1135 pGapTarget
->clear();
1138 // prepare current edge's start
1139 B2DCubicBezier aCurrentEdge
;
1140 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
1141 aCurrentEdge
.setStartPoint(rCandidate
.getB2DPoint(0));
1143 // prepare DotDashArray iteration and the line/gap switching bool
1144 sal_uInt32
nDotDashIndex(0);
1146 double fDotDashMovingLength(rDotDashArray
[0]);
1147 B2DPolygon aSnippet
;
1149 // iterate over all edges
1150 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
1152 // update current edge (fill in C1, C2 and end point)
1153 double fLastDotDashMovingLength(0.0);
1154 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
1155 aCurrentEdge
.setControlPointA(rCandidate
.getNextControlPoint(a
));
1156 aCurrentEdge
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
1157 aCurrentEdge
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
1159 // check if we have a trivial bezier segment -> possible fallback to edge
1160 aCurrentEdge
.testAndSolveTrivialBezier();
1162 if(aCurrentEdge
.isBezier())
1165 const B2DCubicBezierHelper
aCubicBezierHelper(aCurrentEdge
);
1166 const double fEdgeLength(aCubicBezierHelper
.getLength());
1168 if(!fTools::equalZero(fEdgeLength
))
1170 while(fTools::less(fDotDashMovingLength
, fEdgeLength
))
1172 // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength]
1173 const bool bHandleLine(bIsLine
&& pLineTarget
);
1174 const bool bHandleGap(!bIsLine
&& pGapTarget
);
1176 if(bHandleLine
|| bHandleGap
)
1178 const double fBezierSplitStart(aCubicBezierHelper
.distanceToRelative(fLastDotDashMovingLength
));
1179 const double fBezierSplitEnd(aCubicBezierHelper
.distanceToRelative(fDotDashMovingLength
));
1180 B2DCubicBezier
aBezierSnippet(aCurrentEdge
.snippet(fBezierSplitStart
, fBezierSplitEnd
));
1182 if(!aSnippet
.count())
1184 aSnippet
.append(aBezierSnippet
.getStartPoint());
1187 aSnippet
.appendBezierSegment(aBezierSnippet
.getControlPointA(), aBezierSnippet
.getControlPointB(), aBezierSnippet
.getEndPoint());
1191 pLineTarget
->append(aSnippet
);
1195 pGapTarget
->append(aSnippet
);
1201 // prepare next DotDashArray step and flip line/gap flag
1202 fLastDotDashMovingLength
= fDotDashMovingLength
;
1203 fDotDashMovingLength
+= rDotDashArray
[(++nDotDashIndex
) % nDotDashCount
];
1207 // append closing snippet [fLastDotDashMovingLength, fEdgeLength]
1208 const bool bHandleLine(bIsLine
&& pLineTarget
);
1209 const bool bHandleGap(!bIsLine
&& pGapTarget
);
1211 if(bHandleLine
|| bHandleGap
)
1213 B2DCubicBezier aRight
;
1214 const double fBezierSplit(aCubicBezierHelper
.distanceToRelative(fLastDotDashMovingLength
));
1216 aCurrentEdge
.split(fBezierSplit
, nullptr, &aRight
);
1218 if(!aSnippet
.count())
1220 aSnippet
.append(aRight
.getStartPoint());
1223 aSnippet
.appendBezierSegment(aRight
.getControlPointA(), aRight
.getControlPointB(), aRight
.getEndPoint());
1226 // prepare move to next edge
1227 fDotDashMovingLength
-= fEdgeLength
;
1233 const double fEdgeLength(aCurrentEdge
.getEdgeLength());
1235 if(!fTools::equalZero(fEdgeLength
))
1237 while(fTools::less(fDotDashMovingLength
, fEdgeLength
))
1239 // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength]
1240 const bool bHandleLine(bIsLine
&& pLineTarget
);
1241 const bool bHandleGap(!bIsLine
&& pGapTarget
);
1243 if(bHandleLine
|| bHandleGap
)
1245 if(!aSnippet
.count())
1247 aSnippet
.append(interpolate(aCurrentEdge
.getStartPoint(), aCurrentEdge
.getEndPoint(), fLastDotDashMovingLength
/ fEdgeLength
));
1250 aSnippet
.append(interpolate(aCurrentEdge
.getStartPoint(), aCurrentEdge
.getEndPoint(), fDotDashMovingLength
/ fEdgeLength
));
1254 pLineTarget
->append(aSnippet
);
1258 pGapTarget
->append(aSnippet
);
1264 // prepare next DotDashArray step and flip line/gap flag
1265 fLastDotDashMovingLength
= fDotDashMovingLength
;
1266 fDotDashMovingLength
+= rDotDashArray
[(++nDotDashIndex
) % nDotDashCount
];
1270 // append snippet [fLastDotDashMovingLength, fEdgeLength]
1271 const bool bHandleLine(bIsLine
&& pLineTarget
);
1272 const bool bHandleGap(!bIsLine
&& pGapTarget
);
1274 if(bHandleLine
|| bHandleGap
)
1276 if(!aSnippet
.count())
1278 aSnippet
.append(interpolate(aCurrentEdge
.getStartPoint(), aCurrentEdge
.getEndPoint(), fLastDotDashMovingLength
/ fEdgeLength
));
1281 aSnippet
.append(aCurrentEdge
.getEndPoint());
1284 // prepare move to next edge
1285 fDotDashMovingLength
-= fEdgeLength
;
1289 // prepare next edge step (end point gets new start point)
1290 aCurrentEdge
.setStartPoint(aCurrentEdge
.getEndPoint());
1293 // append last intermediate results (if exists)
1294 if(aSnippet
.count())
1296 if(bIsLine
&& pLineTarget
)
1298 pLineTarget
->append(aSnippet
);
1300 else if(!bIsLine
&& pGapTarget
)
1302 pGapTarget
->append(aSnippet
);
1306 // check if start and end polygon may be merged
1309 const sal_uInt32
nCount(pLineTarget
->count());
1313 // these polygons were created above, there exists none with less than two points,
1314 // thus direct point access below is allowed
1315 const B2DPolygon
aFirst(pLineTarget
->getB2DPolygon(0));
1316 B2DPolygon
aLast(pLineTarget
->getB2DPolygon(nCount
- 1));
1318 if(aFirst
.getB2DPoint(0).equal(aLast
.getB2DPoint(aLast
.count() - 1)))
1320 // start of first and end of last are the same -> merge them
1321 aLast
.append(aFirst
);
1322 aLast
.removeDoublePoints();
1323 pLineTarget
->setB2DPolygon(0, aLast
);
1324 pLineTarget
->remove(nCount
- 1);
1331 const sal_uInt32
nCount(pGapTarget
->count());
1335 // these polygons were created above, there exists none with less than two points,
1336 // thus direct point access below is allowed
1337 const B2DPolygon
aFirst(pGapTarget
->getB2DPolygon(0));
1338 B2DPolygon
aLast(pGapTarget
->getB2DPolygon(nCount
- 1));
1340 if(aFirst
.getB2DPoint(0).equal(aLast
.getB2DPoint(aLast
.count() - 1)))
1342 // start of first and end of last are the same -> merge them
1343 aLast
.append(aFirst
);
1344 aLast
.removeDoublePoints();
1345 pGapTarget
->setB2DPolygon(0, aLast
);
1346 pGapTarget
->remove(nCount
- 1);
1353 // parameters make no sense, just add source to targets
1356 pLineTarget
->append(rCandidate
);
1361 pGapTarget
->append(rCandidate
);
1366 // test if point is inside epsilon-range around an edge defined
1367 // by the two given points. Can be used for HitTesting. The epsilon-range
1368 // is defined to be the rectangle centered to the given edge, using height
1369 // 2 x fDistance, and the circle around both points with radius fDistance.
1370 bool isInEpsilonRange(const B2DPoint
& rEdgeStart
, const B2DPoint
& rEdgeEnd
, const B2DPoint
& rTestPosition
, double fDistance
)
1372 // build edge vector
1373 const B2DVector
aEdge(rEdgeEnd
- rEdgeStart
);
1374 bool bDoDistanceTestStart(false);
1375 bool bDoDistanceTestEnd(false);
1377 if(aEdge
.equalZero())
1379 // no edge, just a point. Do one of the distance tests.
1380 bDoDistanceTestStart
= true;
1384 // edge has a length. Create perpendicular vector.
1385 const B2DVector
aPerpend(getPerpendicular(aEdge
));
1387 (aPerpend
.getY() * (rTestPosition
.getX() - rEdgeStart
.getX())
1388 + aPerpend
.getX() * (rEdgeStart
.getY() - rTestPosition
.getY())) /
1389 (aEdge
.getX() * aEdge
.getX() + aEdge
.getY() * aEdge
.getY()));
1390 const double fZero(0.0);
1391 const double fOne(1.0);
1393 if(fTools::less(fCut
, fZero
))
1395 // left of rEdgeStart
1396 bDoDistanceTestStart
= true;
1398 else if(fTools::more(fCut
, fOne
))
1400 // right of rEdgeEnd
1401 bDoDistanceTestEnd
= true;
1405 // inside line [0.0 .. 1.0]
1406 const B2DPoint
aCutPoint(interpolate(rEdgeStart
, rEdgeEnd
, fCut
));
1407 const B2DVector
aDelta(rTestPosition
- aCutPoint
);
1408 const double fDistanceSquare(aDelta
.scalar(aDelta
));
1410 return fDistanceSquare
<= fDistance
* fDistance
;
1414 if(bDoDistanceTestStart
)
1416 const B2DVector
aDelta(rTestPosition
- rEdgeStart
);
1417 const double fDistanceSquare(aDelta
.scalar(aDelta
));
1419 if(fDistanceSquare
<= fDistance
* fDistance
)
1424 else if(bDoDistanceTestEnd
)
1426 const B2DVector
aDelta(rTestPosition
- rEdgeEnd
);
1427 const double fDistanceSquare(aDelta
.scalar(aDelta
));
1429 if(fDistanceSquare
<= fDistance
* fDistance
)
1438 // test if point is inside epsilon-range around the given Polygon. Can be used
1439 // for HitTesting. The epsilon-range is defined to be the tube around the polygon
1440 // with distance fDistance and rounded edges (start and end point).
1441 bool isInEpsilonRange(const B2DPolygon
& rCandidate
, const B2DPoint
& rTestPosition
, double fDistance
)
1443 // force to non-bezier polygon
1444 const B2DPolygon
& aCandidate(rCandidate
.getDefaultAdaptiveSubdivision());
1445 const sal_uInt32
nPointCount(aCandidate
.count());
1449 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
1450 B2DPoint
aCurrent(aCandidate
.getB2DPoint(0));
1455 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
1457 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
1458 const B2DPoint
aNext(aCandidate
.getB2DPoint(nNextIndex
));
1460 if(isInEpsilonRange(aCurrent
, aNext
, rTestPosition
, fDistance
))
1465 // prepare next step
1471 // no edges, but points -> not closed. Check single point. Just
1472 // use isInEpsilonRange with twice the same point, it handles those well
1473 if(isInEpsilonRange(aCurrent
, aCurrent
, rTestPosition
, fDistance
))
1483 // Calculates distance of curve point to its control point for a Bézier curve, that
1484 // approximates a unit circle arc. fAngle is the center angle of the circle arc. The
1485 // constrain 0<=fAngle<=pi/2 must not be violated to give a useful accuracy. For details
1486 // and alternatives read document "ApproxCircleInfo.odt", attachment of bug tdf#121425.
1487 static double impDistanceBezierPointToControl(double fAngle
)
1489 SAL_WARN_IF(fAngle
< 0 || fAngle
> F_PI2
,"basegfx","angle not suitable for approximate circle");
1490 if (0 <= fAngle
&& fAngle
<= F_PI2
)
1492 return 4.0/3.0 * ( tan(fAngle
/4.0));
1498 B2DPolygon
createPolygonFromRect( const B2DRectangle
& rRect
, double fRadiusX
, double fRadiusY
)
1500 const double fZero(0.0);
1501 const double fOne(1.0);
1503 fRadiusX
= std::clamp(fRadiusX
, 0.0, 1.0);
1504 fRadiusY
= std::clamp(fRadiusY
, 0.0, 1.0);
1506 if(rtl::math::approxEqual(fZero
, fRadiusX
) || rtl::math::approxEqual(fZero
, fRadiusY
))
1508 // at least in one direction no radius, use rectangle.
1509 // Do not use createPolygonFromRect() here since original
1510 // creator (historical reasons) still creates a start point at the
1511 // bottom center, so do the same here to get the same line patterns.
1512 // Due to this the order of points is different, too.
1513 const B2DPoint
aBottomCenter(rRect
.getCenter().getX(), rRect
.getMaxY());
1514 B2DPolygon aPolygon
{
1516 { rRect
.getMinX(), rRect
.getMaxY() },
1517 { rRect
.getMinX(), rRect
.getMinY() },
1518 { rRect
.getMaxX(), rRect
.getMinY() },
1519 { rRect
.getMaxX(), rRect
.getMaxY() }
1523 aPolygon
.setClosed( true );
1527 else if(rtl::math::approxEqual(fOne
, fRadiusX
) && rtl::math::approxEqual(fOne
, fRadiusY
))
1529 // in both directions full radius, use ellipse
1530 const B2DPoint
aCenter(rRect
.getCenter());
1531 const double fRectRadiusX(rRect
.getWidth() / 2.0);
1532 const double fRectRadiusY(rRect
.getHeight() / 2.0);
1534 return createPolygonFromEllipse( aCenter
, fRectRadiusX
, fRectRadiusY
);
1539 const double fBowX((rRect
.getWidth() / 2.0) * fRadiusX
);
1540 const double fBowY((rRect
.getHeight() / 2.0) * fRadiusY
);
1541 const double fKappa(impDistanceBezierPointToControl(F_PI2
));
1543 // create start point at bottom center
1544 if(!rtl::math::approxEqual(fOne
, fRadiusX
))
1546 const B2DPoint
aBottomCenter(rRect
.getCenter().getX(), rRect
.getMaxY());
1547 aRetval
.append(aBottomCenter
);
1552 const B2DPoint
aBottomRight(rRect
.getMaxX(), rRect
.getMaxY());
1553 const B2DPoint
aStart(aBottomRight
+ B2DPoint(-fBowX
, 0.0));
1554 const B2DPoint
aStop(aBottomRight
+ B2DPoint(0.0, -fBowY
));
1555 aRetval
.append(aStart
);
1556 aRetval
.appendBezierSegment(interpolate(aStart
, aBottomRight
, fKappa
), interpolate(aStop
, aBottomRight
, fKappa
), aStop
);
1559 // create second bow
1561 const B2DPoint
aTopRight(rRect
.getMaxX(), rRect
.getMinY());
1562 const B2DPoint
aStart(aTopRight
+ B2DPoint(0.0, fBowY
));
1563 const B2DPoint
aStop(aTopRight
+ B2DPoint(-fBowX
, 0.0));
1564 aRetval
.append(aStart
);
1565 aRetval
.appendBezierSegment(interpolate(aStart
, aTopRight
, fKappa
), interpolate(aStop
, aTopRight
, fKappa
), aStop
);
1570 const B2DPoint
aTopLeft(rRect
.getMinX(), rRect
.getMinY());
1571 const B2DPoint
aStart(aTopLeft
+ B2DPoint(fBowX
, 0.0));
1572 const B2DPoint
aStop(aTopLeft
+ B2DPoint(0.0, fBowY
));
1573 aRetval
.append(aStart
);
1574 aRetval
.appendBezierSegment(interpolate(aStart
, aTopLeft
, fKappa
), interpolate(aStop
, aTopLeft
, fKappa
), aStop
);
1579 const B2DPoint
aBottomLeft(rRect
.getMinX(), rRect
.getMaxY());
1580 const B2DPoint
aStart(aBottomLeft
+ B2DPoint(0.0, -fBowY
));
1581 const B2DPoint
aStop(aBottomLeft
+ B2DPoint(fBowX
, 0.0));
1582 aRetval
.append(aStart
);
1583 aRetval
.appendBezierSegment(interpolate(aStart
, aBottomLeft
, fKappa
), interpolate(aStop
, aBottomLeft
, fKappa
), aStop
);
1587 aRetval
.setClosed( true );
1589 // remove double created points if there are extreme radii involved
1590 if(rtl::math::approxEqual(fOne
, fRadiusX
) || rtl::math::approxEqual(fOne
, fRadiusY
))
1592 aRetval
.removeDoublePoints();
1599 B2DPolygon
createPolygonFromRect( const B2DRectangle
& rRect
)
1601 B2DPolygon aPolygon
{
1602 { rRect
.getMinX(), rRect
.getMinY() },
1603 { rRect
.getMaxX(), rRect
.getMinY() },
1604 { rRect
.getMaxX(), rRect
.getMaxY() },
1605 { rRect
.getMinX(), rRect
.getMaxY() }
1609 aPolygon
.setClosed( true );
1614 B2DPolygon
const & createUnitPolygon()
1616 static auto const singleton
= [] {
1617 B2DPolygon aPolygon
{
1625 aPolygon
.setClosed( true );
1632 B2DPolygon
createPolygonFromCircle( const B2DPoint
& rCenter
, double fRadius
)
1634 return createPolygonFromEllipse( rCenter
, fRadius
, fRadius
);
1637 static B2DPolygon
impCreateUnitCircle(sal_uInt32 nStartQuadrant
)
1639 B2DPolygon aUnitCircle
;
1640 const double fSegmentKappa
= impDistanceBezierPointToControl(F_PI2
/ STEPSPERQUARTER
);
1641 const B2DHomMatrix
aRotateMatrix(createRotateB2DHomMatrix(F_PI2
/ STEPSPERQUARTER
));
1643 B2DPoint
aPoint(1.0, 0.0);
1644 B2DPoint
aForward(1.0, fSegmentKappa
);
1645 B2DPoint
aBackward(1.0, -fSegmentKappa
);
1647 if(nStartQuadrant
!= 0)
1649 const B2DHomMatrix
aQuadrantMatrix(createRotateB2DHomMatrix(F_PI2
* (nStartQuadrant
% 4)));
1650 aPoint
*= aQuadrantMatrix
;
1651 aBackward
*= aQuadrantMatrix
;
1652 aForward
*= aQuadrantMatrix
;
1655 aUnitCircle
.append(aPoint
);
1657 for(sal_uInt32
a(0); a
< STEPSPERQUARTER
* 4; a
++)
1659 aPoint
*= aRotateMatrix
;
1660 aBackward
*= aRotateMatrix
;
1661 aUnitCircle
.appendBezierSegment(aForward
, aBackward
, aPoint
);
1662 aForward
*= aRotateMatrix
;
1665 aUnitCircle
.setClosed(true);
1666 aUnitCircle
.removeDoublePoints();
1671 B2DPolygon
const & createHalfUnitCircle()
1673 static auto const singleton
= [] {
1674 B2DPolygon aUnitHalfCircle
;
1675 const double fSegmentKappa(impDistanceBezierPointToControl(F_PI2
/ STEPSPERQUARTER
));
1676 const B2DHomMatrix
aRotateMatrix(createRotateB2DHomMatrix(F_PI2
/ STEPSPERQUARTER
));
1677 B2DPoint
aPoint(1.0, 0.0);
1678 B2DPoint
aForward(1.0, fSegmentKappa
);
1679 B2DPoint
aBackward(1.0, -fSegmentKappa
);
1681 aUnitHalfCircle
.append(aPoint
);
1683 for(sal_uInt32
a(0); a
< STEPSPERQUARTER
* 2; a
++)
1685 aPoint
*= aRotateMatrix
;
1686 aBackward
*= aRotateMatrix
;
1687 aUnitHalfCircle
.appendBezierSegment(aForward
, aBackward
, aPoint
);
1688 aForward
*= aRotateMatrix
;
1690 return aUnitHalfCircle
;
1695 B2DPolygon
const & createPolygonFromUnitCircle(sal_uInt32 nStartQuadrant
)
1697 switch(nStartQuadrant
% 4)
1701 static auto const singleton
= impCreateUnitCircle(1);
1707 static auto const singleton
= impCreateUnitCircle(2);
1713 static auto const singleton
= impCreateUnitCircle(3);
1717 default : // case 0 :
1719 static auto const singleton
= impCreateUnitCircle(0);
1725 B2DPolygon
createPolygonFromEllipse( const B2DPoint
& rCenter
, double fRadiusX
, double fRadiusY
, sal_uInt32 nStartQuadrant
)
1727 B2DPolygon
aRetval(createPolygonFromUnitCircle(nStartQuadrant
));
1728 const B2DHomMatrix
aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX
, fRadiusY
, rCenter
.getX(), rCenter
.getY()));
1730 aRetval
.transform(aMatrix
);
1735 B2DPolygon
createPolygonFromUnitEllipseSegment( double fStart
, double fEnd
)
1739 // truncate fStart, fEnd to a range of [0.0 .. F_2PI[ where F_2PI
1740 // falls back to 0.0 to ensure a unique definition
1741 if(fTools::less(fStart
, 0.0))
1746 if(fTools::moreOrEqual(fStart
, F_2PI
))
1751 if(fTools::less(fEnd
, 0.0))
1756 if(fTools::moreOrEqual(fEnd
, F_2PI
))
1761 if(fTools::equal(fStart
, fEnd
))
1763 // same start and end angle, add single point
1764 aRetval
.append(B2DPoint(cos(fStart
), sin(fStart
)));
1768 const sal_uInt32
nSegments(STEPSPERQUARTER
* 4);
1769 const double fAnglePerSegment(F_PI2
/ STEPSPERQUARTER
);
1770 const sal_uInt32
nStartSegment(sal_uInt32(fStart
/ fAnglePerSegment
) % nSegments
);
1771 const sal_uInt32
nEndSegment(sal_uInt32(fEnd
/ fAnglePerSegment
) % nSegments
);
1772 const double fSegmentKappa(impDistanceBezierPointToControl(fAnglePerSegment
));
1774 B2DPoint
aSegStart(cos(fStart
), sin(fStart
));
1775 aRetval
.append(aSegStart
);
1777 if(nStartSegment
== nEndSegment
&& fTools::more(fEnd
, fStart
))
1779 // start and end in one sector and in the right order, create in one segment
1780 const B2DPoint
aSegEnd(cos(fEnd
), sin(fEnd
));
1781 const double fFactor(impDistanceBezierPointToControl(fEnd
- fStart
));
1783 aRetval
.appendBezierSegment(
1784 aSegStart
+ (B2DPoint(-aSegStart
.getY(), aSegStart
.getX()) * fFactor
),
1785 aSegEnd
- (B2DPoint(-aSegEnd
.getY(), aSegEnd
.getX()) * fFactor
),
1790 double fSegEndRad((nStartSegment
+ 1) * fAnglePerSegment
);
1791 double fFactor(impDistanceBezierPointToControl(fSegEndRad
- fStart
));
1792 B2DPoint
aSegEnd(cos(fSegEndRad
), sin(fSegEndRad
));
1794 aRetval
.appendBezierSegment(
1795 aSegStart
+ (B2DPoint(-aSegStart
.getY(), aSegStart
.getX()) * fFactor
),
1796 aSegEnd
- (B2DPoint(-aSegEnd
.getY(), aSegEnd
.getX()) * fFactor
),
1799 sal_uInt32
nSegment((nStartSegment
+ 1) % nSegments
);
1800 aSegStart
= aSegEnd
;
1802 while(nSegment
!= nEndSegment
)
1804 // No end in this sector, add full sector.
1805 fSegEndRad
= (nSegment
+ 1) * fAnglePerSegment
;
1806 aSegEnd
= B2DPoint(cos(fSegEndRad
), sin(fSegEndRad
));
1808 aRetval
.appendBezierSegment(
1809 aSegStart
+ (B2DPoint(-aSegStart
.getY(), aSegStart
.getX()) * fSegmentKappa
),
1810 aSegEnd
- (B2DPoint(-aSegEnd
.getY(), aSegEnd
.getX()) * fSegmentKappa
),
1813 nSegment
= (nSegment
+ 1) % nSegments
;
1814 aSegStart
= aSegEnd
;
1817 // End in this sector
1818 const double fSegStartRad(nSegment
* fAnglePerSegment
);
1819 fFactor
= impDistanceBezierPointToControl(fEnd
- fSegStartRad
);
1820 aSegEnd
= B2DPoint(cos(fEnd
), sin(fEnd
));
1822 aRetval
.appendBezierSegment(
1823 aSegStart
+ (B2DPoint(-aSegStart
.getY(), aSegStart
.getX()) * fFactor
),
1824 aSegEnd
- (B2DPoint(-aSegEnd
.getY(), aSegEnd
.getX()) * fFactor
),
1829 // remove double points between segments created by segmented creation
1830 aRetval
.removeDoublePoints();
1835 B2DPolygon
createPolygonFromEllipseSegment( const B2DPoint
& rCenter
, double fRadiusX
, double fRadiusY
, double fStart
, double fEnd
)
1837 B2DPolygon
aRetval(createPolygonFromUnitEllipseSegment(fStart
, fEnd
));
1838 const B2DHomMatrix
aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX
, fRadiusY
, rCenter
.getX(), rCenter
.getY()));
1840 aRetval
.transform(aMatrix
);
1845 bool hasNeutralPoints(const B2DPolygon
& rCandidate
)
1847 OSL_ENSURE(!rCandidate
.areControlPointsUsed(), "hasNeutralPoints: ATM works not for curves (!)");
1848 const sal_uInt32
nPointCount(rCandidate
.count());
1852 B2DPoint
aPrevPoint(rCandidate
.getB2DPoint(nPointCount
- 1));
1853 B2DPoint
aCurrPoint(rCandidate
.getB2DPoint(0));
1855 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
1857 const B2DPoint
aNextPoint(rCandidate
.getB2DPoint((a
+ 1) % nPointCount
));
1858 const B2DVector
aPrevVec(aPrevPoint
- aCurrPoint
);
1859 const B2DVector
aNextVec(aNextPoint
- aCurrPoint
);
1860 const B2VectorOrientation
aOrientation(getOrientation(aNextVec
, aPrevVec
));
1862 if(aOrientation
== B2VectorOrientation::Neutral
)
1864 // current has neutral orientation
1870 aPrevPoint
= aCurrPoint
;
1871 aCurrPoint
= aNextPoint
;
1879 B2DPolygon
removeNeutralPoints(const B2DPolygon
& rCandidate
)
1881 if(hasNeutralPoints(rCandidate
))
1883 const sal_uInt32
nPointCount(rCandidate
.count());
1885 B2DPoint
aPrevPoint(rCandidate
.getB2DPoint(nPointCount
- 1));
1886 B2DPoint
aCurrPoint(rCandidate
.getB2DPoint(0));
1888 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
1890 const B2DPoint
aNextPoint(rCandidate
.getB2DPoint((a
+ 1) % nPointCount
));
1891 const B2DVector
aPrevVec(aPrevPoint
- aCurrPoint
);
1892 const B2DVector
aNextVec(aNextPoint
- aCurrPoint
);
1893 const B2VectorOrientation
aOrientation(getOrientation(aNextVec
, aPrevVec
));
1895 if(aOrientation
== B2VectorOrientation::Neutral
)
1897 // current has neutral orientation, leave it out and prepare next
1898 aCurrPoint
= aNextPoint
;
1902 // add current point
1903 aRetval
.append(aCurrPoint
);
1906 aPrevPoint
= aCurrPoint
;
1907 aCurrPoint
= aNextPoint
;
1911 while(aRetval
.count() && getOrientationForIndex(aRetval
, 0) == B2VectorOrientation::Neutral
)
1916 // copy closed state
1917 aRetval
.setClosed(rCandidate
.isClosed());
1927 bool isConvex(const B2DPolygon
& rCandidate
)
1929 OSL_ENSURE(!rCandidate
.areControlPointsUsed(), "isConvex: ATM works not for curves (!)");
1930 const sal_uInt32
nPointCount(rCandidate
.count());
1934 const B2DPoint
aPrevPoint(rCandidate
.getB2DPoint(nPointCount
- 1));
1935 B2DPoint
aCurrPoint(rCandidate
.getB2DPoint(0));
1936 B2DVector
aCurrVec(aPrevPoint
- aCurrPoint
);
1937 B2VectorOrientation
aOrientation(B2VectorOrientation::Neutral
);
1939 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
1941 const B2DPoint
aNextPoint(rCandidate
.getB2DPoint((a
+ 1) % nPointCount
));
1942 const B2DVector
aNextVec(aNextPoint
- aCurrPoint
);
1943 const B2VectorOrientation
aCurrentOrientation(getOrientation(aNextVec
, aCurrVec
));
1945 if(aOrientation
== B2VectorOrientation::Neutral
)
1947 // set start value, maybe neutral again
1948 aOrientation
= aCurrentOrientation
;
1952 if(aCurrentOrientation
!= B2VectorOrientation::Neutral
&& aCurrentOrientation
!= aOrientation
)
1954 // different orientations found, that's it
1960 aCurrPoint
= aNextPoint
;
1961 aCurrVec
= -aNextVec
;
1968 B2VectorOrientation
getOrientationForIndex(const B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
1970 OSL_ENSURE(nIndex
< rCandidate
.count(), "getOrientationForIndex: index out of range (!)");
1971 const B2DPoint
aPrev(rCandidate
.getB2DPoint(getIndexOfPredecessor(nIndex
, rCandidate
)));
1972 const B2DPoint
aCurr(rCandidate
.getB2DPoint(nIndex
));
1973 const B2DPoint
aNext(rCandidate
.getB2DPoint(getIndexOfSuccessor(nIndex
, rCandidate
)));
1974 const B2DVector
aBack(aPrev
- aCurr
);
1975 const B2DVector
aForw(aNext
- aCurr
);
1977 return getOrientation(aForw
, aBack
);
1980 bool isPointOnLine(const B2DPoint
& rStart
, const B2DPoint
& rEnd
, const B2DPoint
& rCandidate
, bool bWithPoints
)
1982 if(rCandidate
.equal(rStart
) || rCandidate
.equal(rEnd
))
1984 // candidate is in epsilon around start or end -> inside
1987 else if(rStart
.equal(rEnd
))
1989 // start and end are equal, but candidate is outside their epsilon -> outside
1994 const B2DVector
aEdgeVector(rEnd
- rStart
);
1995 const B2DVector
aTestVector(rCandidate
- rStart
);
1997 if(areParallel(aEdgeVector
, aTestVector
))
1999 const double fZero(0.0);
2000 const double fOne(1.0);
2001 const double fParamTestOnCurr(fabs(aEdgeVector
.getX()) > fabs(aEdgeVector
.getY())
2002 ? aTestVector
.getX() / aEdgeVector
.getX()
2003 : aTestVector
.getY() / aEdgeVector
.getY());
2005 if(fTools::more(fParamTestOnCurr
, fZero
) && fTools::less(fParamTestOnCurr
, fOne
))
2015 bool isPointOnPolygon(const B2DPolygon
& rCandidate
, const B2DPoint
& rPoint
, bool bWithPoints
)
2017 const B2DPolygon
aCandidate(rCandidate
.areControlPointsUsed() ? rCandidate
.getDefaultAdaptiveSubdivision() : rCandidate
);
2018 const sal_uInt32
nPointCount(aCandidate
.count());
2022 const sal_uInt32
nLoopCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
2023 B2DPoint
aCurrentPoint(aCandidate
.getB2DPoint(0));
2025 for(sal_uInt32
a(0); a
< nLoopCount
; a
++)
2027 const B2DPoint
aNextPoint(aCandidate
.getB2DPoint((a
+ 1) % nPointCount
));
2029 if(isPointOnLine(aCurrentPoint
, aNextPoint
, rPoint
, bWithPoints
))
2034 aCurrentPoint
= aNextPoint
;
2037 else if(nPointCount
&& bWithPoints
)
2039 return rPoint
.equal(aCandidate
.getB2DPoint(0));
2045 bool isPointInTriangle(const B2DPoint
& rA
, const B2DPoint
& rB
, const B2DPoint
& rC
, const B2DPoint
& rCandidate
, bool bWithBorder
)
2047 if(arePointsOnSameSideOfLine(rA
, rB
, rC
, rCandidate
, bWithBorder
))
2049 if(arePointsOnSameSideOfLine(rB
, rC
, rA
, rCandidate
, bWithBorder
))
2051 if(arePointsOnSameSideOfLine(rC
, rA
, rB
, rCandidate
, bWithBorder
))
2061 bool arePointsOnSameSideOfLine(const B2DPoint
& rStart
, const B2DPoint
& rEnd
, const B2DPoint
& rCandidateA
, const B2DPoint
& rCandidateB
, bool bWithLine
)
2063 const B2DVector
aLineVector(rEnd
- rStart
);
2064 const B2DVector
aVectorToA(rEnd
- rCandidateA
);
2065 const double fCrossA(aLineVector
.cross(aVectorToA
));
2067 // tdf#88352 increase numerical correctness and use rtl::math::approxEqual
2068 // instead of fTools::equalZero which compares with a fixed small value
2071 // one point on the line
2075 const B2DVector
aVectorToB(rEnd
- rCandidateB
);
2076 const double fCrossB(aLineVector
.cross(aVectorToB
));
2078 // increase numerical correctness
2081 // one point on the line
2085 // return true if they both have the same sign
2086 return ((fCrossA
> 0.0) == (fCrossB
> 0.0));
2089 void addTriangleFan(
2090 const B2DPolygon
& rCandidate
,
2091 triangulator::B2DTriangleVector
& rTarget
)
2093 const sal_uInt32
nCount(rCandidate
.count());
2097 const B2DPoint
aStart(rCandidate
.getB2DPoint(0));
2098 B2DPoint
aLast(rCandidate
.getB2DPoint(1));
2100 for(sal_uInt32
a(2); a
< nCount
; a
++)
2102 const B2DPoint
aCurrent(rCandidate
.getB2DPoint(a
));
2103 rTarget
.emplace_back(
2116 /// return 0 for input of 0, -1 for negative and 1 for positive input
2117 int lcl_sgn( const double n
)
2119 return n
== 0.0 ? 0 : 1 - 2*int(rtl::math::isSignBitSet(n
));
2123 bool isRectangle( const B2DPolygon
& rPoly
)
2125 // polygon must be closed to resemble a rect, and contain
2126 // at least four points.
2127 if( !rPoly
.isClosed() ||
2128 rPoly
.count() < 4 ||
2129 rPoly
.areControlPointsUsed() )
2134 // number of 90 degree turns the polygon has taken
2137 int nVerticalEdgeType
=0;
2138 int nHorizontalEdgeType
=0;
2139 bool bNullVertex(true);
2140 bool bCWPolygon(false); // when true, polygon is CW
2141 // oriented, when false, CCW
2142 bool bOrientationSet(false); // when false, polygon
2143 // orientation has not yet
2146 // scan all _edges_ (which involves coming back to point 0
2147 // for the last edge - thus the modulo operation below)
2148 const sal_Int32
nCount( rPoly
.count() );
2149 for( sal_Int32 i
=0; i
<nCount
; ++i
)
2151 const B2DPoint
& rPoint0( rPoly
.getB2DPoint(i
% nCount
) );
2152 const B2DPoint
& rPoint1( rPoly
.getB2DPoint((i
+1) % nCount
) );
2154 // is 0 for zero direction vector, 1 for south edge and -1
2155 // for north edge (standard screen coordinate system)
2156 int nCurrVerticalEdgeType( lcl_sgn( rPoint1
.getY() - rPoint0
.getY() ) );
2158 // is 0 for zero direction vector, 1 for east edge and -1
2159 // for west edge (standard screen coordinate system)
2160 int nCurrHorizontalEdgeType( lcl_sgn(rPoint1
.getX() - rPoint0
.getX()) );
2162 if( nCurrVerticalEdgeType
&& nCurrHorizontalEdgeType
)
2163 return false; // oblique edge - for sure no rect
2165 const bool bCurrNullVertex( !nCurrVerticalEdgeType
&& !nCurrHorizontalEdgeType
);
2167 // current vertex is equal to previous - just skip,
2168 // until we have a real edge
2169 if( bCurrNullVertex
)
2172 // if previous edge has two identical points, because
2173 // no previous edge direction was available, simply
2174 // take this first non-null edge as the start
2175 // direction. That's what will happen here, if
2176 // bNullVertex is false
2179 // 2D cross product - is 1 for CW and -1 for CCW turns
2180 const int nCrossProduct( nHorizontalEdgeType
*nCurrVerticalEdgeType
-
2181 nVerticalEdgeType
*nCurrHorizontalEdgeType
);
2183 if( !nCrossProduct
)
2184 continue; // no change in orientation -
2185 // collinear edges - just go on
2187 // if polygon orientation is not set, we'll
2189 if( !bOrientationSet
)
2191 bCWPolygon
= nCrossProduct
== 1;
2192 bOrientationSet
= true;
2196 // if current turn orientation is not equal
2197 // initial orientation, this is not a
2198 // rectangle (as rectangles have consistent
2200 if( (nCrossProduct
== 1) != bCWPolygon
)
2206 // More than four 90 degree turns are an
2207 // indication that this must not be a rectangle.
2212 // store current state for the next turn
2213 nVerticalEdgeType
= nCurrVerticalEdgeType
;
2214 nHorizontalEdgeType
= nCurrHorizontalEdgeType
;
2215 bNullVertex
= false; // won't reach this line,
2216 // if bCurrNullVertex is
2223 B3DPolygon
createB3DPolygonFromB2DPolygon(const B2DPolygon
& rCandidate
, double fZCoordinate
)
2225 if(rCandidate
.areControlPointsUsed())
2227 // call myself recursively with subdivided input
2228 const B2DPolygon
aCandidate(adaptiveSubdivideByAngle(rCandidate
));
2229 return createB3DPolygonFromB2DPolygon(aCandidate
, fZCoordinate
);
2235 for(sal_uInt32
a(0); a
< rCandidate
.count(); a
++)
2237 B2DPoint
aPoint(rCandidate
.getB2DPoint(a
));
2238 aRetval
.append(B3DPoint(aPoint
.getX(), aPoint
.getY(), fZCoordinate
));
2241 // copy closed state
2242 aRetval
.setClosed(rCandidate
.isClosed());
2248 B2DPolygon
createB2DPolygonFromB3DPolygon(const B3DPolygon
& rCandidate
, const B3DHomMatrix
& rMat
)
2251 const sal_uInt32
nCount(rCandidate
.count());
2252 const bool bIsIdentity(rMat
.isIdentity());
2254 for(sal_uInt32
a(0); a
< nCount
; a
++)
2256 B3DPoint
aCandidate(rCandidate
.getB3DPoint(a
));
2263 aRetval
.append(B2DPoint(aCandidate
.getX(), aCandidate
.getY()));
2266 // copy closed state
2267 aRetval
.setClosed(rCandidate
.isClosed());
2272 double getSmallestDistancePointToEdge(const B2DPoint
& rPointA
, const B2DPoint
& rPointB
, const B2DPoint
& rTestPoint
, double& rCut
)
2274 if(rPointA
.equal(rPointB
))
2277 const B2DVector
aVector(rTestPoint
- rPointA
);
2278 return aVector
.getLength();
2282 // get the relative cut value on line vector (Vector1) for cut with perpendicular through TestPoint
2283 const B2DVector
aVector1(rPointB
- rPointA
);
2284 const B2DVector
aVector2(rTestPoint
- rPointA
);
2285 const double fDividend((aVector2
.getX() * aVector1
.getX()) + (aVector2
.getY() * aVector1
.getY()));
2286 const double fDivisor((aVector1
.getX() * aVector1
.getX()) + (aVector1
.getY() * aVector1
.getY()));
2287 const double fCut(fDividend
/ fDivisor
);
2291 // not in line range, get distance to PointA
2293 return aVector2
.getLength();
2297 // not in line range, get distance to PointB
2299 const B2DVector
aVector(rTestPoint
- rPointB
);
2300 return aVector
.getLength();
2305 const B2DPoint
aCutPoint(rPointA
+ fCut
* aVector1
);
2306 const B2DVector
aVector(rTestPoint
- aCutPoint
);
2308 return aVector
.getLength();
2313 double getSmallestDistancePointToPolygon(const B2DPolygon
& rCandidate
, const B2DPoint
& rTestPoint
, sal_uInt32
& rEdgeIndex
, double& rCut
)
2315 double fRetval(DBL_MAX
);
2316 const sal_uInt32
nPointCount(rCandidate
.count());
2320 const double fZero(0.0);
2321 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
2322 B2DCubicBezier aBezier
;
2323 aBezier
.setStartPoint(rCandidate
.getB2DPoint(0));
2325 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
2327 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
2328 aBezier
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
2330 double fNewCut(0.0);
2331 bool bEdgeIsCurve(false);
2333 if(rCandidate
.areControlPointsUsed())
2335 aBezier
.setControlPointA(rCandidate
.getNextControlPoint(a
));
2336 aBezier
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
2337 aBezier
.testAndSolveTrivialBezier();
2338 bEdgeIsCurve
= aBezier
.isBezier();
2343 fEdgeDist
= aBezier
.getSmallestDistancePointToBezierSegment(rTestPoint
, fNewCut
);
2347 fEdgeDist
= getSmallestDistancePointToEdge(aBezier
.getStartPoint(), aBezier
.getEndPoint(), rTestPoint
, fNewCut
);
2350 if(fRetval
== DBL_MAX
|| fEdgeDist
< fRetval
)
2352 fRetval
= fEdgeDist
;
2356 if(fTools::equal(fRetval
, fZero
))
2358 // already found zero distance, cannot get better. Ensure numerical zero value and end loop.
2364 // prepare next step
2365 aBezier
.setStartPoint(aBezier
.getEndPoint());
2368 if(rtl::math::approxEqual(1.0, rCut
))
2370 // correct rEdgeIndex when not last point
2371 if(rCandidate
.isClosed())
2373 rEdgeIndex
= getIndexOfSuccessor(rEdgeIndex
, rCandidate
);
2378 if(rEdgeIndex
!= nEdgeCount
- 1)
2390 B2DPoint
distort(const B2DPoint
& rCandidate
, const B2DRange
& rOriginal
, const B2DPoint
& rTopLeft
, const B2DPoint
& rTopRight
, const B2DPoint
& rBottomLeft
, const B2DPoint
& rBottomRight
)
2392 if(fTools::equalZero(rOriginal
.getWidth()) || fTools::equalZero(rOriginal
.getHeight()))
2398 const double fRelativeX((rCandidate
.getX() - rOriginal
.getMinX()) / rOriginal
.getWidth());
2399 const double fRelativeY((rCandidate
.getY() - rOriginal
.getMinY()) / rOriginal
.getHeight());
2400 const double fOneMinusRelativeX(1.0 - fRelativeX
);
2401 const double fOneMinusRelativeY(1.0 - fRelativeY
);
2402 const double fNewX(fOneMinusRelativeY
* (fOneMinusRelativeX
* rTopLeft
.getX() + fRelativeX
* rTopRight
.getX()) +
2403 fRelativeY
* (fOneMinusRelativeX
* rBottomLeft
.getX() + fRelativeX
* rBottomRight
.getX()));
2404 const double fNewY(fOneMinusRelativeX
* (fOneMinusRelativeY
* rTopLeft
.getY() + fRelativeY
* rBottomLeft
.getY()) +
2405 fRelativeX
* (fOneMinusRelativeY
* rTopRight
.getY() + fRelativeY
* rBottomRight
.getY()));
2407 return B2DPoint(fNewX
, fNewY
);
2411 B2DPolygon
distort(const B2DPolygon
& rCandidate
, const B2DRange
& rOriginal
, const B2DPoint
& rTopLeft
, const B2DPoint
& rTopRight
, const B2DPoint
& rBottomLeft
, const B2DPoint
& rBottomRight
)
2413 const sal_uInt32
nPointCount(rCandidate
.count());
2415 if(nPointCount
&& rOriginal
.getWidth() != 0.0 && rOriginal
.getHeight() != 0.0)
2419 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
2421 aRetval
.append(distort(rCandidate
.getB2DPoint(a
), rOriginal
, rTopLeft
, rTopRight
, rBottomLeft
, rBottomRight
));
2423 if(rCandidate
.areControlPointsUsed())
2425 if(!rCandidate
.getPrevControlPoint(a
).equalZero())
2427 aRetval
.setPrevControlPoint(a
, distort(rCandidate
.getPrevControlPoint(a
), rOriginal
, rTopLeft
, rTopRight
, rBottomLeft
, rBottomRight
));
2430 if(!rCandidate
.getNextControlPoint(a
).equalZero())
2432 aRetval
.setNextControlPoint(a
, distort(rCandidate
.getNextControlPoint(a
), rOriginal
, rTopLeft
, rTopRight
, rBottomLeft
, rBottomRight
));
2437 aRetval
.setClosed(rCandidate
.isClosed());
2446 B2DPolygon
expandToCurve(const B2DPolygon
& rCandidate
)
2448 B2DPolygon
aRetval(rCandidate
);
2450 for(sal_uInt32
a(0); a
< rCandidate
.count(); a
++)
2452 expandToCurveInPoint(aRetval
, a
);
2458 bool expandToCurveInPoint(B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
2460 OSL_ENSURE(nIndex
< rCandidate
.count(), "expandToCurveInPoint: Access to polygon out of range (!)");
2461 bool bRetval(false);
2462 const sal_uInt32
nPointCount(rCandidate
.count());
2467 if(!rCandidate
.isPrevControlPointUsed(nIndex
))
2469 if(!rCandidate
.isClosed() && nIndex
== 0)
2471 // do not create previous vector for start point of open polygon
2475 const sal_uInt32
nPrevIndex((nIndex
+ (nPointCount
- 1)) % nPointCount
);
2476 rCandidate
.setPrevControlPoint(nIndex
, interpolate(rCandidate
.getB2DPoint(nIndex
), rCandidate
.getB2DPoint(nPrevIndex
), 1.0 / 3.0));
2482 if(!rCandidate
.isNextControlPointUsed(nIndex
))
2484 if(!rCandidate
.isClosed() && nIndex
+ 1 == nPointCount
)
2486 // do not create next vector for end point of open polygon
2490 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
2491 rCandidate
.setNextControlPoint(nIndex
, interpolate(rCandidate
.getB2DPoint(nIndex
), rCandidate
.getB2DPoint(nNextIndex
), 1.0 / 3.0));
2500 bool setContinuityInPoint(B2DPolygon
& rCandidate
, sal_uInt32 nIndex
, B2VectorContinuity eContinuity
)
2502 OSL_ENSURE(nIndex
< rCandidate
.count(), "setContinuityInPoint: Access to polygon out of range (!)");
2503 bool bRetval(false);
2504 const sal_uInt32
nPointCount(rCandidate
.count());
2508 const B2DPoint
aCurrentPoint(rCandidate
.getB2DPoint(nIndex
));
2512 case B2VectorContinuity::NONE
:
2514 if(rCandidate
.isPrevControlPointUsed(nIndex
))
2516 if(!rCandidate
.isClosed() && nIndex
== 0)
2518 // remove existing previous vector for start point of open polygon
2519 rCandidate
.resetPrevControlPoint(nIndex
);
2523 const sal_uInt32
nPrevIndex((nIndex
+ (nPointCount
- 1)) % nPointCount
);
2524 rCandidate
.setPrevControlPoint(nIndex
, interpolate(aCurrentPoint
, rCandidate
.getB2DPoint(nPrevIndex
), 1.0 / 3.0));
2530 if(rCandidate
.isNextControlPointUsed(nIndex
))
2532 if(!rCandidate
.isClosed() && nIndex
== nPointCount
+ 1)
2534 // remove next vector for end point of open polygon
2535 rCandidate
.resetNextControlPoint(nIndex
);
2539 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
2540 rCandidate
.setNextControlPoint(nIndex
, interpolate(aCurrentPoint
, rCandidate
.getB2DPoint(nNextIndex
), 1.0 / 3.0));
2548 case B2VectorContinuity::C1
:
2550 if(rCandidate
.isPrevControlPointUsed(nIndex
) && rCandidate
.isNextControlPointUsed(nIndex
))
2552 // lengths both exist since both are used
2553 B2DVector
aVectorPrev(rCandidate
.getPrevControlPoint(nIndex
) - aCurrentPoint
);
2554 B2DVector
aVectorNext(rCandidate
.getNextControlPoint(nIndex
) - aCurrentPoint
);
2555 const double fLenPrev(aVectorPrev
.getLength());
2556 const double fLenNext(aVectorNext
.getLength());
2557 aVectorPrev
.normalize();
2558 aVectorNext
.normalize();
2559 const B2VectorOrientation
aOrientation(getOrientation(aVectorPrev
, aVectorNext
));
2561 if(aOrientation
== B2VectorOrientation::Neutral
&& aVectorPrev
.scalar(aVectorNext
) < 0.0)
2563 // parallel and opposite direction; check length
2564 if(fTools::equal(fLenPrev
, fLenNext
))
2566 // this would be even C2, but we want C1. Use the lengths of the corresponding edges.
2567 const sal_uInt32
nPrevIndex((nIndex
+ (nPointCount
- 1)) % nPointCount
);
2568 const sal_uInt32
nNextIndex((nIndex
+ 1) % nPointCount
);
2569 const double fLenPrevEdge(B2DVector(rCandidate
.getB2DPoint(nPrevIndex
) - aCurrentPoint
).getLength() * (1.0 / 3.0));
2570 const double fLenNextEdge(B2DVector(rCandidate
.getB2DPoint(nNextIndex
) - aCurrentPoint
).getLength() * (1.0 / 3.0));
2572 rCandidate
.setControlPoints(nIndex
,
2573 aCurrentPoint
+ (aVectorPrev
* fLenPrevEdge
),
2574 aCurrentPoint
+ (aVectorNext
* fLenNextEdge
));
2580 // not parallel or same direction, set vectors and length
2581 const B2DVector
aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev
+ aVectorNext
));
2583 if(aOrientation
== B2VectorOrientation::Positive
)
2585 rCandidate
.setControlPoints(nIndex
,
2586 aCurrentPoint
- (aNormalizedPerpendicular
* fLenPrev
),
2587 aCurrentPoint
+ (aNormalizedPerpendicular
* fLenNext
));
2591 rCandidate
.setControlPoints(nIndex
,
2592 aCurrentPoint
+ (aNormalizedPerpendicular
* fLenPrev
),
2593 aCurrentPoint
- (aNormalizedPerpendicular
* fLenNext
));
2601 case B2VectorContinuity::C2
:
2603 if(rCandidate
.isPrevControlPointUsed(nIndex
) && rCandidate
.isNextControlPointUsed(nIndex
))
2605 // lengths both exist since both are used
2606 B2DVector
aVectorPrev(rCandidate
.getPrevControlPoint(nIndex
) - aCurrentPoint
);
2607 B2DVector
aVectorNext(rCandidate
.getNextControlPoint(nIndex
) - aCurrentPoint
);
2608 const double fCommonLength((aVectorPrev
.getLength() + aVectorNext
.getLength()) / 2.0);
2609 aVectorPrev
.normalize();
2610 aVectorNext
.normalize();
2611 const B2VectorOrientation
aOrientation(getOrientation(aVectorPrev
, aVectorNext
));
2613 if(aOrientation
== B2VectorOrientation::Neutral
&& aVectorPrev
.scalar(aVectorNext
) < 0.0)
2615 // parallel and opposite direction; set length. Use one direction for better numerical correctness
2616 const B2DVector
aScaledDirection(aVectorPrev
* fCommonLength
);
2618 rCandidate
.setControlPoints(nIndex
,
2619 aCurrentPoint
+ aScaledDirection
,
2620 aCurrentPoint
- aScaledDirection
);
2624 // not parallel or same direction, set vectors and length
2625 const B2DVector
aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev
+ aVectorNext
));
2626 const B2DVector
aPerpendicular(aNormalizedPerpendicular
* fCommonLength
);
2628 if(aOrientation
== B2VectorOrientation::Positive
)
2630 rCandidate
.setControlPoints(nIndex
,
2631 aCurrentPoint
- aPerpendicular
,
2632 aCurrentPoint
+ aPerpendicular
);
2636 rCandidate
.setControlPoints(nIndex
,
2637 aCurrentPoint
+ aPerpendicular
,
2638 aCurrentPoint
- aPerpendicular
);
2652 B2DPolygon
growInNormalDirection(const B2DPolygon
& rCandidate
, double fValue
)
2656 if(rCandidate
.areControlPointsUsed())
2658 // call myself recursively with subdivided input
2659 const B2DPolygon
aCandidate(adaptiveSubdivideByAngle(rCandidate
));
2660 return growInNormalDirection(aCandidate
, fValue
);
2665 const sal_uInt32
nPointCount(rCandidate
.count());
2669 B2DPoint
aPrev(rCandidate
.getB2DPoint(nPointCount
- 1));
2670 B2DPoint
aCurrent(rCandidate
.getB2DPoint(0));
2672 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
2674 const B2DPoint
aNext(rCandidate
.getB2DPoint(a
+ 1 == nPointCount
? 0 : a
+ 1));
2675 const B2DVector
aBack(aPrev
- aCurrent
);
2676 const B2DVector
aForw(aNext
- aCurrent
);
2677 const B2DVector
aPerpBack(getNormalizedPerpendicular(aBack
));
2678 const B2DVector
aPerpForw(getNormalizedPerpendicular(aForw
));
2679 B2DVector
aDirection(aPerpBack
- aPerpForw
);
2680 aDirection
.normalize();
2681 aDirection
*= fValue
;
2682 aRetval
.append(aCurrent
+ aDirection
);
2684 // prepare next step
2690 // copy closed state
2691 aRetval
.setClosed(rCandidate
.isClosed());
2702 B2DPolygon
reSegmentPolygon(const B2DPolygon
& rCandidate
, sal_uInt32 nSegments
)
2705 const sal_uInt32
nPointCount(rCandidate
.count());
2707 if(nPointCount
&& nSegments
)
2709 // get current segment count
2710 const sal_uInt32
nSegmentCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
2712 if(nSegmentCount
== nSegments
)
2714 aRetval
= rCandidate
;
2718 const double fLength(getLength(rCandidate
));
2719 const sal_uInt32
nLoopCount(rCandidate
.isClosed() ? nSegments
: nSegments
+ 1);
2721 for(sal_uInt32
a(0); a
< nLoopCount
; a
++)
2723 const double fRelativePos(static_cast<double>(a
) / static_cast<double>(nSegments
)); // 0.0 .. 1.0
2724 const B2DPoint
aNewPoint(getPositionRelative(rCandidate
, fRelativePos
, fLength
));
2725 aRetval
.append(aNewPoint
);
2729 aRetval
.setClosed(rCandidate
.isClosed());
2736 B2DPolygon
interpolate(const B2DPolygon
& rOld1
, const B2DPolygon
& rOld2
, double t
)
2738 OSL_ENSURE(rOld1
.count() == rOld2
.count(), "B2DPolygon interpolate: Different geometry (!)");
2740 if(fTools::lessOrEqual(t
, 0.0) || rOld1
== rOld2
)
2744 else if(fTools::moreOrEqual(t
, 1.0))
2751 const bool bInterpolateVectors(rOld1
.areControlPointsUsed() || rOld2
.areControlPointsUsed());
2752 aRetval
.setClosed(rOld1
.isClosed() && rOld2
.isClosed());
2754 for(sal_uInt32
a(0); a
< rOld1
.count(); a
++)
2756 aRetval
.append(interpolate(rOld1
.getB2DPoint(a
), rOld2
.getB2DPoint(a
), t
));
2758 if(bInterpolateVectors
)
2760 aRetval
.setPrevControlPoint(a
, interpolate(rOld1
.getPrevControlPoint(a
), rOld2
.getPrevControlPoint(a
), t
));
2761 aRetval
.setNextControlPoint(a
, interpolate(rOld1
.getNextControlPoint(a
), rOld2
.getNextControlPoint(a
), t
));
2770 B2DPolygon
simplifyCurveSegments(const B2DPolygon
& rCandidate
)
2772 const sal_uInt32
nPointCount(rCandidate
.count());
2774 if(nPointCount
&& rCandidate
.areControlPointsUsed())
2777 const sal_uInt32
nEdgeCount(rCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
2779 B2DCubicBezier aBezier
;
2780 aBezier
.setStartPoint(rCandidate
.getB2DPoint(0));
2782 // try to avoid costly reallocations
2783 aRetval
.reserve( nEdgeCount
+1);
2786 aRetval
.append(aBezier
.getStartPoint());
2788 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
2790 // get values for edge
2791 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
2792 aBezier
.setEndPoint(rCandidate
.getB2DPoint(nNextIndex
));
2793 aBezier
.setControlPointA(rCandidate
.getNextControlPoint(a
));
2794 aBezier
.setControlPointB(rCandidate
.getPrevControlPoint(nNextIndex
));
2795 aBezier
.testAndSolveTrivialBezier();
2798 if(aBezier
.isBezier())
2800 // add edge with control vectors
2801 aRetval
.appendBezierSegment(aBezier
.getControlPointA(), aBezier
.getControlPointB(), aBezier
.getEndPoint());
2806 aRetval
.append(aBezier
.getEndPoint());
2810 aBezier
.setStartPoint(aBezier
.getEndPoint());
2813 if(rCandidate
.isClosed())
2815 // set closed flag, rescue control point and correct last double point
2816 closeWithGeometryChange(aRetval
);
2827 // makes the given indexed point the new polygon start point. To do that, the points in the
2828 // polygon will be rotated. This is only valid for closed polygons, for non-closed ones
2829 // an assertion will be triggered
2830 B2DPolygon
makeStartPoint(const B2DPolygon
& rCandidate
, sal_uInt32 nIndexOfNewStatPoint
)
2832 const sal_uInt32
nPointCount(rCandidate
.count());
2834 if(nPointCount
> 2 && nIndexOfNewStatPoint
!= 0 && nIndexOfNewStatPoint
< nPointCount
)
2836 OSL_ENSURE(rCandidate
.isClosed(), "makeStartPoint: only valid for closed polygons (!)");
2839 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
2841 const sal_uInt32
nSourceIndex((a
+ nIndexOfNewStatPoint
) % nPointCount
);
2842 aRetval
.append(rCandidate
.getB2DPoint(nSourceIndex
));
2844 if(rCandidate
.areControlPointsUsed())
2846 aRetval
.setPrevControlPoint(a
, rCandidate
.getPrevControlPoint(nSourceIndex
));
2847 aRetval
.setNextControlPoint(a
, rCandidate
.getNextControlPoint(nSourceIndex
));
2857 B2DPolygon
createEdgesOfGivenLength(const B2DPolygon
& rCandidate
, double fLength
, double fStart
, double fEnd
)
2866 if(!fTools::equalZero(fLength
))
2883 // iterate and consume pieces with fLength. First subdivide to reduce input to line segments
2884 const B2DPolygon
aCandidate(rCandidate
.areControlPointsUsed() ? rCandidate
.getDefaultAdaptiveSubdivision() : rCandidate
);
2885 const sal_uInt32
nPointCount(aCandidate
.count());
2889 const bool bEndActive(!fTools::equalZero(fEnd
));
2890 const sal_uInt32
nEdgeCount(aCandidate
.isClosed() ? nPointCount
: nPointCount
- 1);
2891 B2DPoint
aCurrent(aCandidate
.getB2DPoint(0));
2892 double fPositionInEdge(fStart
);
2893 double fAbsolutePosition(fStart
);
2895 for(sal_uInt32
a(0); a
< nEdgeCount
; a
++)
2897 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
2898 const B2DPoint
aNext(aCandidate
.getB2DPoint(nNextIndex
));
2899 const B2DVector
aEdge(aNext
- aCurrent
);
2900 double fEdgeLength(aEdge
.getLength());
2902 if(!fTools::equalZero(fEdgeLength
))
2904 while(fTools::less(fPositionInEdge
, fEdgeLength
))
2906 // move position on edge forward as long as on edge
2907 const double fScalar(fPositionInEdge
/ fEdgeLength
);
2908 aRetval
.append(aCurrent
+ (aEdge
* fScalar
));
2909 fPositionInEdge
+= fLength
;
2913 fAbsolutePosition
+= fLength
;
2915 if(fTools::more(fAbsolutePosition
, fEnd
))
2922 // subtract length of current edge
2923 fPositionInEdge
-= fEdgeLength
;
2926 if(bEndActive
&& fTools::more(fAbsolutePosition
, fEnd
))
2931 // prepare next step
2935 // keep closed state
2936 aRetval
.setClosed(aCandidate
.isClosed());
2940 // source polygon has only one point, return unchanged
2941 aRetval
= aCandidate
;
2948 B2DPolygon
createWaveline(const B2DPolygon
& rCandidate
, double fWaveWidth
, double fWaveHeight
)
2952 if(fWaveWidth
< 0.0)
2957 if(fWaveHeight
< 0.0)
2962 const bool bHasWidth(!fTools::equalZero(fWaveWidth
));
2966 const bool bHasHeight(!fTools::equalZero(fWaveHeight
));
2969 // width and height, create waveline. First subdivide to reduce input to line segments
2970 // of WaveWidth. Last segment may be missing. If this turns out to be a problem, it
2971 // may be added here again using the original last point from rCandidate. It may
2972 // also be the case that rCandidate was closed. To simplify things it is handled here
2973 // as if it was opened.
2974 // Result from createEdgesOfGivenLength contains no curved segments, handle as straight
2976 const B2DPolygon
aEqualLenghEdges(createEdgesOfGivenLength(rCandidate
, fWaveWidth
));
2977 const sal_uInt32
nPointCount(aEqualLenghEdges
.count());
2981 // iterate over straight edges, add start point
2982 B2DPoint
aCurrent(aEqualLenghEdges
.getB2DPoint(0));
2983 aRetval
.append(aCurrent
);
2985 for(sal_uInt32
a(0); a
< nPointCount
- 1; a
++)
2987 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
2988 const B2DPoint
aNext(aEqualLenghEdges
.getB2DPoint(nNextIndex
));
2989 const B2DVector
aEdge(aNext
- aCurrent
);
2990 const B2DVector
aPerpendicular(getNormalizedPerpendicular(aEdge
));
2991 const B2DVector
aControlOffset((aEdge
* 0.467308) - (aPerpendicular
* fWaveHeight
));
2993 // add curve segment
2994 aRetval
.appendBezierSegment(
2995 aCurrent
+ aControlOffset
,
2996 aNext
- aControlOffset
,
2999 // prepare next step
3006 // width but no height -> return original polygon
3007 aRetval
= rCandidate
;
3012 // no width -> no waveline, stay empty and return
3018 // snap points of horizontal or vertical edges to discrete values
3019 B2DPolygon
snapPointsOfHorizontalOrVerticalEdges(const B2DPolygon
& rCandidate
)
3021 const sal_uInt32
nPointCount(rCandidate
.count());
3025 // Start by copying the source polygon to get a writeable copy. The closed state is
3026 // copied by aRetval's initialisation, too, so no need to copy it in this method
3027 B2DPolygon
aRetval(rCandidate
);
3029 // prepare geometry data. Get rounded from original
3030 B2ITuple
aPrevTuple(basegfx::fround(rCandidate
.getB2DPoint(nPointCount
- 1)));
3031 B2DPoint
aCurrPoint(rCandidate
.getB2DPoint(0));
3032 B2ITuple
aCurrTuple(basegfx::fround(aCurrPoint
));
3034 // loop over all points. This will also snap the implicit closing edge
3035 // even when not closed, but that's no problem here
3036 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
3038 // get next point. Get rounded from original
3039 const bool bLastRun(a
+ 1 == nPointCount
);
3040 const sal_uInt32
nNextIndex(bLastRun
? 0 : a
+ 1);
3041 const B2DPoint
aNextPoint(rCandidate
.getB2DPoint(nNextIndex
));
3042 const B2ITuple
aNextTuple(basegfx::fround(aNextPoint
));
3045 const bool bPrevVertical(aPrevTuple
.getX() == aCurrTuple
.getX());
3046 const bool bNextVertical(aNextTuple
.getX() == aCurrTuple
.getX());
3047 const bool bPrevHorizontal(aPrevTuple
.getY() == aCurrTuple
.getY());
3048 const bool bNextHorizontal(aNextTuple
.getY() == aCurrTuple
.getY());
3049 const bool bSnapX(bPrevVertical
|| bNextVertical
);
3050 const bool bSnapY(bPrevHorizontal
|| bNextHorizontal
);
3052 if(bSnapX
|| bSnapY
)
3054 const B2DPoint
aSnappedPoint(
3055 bSnapX
? aCurrTuple
.getX() : aCurrPoint
.getX(),
3056 bSnapY
? aCurrTuple
.getY() : aCurrPoint
.getY());
3058 aRetval
.setB2DPoint(a
, aSnappedPoint
);
3061 // prepare next point
3064 aPrevTuple
= aCurrTuple
;
3065 aCurrPoint
= aNextPoint
;
3066 aCurrTuple
= aNextTuple
;
3078 B2DVector
getTangentEnteringPoint(const B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
3080 B2DVector
aRetval(0.0, 0.0);
3081 const sal_uInt32
nCount(rCandidate
.count());
3083 if(nIndex
>= nCount
)
3089 // start immediately at prev point compared to nIndex
3090 const bool bClosed(rCandidate
.isClosed());
3091 sal_uInt32
nPrev(bClosed
? (nIndex
+ nCount
- 1) % nCount
: nIndex
? nIndex
- 1 : nIndex
);
3095 // no previous, done
3099 B2DCubicBezier aSegment
;
3101 // go backward in the polygon; if closed, maximal back to start index (nIndex); if not closed,
3102 // until zero. Use nIndex as stop criteria
3103 while(nPrev
!= nIndex
)
3105 // get BezierSegment and tangent at the *end* of segment
3106 rCandidate
.getBezierSegment(nPrev
, aSegment
);
3107 aRetval
= aSegment
.getTangent(1.0);
3109 if(!aRetval
.equalZero())
3111 // if we have a tangent, return it
3115 // prepare index before checked one
3116 nPrev
= bClosed
? (nPrev
+ nCount
- 1) % nCount
: nPrev
? nPrev
- 1 : nIndex
;
3122 B2DVector
getTangentLeavingPoint(const B2DPolygon
& rCandidate
, sal_uInt32 nIndex
)
3124 B2DVector
aRetval(0.0, 0.0);
3125 const sal_uInt32
nCount(rCandidate
.count());
3127 if(nIndex
>= nCount
)
3134 const bool bClosed(rCandidate
.isClosed());
3135 sal_uInt32
nCurrent(nIndex
);
3136 B2DCubicBezier aSegment
;
3138 // go forward; if closed, do this until once around and back at start index (nIndex); if not
3139 // closed, until last point (nCount - 1). Use nIndex as stop criteria
3142 // get BezierSegment and tangent at the *beginning* of segment
3143 rCandidate
.getBezierSegment(nCurrent
, aSegment
);
3144 aRetval
= aSegment
.getTangent(0.0);
3146 if(!aRetval
.equalZero())
3148 // if we have a tangent, return it
3152 // prepare next index
3153 nCurrent
= bClosed
? (nCurrent
+ 1) % nCount
: nCurrent
+ 1 < nCount
? nCurrent
+ 1 : nIndex
;
3155 while(nCurrent
!= nIndex
);
3160 // converters for css::drawing::PointSequence
3162 B2DPolygon
UnoPointSequenceToB2DPolygon(
3163 const css::drawing::PointSequence
& rPointSequenceSource
)
3166 const sal_uInt32
nLength(rPointSequenceSource
.getLength());
3170 aRetval
.reserve(nLength
);
3171 const css::awt::Point
* pArray
= rPointSequenceSource
.getConstArray();
3172 const css::awt::Point
* pArrayEnd
= pArray
+ rPointSequenceSource
.getLength();
3174 for(;pArray
!= pArrayEnd
; pArray
++)
3176 aRetval
.append(B2DPoint(pArray
->X
, pArray
->Y
));
3179 // check for closed state flag
3180 utils::checkClosed(aRetval
);
3186 void B2DPolygonToUnoPointSequence(
3187 const B2DPolygon
& rPolygon
,
3188 css::drawing::PointSequence
& rPointSequenceRetval
)
3190 B2DPolygon
aPolygon(rPolygon
);
3192 if(aPolygon
.areControlPointsUsed())
3194 OSL_ENSURE(false, "B2DPolygonToUnoPointSequence: Source contains bezier segments, wrong UNO API data type may be used (!)");
3195 aPolygon
= aPolygon
.getDefaultAdaptiveSubdivision();
3198 const sal_uInt32
nPointCount(aPolygon
.count());
3202 // Take closed state into account, the API polygon still uses the old closed definition
3203 // with last/first point are identical (cannot hold information about open polygons with identical
3204 // first and last point, though)
3205 const bool bIsClosed(aPolygon
.isClosed());
3207 rPointSequenceRetval
.realloc(bIsClosed
? nPointCount
+ 1 : nPointCount
);
3208 css::awt::Point
* pSequence
= rPointSequenceRetval
.getArray();
3210 for(sal_uInt32
b(0); b
< nPointCount
; b
++)
3212 const B2DPoint
aPoint(aPolygon
.getB2DPoint(b
));
3213 const css::awt::Point
aAPIPoint(fround(aPoint
.getX()), fround(aPoint
.getY()));
3215 *pSequence
= aAPIPoint
;
3219 // copy first point if closed
3222 *pSequence
= *rPointSequenceRetval
.getArray();
3227 rPointSequenceRetval
.realloc(0);
3231 // converters for css::drawing::PointSequence and
3232 // css::drawing::FlagSequence to B2DPolygon (curved polygons)
3234 B2DPolygon
UnoPolygonBezierCoordsToB2DPolygon(
3235 const css::drawing::PointSequence
& rPointSequenceSource
,
3236 const css::drawing::FlagSequence
& rFlagSequenceSource
)
3238 const sal_uInt32
nCount(static_cast<sal_uInt32
>(rPointSequenceSource
.getLength()));
3239 OSL_ENSURE(nCount
== static_cast<sal_uInt32
>(rFlagSequenceSource
.getLength()),
3240 "UnoPolygonBezierCoordsToB2DPolygon: Unequal count of Points and Flags (!)");
3242 // prepare new polygon
3247 const css::awt::Point
* pPointSequence
= rPointSequenceSource
.getConstArray();
3248 const css::drawing::PolygonFlags
* pFlagSequence
= rFlagSequenceSource
.getConstArray();
3250 // get first point and flag
3251 B2DPoint
aNewCoordinatePair(pPointSequence
->X
, pPointSequence
->Y
); pPointSequence
++;
3252 css::drawing::PolygonFlags
ePolygonFlag(*pFlagSequence
); pFlagSequence
++;
3256 // first point is not allowed to be a control point
3257 OSL_ENSURE(ePolygonFlag
!= css::drawing::PolygonFlags_CONTROL
,
3258 "UnoPolygonBezierCoordsToB2DPolygon: Start point is a control point, illegal input polygon (!)");
3260 // add first point as start point
3261 aRetval
.append(aNewCoordinatePair
);
3263 for(sal_uInt32
b(1); b
< nCount
;)
3266 bool bControlA(false);
3267 bool bControlB(false);
3269 // get next point and flag
3270 aNewCoordinatePair
= B2DPoint(pPointSequence
->X
, pPointSequence
->Y
);
3271 ePolygonFlag
= *pFlagSequence
;
3272 pPointSequence
++; pFlagSequence
++; b
++;
3274 if(b
< nCount
&& ePolygonFlag
== css::drawing::PolygonFlags_CONTROL
)
3276 aControlA
= aNewCoordinatePair
;
3279 // get next point and flag
3280 aNewCoordinatePair
= B2DPoint(pPointSequence
->X
, pPointSequence
->Y
);
3281 ePolygonFlag
= *pFlagSequence
;
3282 pPointSequence
++; pFlagSequence
++; b
++;
3285 if(b
< nCount
&& ePolygonFlag
== css::drawing::PolygonFlags_CONTROL
)
3287 aControlB
= aNewCoordinatePair
;
3290 // get next point and flag
3291 aNewCoordinatePair
= B2DPoint(pPointSequence
->X
, pPointSequence
->Y
);
3292 ePolygonFlag
= *pFlagSequence
;
3293 pPointSequence
++; pFlagSequence
++; b
++;
3296 // two or no control points are consumed, another one would be an error.
3297 // It's also an error if only one control point was read
3298 SAL_WARN_IF(ePolygonFlag
== css::drawing::PolygonFlags_CONTROL
|| bControlA
!= bControlB
,
3299 "basegfx", "UnoPolygonBezierCoordsToB2DPolygon: Illegal source polygon (!)");
3301 // the previous writes used the B2DPolyPoygon -> utils::PolyPolygon converter
3302 // which did not create minimal PolyPolygons, but created all control points
3303 // as null vectors (identical points). Because of the former P(CA)(CB)-norm of
3304 // B2DPolygon and it's unused sign of being the zero-vector and CA and CB being
3305 // relative to P, an empty edge was exported as P == CA == CB. Luckily, the new
3306 // export format can be read without errors by the old OOo-versions, so we need only
3307 // to correct here at read and do not need to export a wrong but compatible version
3310 && aControlA
.equal(aControlB
)
3311 && aControlA
.equal(aRetval
.getB2DPoint(aRetval
.count() - 1)))
3319 aRetval
.appendBezierSegment(aControlA
, aControlB
, aNewCoordinatePair
);
3324 aRetval
.append(aNewCoordinatePair
);
3328 // #i72807# API import uses old line start/end-equal definition for closed,
3329 // so we need to correct this to closed state here
3330 checkClosed(aRetval
);
3336 void B2DPolygonToUnoPolygonBezierCoords(
3337 const B2DPolygon
& rPolygon
,
3338 css::drawing::PointSequence
& rPointSequenceRetval
,
3339 css::drawing::FlagSequence
& rFlagSequenceRetval
)
3341 const sal_uInt32
nPointCount(rPolygon
.count());
3345 const bool bCurve(rPolygon
.areControlPointsUsed());
3346 const bool bClosed(rPolygon
.isClosed());
3350 // calculate target point count
3351 const sal_uInt32
nLoopCount(bClosed
? nPointCount
: nPointCount
- 1);
3355 // prepare target data. The real needed number of target points (and flags)
3356 // could only be calculated by using two loops, so use dynamic memory
3357 std::vector
< css::awt::Point
> aCollectPoints
;
3358 std::vector
< css::drawing::PolygonFlags
> aCollectFlags
;
3360 // reserve maximum creatable points
3361 const sal_uInt32
nMaxTargetCount((nLoopCount
* 3) + 1);
3362 aCollectPoints
.reserve(nMaxTargetCount
);
3363 aCollectFlags
.reserve(nMaxTargetCount
);
3365 // prepare current bezier segment by setting start point
3366 B2DCubicBezier aBezierSegment
;
3367 aBezierSegment
.setStartPoint(rPolygon
.getB2DPoint(0));
3369 for(sal_uInt32
a(0); a
< nLoopCount
; a
++)
3371 // add current point (always) and remember StartPointIndex for evtl. later corrections
3372 const sal_uInt32
nStartPointIndex(aCollectPoints
.size());
3373 aCollectPoints
.emplace_back(
3374 fround(aBezierSegment
.getStartPoint().getX()),
3375 fround(aBezierSegment
.getStartPoint().getY()));
3376 aCollectFlags
.push_back(css::drawing::PolygonFlags_NORMAL
);
3378 // prepare next segment
3379 const sal_uInt32
nNextIndex((a
+ 1) % nPointCount
);
3380 aBezierSegment
.setEndPoint(rPolygon
.getB2DPoint(nNextIndex
));
3381 aBezierSegment
.setControlPointA(rPolygon
.getNextControlPoint(a
));
3382 aBezierSegment
.setControlPointB(rPolygon
.getPrevControlPoint(nNextIndex
));
3384 if(aBezierSegment
.isBezier())
3386 // if bezier is used, add always two control points due to the old schema
3387 aCollectPoints
.emplace_back(
3388 fround(aBezierSegment
.getControlPointA().getX()),
3389 fround(aBezierSegment
.getControlPointA().getY()));
3390 aCollectFlags
.push_back(css::drawing::PolygonFlags_CONTROL
);
3392 aCollectPoints
.emplace_back(
3393 fround(aBezierSegment
.getControlPointB().getX()),
3394 fround(aBezierSegment
.getControlPointB().getY()));
3395 aCollectFlags
.push_back(css::drawing::PolygonFlags_CONTROL
);
3398 // test continuity with previous control point to set flag value
3399 if(aBezierSegment
.getControlPointA() != aBezierSegment
.getStartPoint() && (bClosed
|| a
))
3401 const B2VectorContinuity
eCont(rPolygon
.getContinuityInPoint(a
));
3403 if(eCont
== B2VectorContinuity::C1
)
3405 aCollectFlags
[nStartPointIndex
] = css::drawing::PolygonFlags_SMOOTH
;
3407 else if(eCont
== B2VectorContinuity::C2
)
3409 aCollectFlags
[nStartPointIndex
] = css::drawing::PolygonFlags_SYMMETRIC
;
3413 // prepare next loop
3414 aBezierSegment
.setStartPoint(aBezierSegment
.getEndPoint());
3419 // add first point again as closing point due to old definition
3420 aCollectPoints
.push_back(aCollectPoints
[0]);
3421 aCollectFlags
.push_back(css::drawing::PolygonFlags_NORMAL
);
3425 // add last point as closing point
3426 const B2DPoint
aClosingPoint(rPolygon
.getB2DPoint(nPointCount
- 1));
3427 aCollectPoints
.emplace_back(
3428 fround(aClosingPoint
.getX()),
3429 fround(aClosingPoint
.getY()));
3430 aCollectFlags
.push_back(css::drawing::PolygonFlags_NORMAL
);
3433 // copy collected data to target arrays
3434 const sal_uInt32
nTargetCount(aCollectPoints
.size());
3435 OSL_ENSURE(nTargetCount
== aCollectFlags
.size(), "Unequal Point and Flag count (!)");
3437 rPointSequenceRetval
.realloc(static_cast<sal_Int32
>(nTargetCount
));
3438 rFlagSequenceRetval
.realloc(static_cast<sal_Int32
>(nTargetCount
));
3439 css::awt::Point
* pPointSequence
= rPointSequenceRetval
.getArray();
3440 css::drawing::PolygonFlags
* pFlagSequence
= rFlagSequenceRetval
.getArray();
3442 for(sal_uInt32
a(0); a
< nTargetCount
; a
++)
3444 *pPointSequence
= aCollectPoints
[a
];
3445 *pFlagSequence
= aCollectFlags
[a
];
3453 // straightforward point list creation
3454 const sal_uInt32
nTargetCount(nPointCount
+ (bClosed
? 1 : 0));
3456 rPointSequenceRetval
.realloc(static_cast<sal_Int32
>(nTargetCount
));
3457 rFlagSequenceRetval
.realloc(static_cast<sal_Int32
>(nTargetCount
));
3459 css::awt::Point
* pPointSequence
= rPointSequenceRetval
.getArray();
3460 css::drawing::PolygonFlags
* pFlagSequence
= rFlagSequenceRetval
.getArray();
3462 for(sal_uInt32
a(0); a
< nPointCount
; a
++)
3464 const B2DPoint
aB2DPoint(rPolygon
.getB2DPoint(a
));
3465 const css::awt::Point
aAPIPoint(
3466 fround(aB2DPoint
.getX()),
3467 fround(aB2DPoint
.getY()));
3469 *pPointSequence
= aAPIPoint
;
3470 *pFlagSequence
= css::drawing::PolygonFlags_NORMAL
;
3477 // add first point as closing point
3478 *pPointSequence
= *rPointSequenceRetval
.getConstArray();
3479 *pFlagSequence
= css::drawing::PolygonFlags_NORMAL
;
3485 rPointSequenceRetval
.realloc(0);
3486 rFlagSequenceRetval
.realloc(0);
3490 } // end of namespace utils
3491 } // end of namespace basegfx
3493 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */