Version 7.6.3.2-android, tag libreoffice-7.6.3.2-android
[LibreOffice.git] / cppu / source / threadpool / threadpool.cxx
bloba65bdcfaf625a4a79e3c3e538f6dec346181355f
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <sal/config.h>
22 #include <cassert>
23 #include <chrono>
24 #include <algorithm>
25 #include <utility>
26 #include <unordered_map>
28 #include <osl/diagnose.h>
29 #include <sal/log.hxx>
31 #include <uno/threadpool.h>
33 #include "threadpool.hxx"
34 #include "thread.hxx"
36 using namespace ::osl;
37 using namespace ::rtl;
39 namespace cppu_threadpool
41 WaitingThread::WaitingThread(
42 rtl::Reference<ORequestThread> theThread): thread(std::move(theThread))
45 DisposedCallerAdminHolder const & DisposedCallerAdmin::getInstance()
47 static DisposedCallerAdminHolder theDisposedCallerAdmin = std::make_shared<DisposedCallerAdmin>();
48 return theDisposedCallerAdmin;
51 DisposedCallerAdmin::~DisposedCallerAdmin()
53 SAL_WARN_IF( !m_vector.empty(), "cppu.threadpool", "DisposedCallerList : " << m_vector.size() << " left");
56 void DisposedCallerAdmin::dispose( void const * nDisposeId )
58 std::scoped_lock guard( m_mutex );
59 m_vector.push_back( nDisposeId );
62 void DisposedCallerAdmin::destroy( void const * nDisposeId )
64 std::scoped_lock guard( m_mutex );
65 m_vector.erase(std::remove(m_vector.begin(), m_vector.end(), nDisposeId), m_vector.end());
68 bool DisposedCallerAdmin::isDisposed( void const * nDisposeId )
70 std::scoped_lock guard( m_mutex );
71 return (std::find(m_vector.begin(), m_vector.end(), nDisposeId) != m_vector.end());
75 ThreadPool::ThreadPool() :
76 m_DisposedCallerAdmin( DisposedCallerAdmin::getInstance() )
80 ThreadPool::~ThreadPool()
82 SAL_WARN_IF( m_mapQueue.size(), "cppu.threadpool", "ThreadIdHashMap: " << m_mapQueue.size() << " left");
85 void ThreadPool::dispose( void const * nDisposeId )
87 m_DisposedCallerAdmin->dispose( nDisposeId );
89 std::scoped_lock guard( m_mutex );
90 for (auto const& item : m_mapQueue)
92 if( item.second.first )
94 item.second.first->dispose( nDisposeId );
96 if( item.second.second )
98 item.second.second->dispose( nDisposeId );
103 void ThreadPool::destroy( void const * nDisposeId )
105 m_DisposedCallerAdmin->destroy( nDisposeId );
108 /******************
109 * This methods lets the thread wait a certain amount of time. If within this timespan
110 * a new request comes in, this thread is reused. This is done only to improve performance,
111 * it is not required for threadpool functionality.
112 ******************/
113 void ThreadPool::waitInPool( rtl::Reference< ORequestThread > const & pThread )
115 WaitingThread waitingThread(pThread);
117 std::scoped_lock guard( m_mutexWaitingThreadList );
118 m_dequeThreads.push_front( &waitingThread );
121 // let the thread wait 2 seconds
122 waitingThread.condition.wait( std::chrono::seconds(2) );
125 std::scoped_lock guard ( m_mutexWaitingThreadList );
126 if( waitingThread.thread.is() )
128 // thread wasn't reused, remove it from the list
129 WaitingThreadDeque::iterator ii = find(
130 m_dequeThreads.begin(), m_dequeThreads.end(), &waitingThread );
131 OSL_ASSERT( ii != m_dequeThreads.end() );
132 m_dequeThreads.erase( ii );
137 void ThreadPool::joinWorkers()
140 std::scoped_lock guard( m_mutexWaitingThreadList );
141 for (auto const& thread : m_dequeThreads)
143 // wake the threads up
144 thread->condition.set();
147 m_aThreadAdmin.join();
150 bool ThreadPool::createThread( JobQueue *pQueue ,
151 const ByteSequence &aThreadId,
152 bool bAsynchron )
155 // Can a thread be reused ?
156 std::scoped_lock guard( m_mutexWaitingThreadList );
157 if( ! m_dequeThreads.empty() )
159 // inform the thread and let it go
160 struct WaitingThread *pWaitingThread = m_dequeThreads.back();
161 pWaitingThread->thread->setTask( pQueue , aThreadId , bAsynchron );
162 pWaitingThread->thread = nullptr;
164 // remove from list
165 m_dequeThreads.pop_back();
167 // let the thread go
168 pWaitingThread->condition.set();
169 return true;
173 rtl::Reference pThread(
174 new ORequestThread( this, pQueue , aThreadId, bAsynchron) );
175 return pThread->launch();
178 bool ThreadPool::revokeQueue( const ByteSequence &aThreadId, bool bAsynchron )
180 std::scoped_lock guard( m_mutex );
182 ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
183 OSL_ASSERT( ii != m_mapQueue.end() );
185 if( bAsynchron )
187 if( ! (*ii).second.second->isEmpty() )
189 // another thread has put something into the queue
190 return false;
193 (*ii).second.second = nullptr;
194 if( (*ii).second.first )
196 // all oneway request have been processed, now
197 // synchronous requests may go on
198 (*ii).second.first->resume();
201 else
203 if( ! (*ii).second.first->isEmpty() )
205 // another thread has put something into the queue
206 return false;
208 (*ii).second.first = nullptr;
211 if( nullptr == (*ii).second.first && nullptr == (*ii).second.second )
213 m_mapQueue.erase( ii );
216 return true;
220 bool ThreadPool::addJob(
221 const ByteSequence &aThreadId ,
222 bool bAsynchron,
223 void *pThreadSpecificData,
224 RequestFun * doRequest,
225 void const * disposeId )
227 bool bCreateThread = false;
228 JobQueue *pQueue = nullptr;
230 std::scoped_lock guard( m_mutex );
231 if (m_DisposedCallerAdmin->isDisposed(disposeId)) {
232 return true;
235 ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
237 if( ii == m_mapQueue.end() )
239 m_mapQueue[ aThreadId ] = std::pair < JobQueue * , JobQueue * > ( nullptr , nullptr );
240 ii = m_mapQueue.find( aThreadId );
241 OSL_ASSERT( ii != m_mapQueue.end() );
244 if( bAsynchron )
246 if( ! (*ii).second.second )
248 (*ii).second.second = new JobQueue();
249 bCreateThread = true;
251 pQueue = (*ii).second.second;
253 else
255 if( ! (*ii).second.first )
257 (*ii).second.first = new JobQueue();
258 bCreateThread = true;
260 pQueue = (*ii).second.first;
262 if( (*ii).second.second && ( (*ii).second.second->isBusy() ) )
264 pQueue->suspend();
267 pQueue->add( pThreadSpecificData , doRequest );
270 return !bCreateThread || createThread( pQueue , aThreadId , bAsynchron);
273 void ThreadPool::prepare( const ByteSequence &aThreadId )
275 std::scoped_lock guard( m_mutex );
277 ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
279 if( ii == m_mapQueue.end() )
281 JobQueue *p = new JobQueue();
282 m_mapQueue[ aThreadId ] = std::pair< JobQueue * , JobQueue * > ( p , nullptr );
284 else if( nullptr == (*ii).second.first )
286 (*ii).second.first = new JobQueue();
290 void * ThreadPool::enter( const ByteSequence & aThreadId , void const * nDisposeId )
292 JobQueue *pQueue = nullptr;
294 std::scoped_lock guard( m_mutex );
296 ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
298 OSL_ASSERT( ii != m_mapQueue.end() );
299 pQueue = (*ii).second.first;
302 OSL_ASSERT( pQueue );
303 void *pReturn = pQueue->enter( nDisposeId );
305 if( pQueue->isCallstackEmpty() )
307 if( revokeQueue( aThreadId , false) )
309 // remove queue
310 delete pQueue;
313 return pReturn;
317 // All uno_ThreadPool handles in g_pThreadpoolHashSet with overlapping life
318 // spans share one ThreadPool instance. When g_pThreadpoolHashSet becomes empty
319 // (within the last uno_threadpool_destroy) all worker threads spawned by that
320 // ThreadPool instance are joined (which implies that uno_threadpool_destroy
321 // must never be called from a worker thread); afterwards, the next call to
322 // uno_threadpool_create (if any) will lead to a new ThreadPool instance.
324 using namespace cppu_threadpool;
326 namespace {
328 struct uno_ThreadPool_Equal
330 bool operator () ( const uno_ThreadPool &a , const uno_ThreadPool &b ) const
332 return a == b;
336 struct uno_ThreadPool_Hash
338 std::size_t operator () ( const uno_ThreadPool &a ) const
340 return reinterpret_cast<std::size_t>( a );
346 typedef std::unordered_map< uno_ThreadPool, ThreadPoolHolder, uno_ThreadPool_Hash, uno_ThreadPool_Equal > ThreadpoolHashSet;
348 static ThreadpoolHashSet *g_pThreadpoolHashSet;
350 struct _uno_ThreadPool
352 sal_Int32 dummy;
355 namespace {
357 ThreadPoolHolder getThreadPool( uno_ThreadPool hPool )
359 MutexGuard guard( Mutex::getGlobalMutex() );
360 assert( g_pThreadpoolHashSet != nullptr );
361 ThreadpoolHashSet::iterator i( g_pThreadpoolHashSet->find(hPool) );
362 assert( i != g_pThreadpoolHashSet->end() );
363 return i->second;
368 extern "C" uno_ThreadPool SAL_CALL
369 uno_threadpool_create() SAL_THROW_EXTERN_C()
371 MutexGuard guard( Mutex::getGlobalMutex() );
372 ThreadPoolHolder p;
373 if( ! g_pThreadpoolHashSet )
375 g_pThreadpoolHashSet = new ThreadpoolHashSet;
376 p = new ThreadPool;
378 else
380 assert( !g_pThreadpoolHashSet->empty() );
381 p = g_pThreadpoolHashSet->begin()->second;
384 // Just ensure that the handle is unique in the process (via heap)
385 uno_ThreadPool h = new struct _uno_ThreadPool;
386 g_pThreadpoolHashSet->emplace( h, p );
387 return h;
390 extern "C" void SAL_CALL
391 uno_threadpool_attach( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
393 sal_Sequence *pThreadId = nullptr;
394 uno_getIdOfCurrentThread( &pThreadId );
395 getThreadPool( hPool )->prepare( pThreadId );
396 rtl_byte_sequence_release( pThreadId );
397 uno_releaseIdFromCurrentThread();
400 extern "C" void SAL_CALL
401 uno_threadpool_enter( uno_ThreadPool hPool , void **ppJob )
402 SAL_THROW_EXTERN_C()
404 sal_Sequence *pThreadId = nullptr;
405 uno_getIdOfCurrentThread( &pThreadId );
406 *ppJob =
407 getThreadPool( hPool )->enter(
408 pThreadId,
409 hPool );
410 rtl_byte_sequence_release( pThreadId );
411 uno_releaseIdFromCurrentThread();
414 extern "C" void SAL_CALL
415 uno_threadpool_detach(SAL_UNUSED_PARAMETER uno_ThreadPool) SAL_THROW_EXTERN_C()
417 // we might do here some tidying up in case a thread called attach but never detach
420 extern "C" void SAL_CALL
421 uno_threadpool_putJob(
422 uno_ThreadPool hPool,
423 sal_Sequence *pThreadId,
424 void *pJob,
425 void ( SAL_CALL * doRequest ) ( void *pThreadSpecificData ),
426 sal_Bool bIsOneway ) SAL_THROW_EXTERN_C()
428 if (!getThreadPool(hPool)->addJob( pThreadId, bIsOneway, pJob ,doRequest, hPool ))
430 SAL_WARN(
431 "cppu.threadpool",
432 "uno_threadpool_putJob in parallel with uno_threadpool_destroy");
436 extern "C" void SAL_CALL
437 uno_threadpool_dispose( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
439 getThreadPool(hPool)->dispose(
440 hPool );
443 extern "C" void SAL_CALL
444 uno_threadpool_destroy( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
446 ThreadPoolHolder p( getThreadPool(hPool) );
447 p->destroy(
448 hPool );
450 bool empty;
452 OSL_ASSERT( g_pThreadpoolHashSet );
454 MutexGuard guard( Mutex::getGlobalMutex() );
456 ThreadpoolHashSet::iterator ii = g_pThreadpoolHashSet->find( hPool );
457 OSL_ASSERT( ii != g_pThreadpoolHashSet->end() );
458 g_pThreadpoolHashSet->erase( ii );
459 delete hPool;
461 empty = g_pThreadpoolHashSet->empty();
462 if( empty )
464 delete g_pThreadpoolHashSet;
465 g_pThreadpoolHashSet = nullptr;
469 if( empty )
471 p->joinWorkers();
475 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */