Version 7.6.3.2-android, tag libreoffice-7.6.3.2-android
[LibreOffice.git] / sal / rtl / math.cxx
blob0d70e9718bfdbb2448aa522e044055ace041848e
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <rtl/math.h>
22 #include <o3tl/safeint.hxx>
23 #include <osl/diagnose.h>
24 #include <rtl/character.hxx>
25 #include <rtl/math.hxx>
27 #include <algorithm>
28 #include <cassert>
29 #include <cfenv>
30 #include <cmath>
31 #include <float.h>
32 #include <limits>
33 #include <limits.h>
34 #include <math.h>
35 #include <memory>
36 #include <stdlib.h>
38 #include "strtmpl.hxx"
40 #include <dtoa.h>
42 constexpr int minExp = -323, maxExp = 308;
43 constexpr double n10s[] = {
44 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
45 1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
46 1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
47 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
48 1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
49 1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
50 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
51 1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
52 1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
53 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
54 1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
55 1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
56 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
57 1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
58 1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
59 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
60 1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
61 1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
62 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
63 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
64 1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
65 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
66 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
67 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
68 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
69 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
70 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0,
71 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
72 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24,
73 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36,
74 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48,
75 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60,
76 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72,
77 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84,
78 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96,
79 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108,
80 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120,
81 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132,
82 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144,
83 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156,
84 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168,
85 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180,
86 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192,
87 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204,
88 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216,
89 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228,
90 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240,
91 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252,
92 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264,
93 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276,
94 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288,
95 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300,
96 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308,
98 static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1);
100 // return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
101 static double getN10Exp(int nExp)
103 if (nExp < minExp || nExp > maxExp)
104 return pow(10.0, static_cast<double>(nExp)); // will return 0 or INF with IEEE 754
105 return n10s[nExp - minExp];
108 namespace {
110 /** If value (passed as absolute value) is an integer representable as double,
111 which we handle explicitly at some places.
113 bool isRepresentableInteger(double fAbsValue)
115 assert(fAbsValue >= 0.0);
116 const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
117 if (fAbsValue <= static_cast< double >(kMaxInt))
119 sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
120 // Check the integer range again because double comparison may yield
121 // true within the precision range.
122 // XXX loplugin:fpcomparison complains about floating-point comparison
123 // for static_cast<double>(nInt) == fAbsValue, though we actually want
124 // this here.
125 if (nInt > kMaxInt)
126 return false;
127 double fInt = static_cast< double >(nInt);
128 return !(fInt < fAbsValue) && !(fInt > fAbsValue);
130 return false;
133 // Returns 1-based index of least significant bit in a number, or zero if number is zero
134 int findFirstSetBit(unsigned n)
136 #if defined _WIN32
137 unsigned long pos;
138 unsigned char bNonZero = _BitScanForward(&pos, n);
139 return (bNonZero == 0) ? 0 : pos + 1;
140 #else
141 return __builtin_ffs(n);
142 #endif
145 /** Returns number of binary bits for fractional part of the number
146 Expects a proper non-negative double value, not +-INF, not NAN
148 int getBitsInFracPart(double fAbsValue)
150 assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
151 if (fAbsValue == 0.0)
152 return 0;
153 auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
154 int nExponent = pValParts->inf_parts.exponent - 1023;
155 if (nExponent >= 52)
156 return 0; // All bits in fraction are in integer part of the number
157 int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
158 if (nLeastSignificant == 0)
160 nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
161 if (nLeastSignificant == 0)
162 nLeastSignificant = 53; // the implied leading 1 is the least significant
163 else
164 nLeastSignificant += 32;
166 int nFracSignificant = 53 - nLeastSignificant;
167 int nBitsInFracPart = nFracSignificant - nExponent;
169 return std::max(nBitsInFracPart, 0);
174 void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
175 sal_Int32 * pResultCapacity,
176 sal_Int32 nResultOffset, double fValue,
177 rtl_math_StringFormat eFormat,
178 sal_Int32 nDecPlaces,
179 char cDecSeparator,
180 sal_Int32 const * pGroups,
181 char cGroupSeparator,
182 sal_Bool bEraseTrailingDecZeros)
183 SAL_THROW_EXTERN_C()
185 rtl::str::doubleToString(
186 pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
187 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
190 void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
191 sal_Int32 * pResultCapacity,
192 sal_Int32 nResultOffset, double fValue,
193 rtl_math_StringFormat eFormat,
194 sal_Int32 nDecPlaces,
195 sal_Unicode cDecSeparator,
196 sal_Int32 const * pGroups,
197 sal_Unicode cGroupSeparator,
198 sal_Bool bEraseTrailingDecZeros)
199 SAL_THROW_EXTERN_C()
201 rtl::str::doubleToString(
202 pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
203 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
206 namespace {
208 template< typename CharT >
209 double stringToDouble(CharT const * pBegin, CharT const * pEnd,
210 CharT cDecSeparator, CharT cGroupSeparator,
211 rtl_math_ConversionStatus * pStatus,
212 CharT const ** pParsedEnd)
214 double fVal = 0.0;
215 rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
217 CharT const * p0 = pBegin;
218 while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
220 ++p0;
223 bool bSign;
224 bool explicitSign = false;
225 if (p0 != pEnd && *p0 == CharT('-'))
227 bSign = true;
228 explicitSign = true;
229 ++p0;
231 else
233 bSign = false;
234 if (p0 != pEnd && *p0 == CharT('+'))
236 explicitSign = true;
237 ++p0;
241 CharT const * p = p0;
242 bool bDone = false;
244 // #i112652# XMLSchema-2
245 if ((pEnd - p) >= 3)
247 if (!explicitSign && (CharT('N') == p[0]) && (CharT('a') == p[1])
248 && (CharT('N') == p[2]))
250 p += 3;
251 fVal = std::numeric_limits<double>::quiet_NaN();
252 bDone = true;
254 else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
255 && (CharT('F') == p[2]))
257 p += 3;
258 fVal = HUGE_VAL;
259 eStatus = rtl_math_ConversionStatus_OutOfRange;
260 bDone = true;
264 if (!bDone) // do not recognize e.g. NaN1.23
266 std::unique_ptr<char[]> bufInHeap;
267 std::unique_ptr<const CharT * []> bufInHeapMap;
268 constexpr int bufOnStackSize = 256;
269 char bufOnStack[bufOnStackSize];
270 const CharT* bufOnStackMap[bufOnStackSize];
271 char* buf = bufOnStack;
272 const CharT** bufmap = bufOnStackMap;
273 int bufpos = 0;
274 const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
275 if (bufsize > bufOnStackSize)
277 bufInHeap = std::make_unique<char[]>(bufsize);
278 bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
279 buf = bufInHeap.get();
280 bufmap = bufInHeapMap.get();
283 if (bSign)
285 buf[0] = '-';
286 bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
287 bufpos = 1;
289 // Put first zero to buffer for strings like "-0"
290 if (p != pEnd && *p == CharT('0'))
292 buf[bufpos] = '0';
293 bufmap[bufpos] = p;
294 ++bufpos;
295 ++p;
297 // Leading zeros and group separators between digits may be safely
298 // ignored. p0 < p implies that there was a leading 0 already,
299 // consecutive group separators may not happen as *(p+1) is checked for
300 // digit.
301 while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
302 && p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
304 ++p;
307 // integer part of mantissa
308 for (; p != pEnd; ++p)
310 CharT c = *p;
311 if (rtl::isAsciiDigit(c))
313 buf[bufpos] = static_cast<char>(c);
314 bufmap[bufpos] = p;
315 ++bufpos;
317 else if (c != cGroupSeparator)
319 break;
321 else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
323 // A leading or trailing (not followed by a digit) group
324 // separator character is not a group separator.
325 break;
329 // fraction part of mantissa
330 if (p != pEnd && *p == cDecSeparator)
332 buf[bufpos] = '.';
333 bufmap[bufpos] = p;
334 ++bufpos;
335 ++p;
337 for (; p != pEnd; ++p)
339 CharT c = *p;
340 if (!rtl::isAsciiDigit(c))
342 break;
344 buf[bufpos] = static_cast<char>(c);
345 bufmap[bufpos] = p;
346 ++bufpos;
350 // Exponent
351 if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
353 buf[bufpos] = 'E';
354 bufmap[bufpos] = p;
355 ++bufpos;
356 ++p;
357 if (p != pEnd && *p == CharT('-'))
359 buf[bufpos] = '-';
360 bufmap[bufpos] = p;
361 ++bufpos;
362 ++p;
364 else if (p != pEnd && *p == CharT('+'))
365 ++p;
367 for (; p != pEnd; ++p)
369 CharT c = *p;
370 if (!rtl::isAsciiDigit(c))
371 break;
373 buf[bufpos] = static_cast<char>(c);
374 bufmap[bufpos] = p;
375 ++bufpos;
378 else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
379 && p[-1] == cDecSeparator && p[-2] == CharT('1'))
381 if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
382 && p[3] == CharT('F'))
384 // "1.#INF", "+1.#INF", "-1.#INF"
385 p += 4;
386 fVal = HUGE_VAL;
387 eStatus = rtl_math_ConversionStatus_OutOfRange;
388 // Eat any further digits:
389 while (p != pEnd && rtl::isAsciiDigit(*p))
390 ++p;
391 bDone = true;
393 else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
394 && p[3] == CharT('N'))
396 // "1.#NAN", "+1.#NAN", "-1.#NAN"
397 p += 4;
398 fVal = std::copysign(std::numeric_limits<double>::quiet_NaN(), bSign ? -1.0 : 1.0);
399 bSign = false; // don't negate again
401 // Eat any further digits:
402 while (p != pEnd && rtl::isAsciiDigit(*p))
404 ++p;
406 bDone = true;
410 if (!bDone)
412 buf[bufpos] = '\0';
413 bufmap[bufpos] = p;
414 char* pCharParseEnd;
415 errno = 0;
416 fVal = strtod_nolocale(buf, &pCharParseEnd);
417 if (errno == ERANGE)
419 // Check for the dreaded rounded to 15 digits max value
420 // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
421 // everywhere, accept with or without plus sign in exponent.
422 const char* b = buf;
423 if (b[0] == '-')
424 ++b;
425 if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
426 && !strncmp( b, "1.79769313486232", 16)
427 && (b[16] == 'e' || b[16] == 'E')
428 && (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4))
429 || ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3))))
431 fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
433 else
435 eStatus = rtl_math_ConversionStatus_OutOfRange;
438 p = bufmap[pCharParseEnd - buf];
439 bSign = false;
443 // overflow also if more than DBL_MAX_10_EXP digits without decimal
444 // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
445 bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
446 if (bHuge)
447 eStatus = rtl_math_ConversionStatus_OutOfRange;
449 if (bSign)
450 fVal = -fVal;
452 if (pStatus)
453 *pStatus = eStatus;
455 if (pParsedEnd)
456 *pParsedEnd = p == p0 ? pBegin : p;
458 return fVal;
463 double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
464 char const * pEnd,
465 char cDecSeparator,
466 char cGroupSeparator,
467 rtl_math_ConversionStatus * pStatus,
468 char const ** pParsedEnd)
469 SAL_THROW_EXTERN_C()
471 return stringToDouble(
472 reinterpret_cast<unsigned char const *>(pBegin),
473 reinterpret_cast<unsigned char const *>(pEnd),
474 static_cast<unsigned char>(cDecSeparator),
475 static_cast<unsigned char>(cGroupSeparator), pStatus,
476 reinterpret_cast<unsigned char const **>(pParsedEnd));
479 double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
480 sal_Unicode const * pEnd,
481 sal_Unicode cDecSeparator,
482 sal_Unicode cGroupSeparator,
483 rtl_math_ConversionStatus * pStatus,
484 sal_Unicode const ** pParsedEnd)
485 SAL_THROW_EXTERN_C()
487 return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
488 pParsedEnd);
491 double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
492 enum rtl_math_RoundingMode eMode)
493 SAL_THROW_EXTERN_C()
495 if (!std::isfinite(fValue))
496 return fValue;
498 if (fValue == 0.0)
499 return fValue;
501 if (nDecPlaces == 0)
503 switch (eMode)
505 case rtl_math_RoundingMode_Corrected:
506 return std::round(fValue);
507 case rtl_math_RoundingMode_HalfEven:
508 if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0)
510 fValue = std::nearbyint(fValue);
511 std::fesetround(oldMode);
512 return fValue;
514 break;
515 default:
516 break;
520 const double fOrigValue = fValue;
522 // sign adjustment
523 bool bSign = std::signbit( fValue );
524 if (bSign)
525 fValue = -fValue;
527 // Rounding to decimals between integer distance precision (gaps) does not
528 // make sense, do not even try to multiply/divide and introduce inaccuracy.
529 // For same reasons, do not attempt to round integers to decimals.
530 if (nDecPlaces >= 0
531 && (fValue >= 0x1p52
532 || isRepresentableInteger(fValue)))
533 return fOrigValue;
535 double fFac = 0;
536 if (nDecPlaces != 0)
538 if (nDecPlaces > 0)
540 // Determine how many decimals are representable in the precision.
541 // Anything greater 2^52 and 0.0 was already ruled out above.
542 // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
543 const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
544 const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
546 if (nDec <= 0)
548 assert(!"Shouldn't this had been caught already as large number?");
549 return fOrigValue;
552 if (nDec < nDecPlaces)
553 nDecPlaces = nDec;
556 // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
557 // factors that later when dividing back spoil things. For negative
558 // decimals divide first with the inverse, then multiply the rounded
559 // value back.
560 fFac = getN10Exp(abs(nDecPlaces));
562 if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac)))
563 // Underflow, rounding to that many integer positions would be 0.
564 return 0.0;
566 if (!std::isfinite(fFac))
567 // Overflow with very small values and high number of decimals.
568 return fOrigValue;
570 if (nDecPlaces < 0)
571 fValue /= fFac;
572 else
573 fValue *= fFac;
575 if (!std::isfinite(fValue))
576 return fOrigValue;
579 // Round only if not already in distance precision gaps of integers, where
580 // for [2^52,2^53) adding 0.5 would even yield the next representable
581 // integer.
582 if (fValue < 0x1p52)
584 switch ( eMode )
586 case rtl_math_RoundingMode_Corrected :
587 fValue = rtl::math::approxFloor(fValue + 0.5);
588 break;
589 case rtl_math_RoundingMode_Down:
590 fValue = rtl::math::approxFloor(fValue);
591 break;
592 case rtl_math_RoundingMode_Up:
593 fValue = rtl::math::approxCeil(fValue);
594 break;
595 case rtl_math_RoundingMode_Floor:
596 fValue = bSign ? rtl::math::approxCeil(fValue)
597 : rtl::math::approxFloor( fValue );
598 break;
599 case rtl_math_RoundingMode_Ceiling:
600 fValue = bSign ? rtl::math::approxFloor(fValue)
601 : rtl::math::approxCeil(fValue);
602 break;
603 case rtl_math_RoundingMode_HalfDown :
605 double f = floor(fValue);
606 fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
608 break;
609 case rtl_math_RoundingMode_HalfUp:
611 double f = floor(fValue);
612 fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
614 break;
615 case rtl_math_RoundingMode_HalfEven:
616 #if defined FLT_ROUNDS
618 Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
620 DBL_EPSILON is the smallest fractional number which can be represented,
621 its reciprocal is therefore the smallest number that cannot have a
622 fractional part. Once you add this reciprocal to `x', its fractional part
623 is stripped off. Simply subtracting the reciprocal back out returns `x'
624 without its fractional component.
625 Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
626 who placed it into public domain.
628 volatile: prevent compiler from being too smart
630 if (FLT_ROUNDS == 1)
632 volatile double x = fValue + 1.0 / DBL_EPSILON;
633 fValue = x - 1.0 / DBL_EPSILON;
635 else
636 #endif // FLT_ROUNDS
638 double f = floor(fValue);
639 if ((fValue - f) != 0.5)
641 fValue = floor( fValue + 0.5 );
643 else
645 double g = f / 2.0;
646 fValue = (g == floor( g )) ? f : (f + 1.0);
649 break;
650 default:
651 OSL_ASSERT(false);
652 break;
656 if (nDecPlaces != 0)
658 if (nDecPlaces < 0)
659 fValue *= fFac;
660 else
661 fValue /= fFac;
664 if (!std::isfinite(fValue))
665 return fOrigValue;
667 return bSign ? -fValue : fValue;
670 double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
672 return fValue * getN10Exp(nExp);
675 double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
677 const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
678 if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
680 // We don't handle these conditions. Bail out.
681 return fValue;
684 double fOrigValue = fValue;
686 bool bSign = std::signbit(fValue);
687 if (bSign)
688 fValue = -fValue;
690 // If the value is either integer representable as double,
691 // or only has small number of bits in fraction part, then we need not do any approximation
692 if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
693 return fOrigValue;
695 int nExp = static_cast< int >(floor(log10(fValue)));
696 nExp = 14 - nExp;
697 double fExpValue = getN10Exp(abs(nExp));
699 if (nExp < 0)
700 fValue /= fExpValue;
701 else
702 fValue *= fExpValue;
704 // If the original value was near DBL_MIN we got an overflow. Restore and
705 // bail out.
706 if (!std::isfinite(fValue))
707 return fOrigValue;
709 fValue = std::round(fValue);
711 if (nExp < 0)
712 fValue *= fExpValue;
713 else
714 fValue /= fExpValue;
716 // If the original value was near DBL_MAX we got an overflow. Restore and
717 // bail out.
718 if (!std::isfinite(fValue))
719 return fOrigValue;
721 return bSign ? -fValue : fValue;
724 bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
726 static const double e48 = 0x1p-48;
727 static const double e44 = 0x1p-44;
729 if (a == b)
730 return true;
732 if (a == 0.0 || b == 0.0)
733 return false;
735 const double d = fabs(a - b);
736 if (!std::isfinite(d))
737 return false; // Nan or Inf involved
739 a = fabs(a);
740 if (d > (a * e44))
741 return false;
742 b = fabs(b);
743 if (d > (b * e44))
744 return false;
746 if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
747 return false; // special case for representable integers.
749 return (d < a * e48 && d < b * e48);
752 double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()
754 return expm1(fValue);
757 double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
759 #ifdef __APPLE__
760 if (fValue == -0.0)
761 return fValue; // macOS 10.8 libc returns 0.0 for -0.0
762 #endif
764 return log1p(fValue);
767 double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()
769 return ::atanh(fValue);
772 /** Parent error function (erf) */
773 double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()
775 return erf(x);
778 /** Parent complementary error function (erfc) */
779 double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()
781 return erfc(x);
784 /** improved accuracy of asinh for |x| large and for x near zero
785 @see #i97605#
787 double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
789 if ( fX == 0.0 )
790 return 0.0;
792 double fSign = 1.0;
793 if ( fX < 0.0 )
795 fX = - fX;
796 fSign = -1.0;
799 if ( fX < 0.125 )
800 return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
802 if ( fX < 1.25e7 )
803 return fSign * log( fX + sqrt( 1.0 + fX*fX));
805 return fSign * log( 2.0*fX);
808 /** improved accuracy of acosh for x large and for x near 1
809 @see #i97605#
811 double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
813 volatile double fZ = fX - 1.0;
814 if (fX < 1.0)
815 return std::numeric_limits<double>::quiet_NaN();
816 if ( fX == 1.0 )
817 return 0.0;
819 if ( fX < 1.1 )
820 return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
822 if ( fX < 1.25e7 )
823 return log( fX + sqrt( fX*fX - 1.0));
825 return log( 2.0*fX);
828 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */