1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
22 #include <o3tl/safeint.hxx>
23 #include <osl/diagnose.h>
24 #include <rtl/character.hxx>
25 #include <rtl/math.hxx>
38 #include "strtmpl.hxx"
42 constexpr int minExp
= -323, maxExp
= 308;
43 constexpr double n10s
[] = {
44 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
45 1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
46 1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
47 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
48 1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
49 1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
50 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
51 1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
52 1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
53 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
54 1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
55 1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
56 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
57 1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
58 1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
59 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
60 1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
61 1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
62 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
63 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
64 1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
65 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
66 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
67 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
68 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
69 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
70 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0
,
71 1e1
, 1e2
, 1e3
, 1e4
, 1e5
, 1e6
, 1e7
, 1e8
, 1e9
, 1e10
, 1e11
, 1e12
,
72 1e13
, 1e14
, 1e15
, 1e16
, 1e17
, 1e18
, 1e19
, 1e20
, 1e21
, 1e22
, 1e23
, 1e24
,
73 1e25
, 1e26
, 1e27
, 1e28
, 1e29
, 1e30
, 1e31
, 1e32
, 1e33
, 1e34
, 1e35
, 1e36
,
74 1e37
, 1e38
, 1e39
, 1e40
, 1e41
, 1e42
, 1e43
, 1e44
, 1e45
, 1e46
, 1e47
, 1e48
,
75 1e49
, 1e50
, 1e51
, 1e52
, 1e53
, 1e54
, 1e55
, 1e56
, 1e57
, 1e58
, 1e59
, 1e60
,
76 1e61
, 1e62
, 1e63
, 1e64
, 1e65
, 1e66
, 1e67
, 1e68
, 1e69
, 1e70
, 1e71
, 1e72
,
77 1e73
, 1e74
, 1e75
, 1e76
, 1e77
, 1e78
, 1e79
, 1e80
, 1e81
, 1e82
, 1e83
, 1e84
,
78 1e85
, 1e86
, 1e87
, 1e88
, 1e89
, 1e90
, 1e91
, 1e92
, 1e93
, 1e94
, 1e95
, 1e96
,
79 1e97
, 1e98
, 1e99
, 1e100
, 1e101
, 1e102
, 1e103
, 1e104
, 1e105
, 1e106
, 1e107
, 1e108
,
80 1e109
, 1e110
, 1e111
, 1e112
, 1e113
, 1e114
, 1e115
, 1e116
, 1e117
, 1e118
, 1e119
, 1e120
,
81 1e121
, 1e122
, 1e123
, 1e124
, 1e125
, 1e126
, 1e127
, 1e128
, 1e129
, 1e130
, 1e131
, 1e132
,
82 1e133
, 1e134
, 1e135
, 1e136
, 1e137
, 1e138
, 1e139
, 1e140
, 1e141
, 1e142
, 1e143
, 1e144
,
83 1e145
, 1e146
, 1e147
, 1e148
, 1e149
, 1e150
, 1e151
, 1e152
, 1e153
, 1e154
, 1e155
, 1e156
,
84 1e157
, 1e158
, 1e159
, 1e160
, 1e161
, 1e162
, 1e163
, 1e164
, 1e165
, 1e166
, 1e167
, 1e168
,
85 1e169
, 1e170
, 1e171
, 1e172
, 1e173
, 1e174
, 1e175
, 1e176
, 1e177
, 1e178
, 1e179
, 1e180
,
86 1e181
, 1e182
, 1e183
, 1e184
, 1e185
, 1e186
, 1e187
, 1e188
, 1e189
, 1e190
, 1e191
, 1e192
,
87 1e193
, 1e194
, 1e195
, 1e196
, 1e197
, 1e198
, 1e199
, 1e200
, 1e201
, 1e202
, 1e203
, 1e204
,
88 1e205
, 1e206
, 1e207
, 1e208
, 1e209
, 1e210
, 1e211
, 1e212
, 1e213
, 1e214
, 1e215
, 1e216
,
89 1e217
, 1e218
, 1e219
, 1e220
, 1e221
, 1e222
, 1e223
, 1e224
, 1e225
, 1e226
, 1e227
, 1e228
,
90 1e229
, 1e230
, 1e231
, 1e232
, 1e233
, 1e234
, 1e235
, 1e236
, 1e237
, 1e238
, 1e239
, 1e240
,
91 1e241
, 1e242
, 1e243
, 1e244
, 1e245
, 1e246
, 1e247
, 1e248
, 1e249
, 1e250
, 1e251
, 1e252
,
92 1e253
, 1e254
, 1e255
, 1e256
, 1e257
, 1e258
, 1e259
, 1e260
, 1e261
, 1e262
, 1e263
, 1e264
,
93 1e265
, 1e266
, 1e267
, 1e268
, 1e269
, 1e270
, 1e271
, 1e272
, 1e273
, 1e274
, 1e275
, 1e276
,
94 1e277
, 1e278
, 1e279
, 1e280
, 1e281
, 1e282
, 1e283
, 1e284
, 1e285
, 1e286
, 1e287
, 1e288
,
95 1e289
, 1e290
, 1e291
, 1e292
, 1e293
, 1e294
, 1e295
, 1e296
, 1e297
, 1e298
, 1e299
, 1e300
,
96 1e301
, 1e302
, 1e303
, 1e304
, 1e305
, 1e306
, 1e307
, 1e308
,
98 static_assert(SAL_N_ELEMENTS(n10s
) == maxExp
- minExp
+ 1);
100 // return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
101 static double getN10Exp(int nExp
)
103 if (nExp
< minExp
|| nExp
> maxExp
)
104 return pow(10.0, static_cast<double>(nExp
)); // will return 0 or INF with IEEE 754
105 return n10s
[nExp
- minExp
];
110 /** If value (passed as absolute value) is an integer representable as double,
111 which we handle explicitly at some places.
113 bool isRepresentableInteger(double fAbsValue
)
115 assert(fAbsValue
>= 0.0);
116 const sal_Int64 kMaxInt
= (static_cast< sal_Int64
>(1) << 53) - 1;
117 if (fAbsValue
<= static_cast< double >(kMaxInt
))
119 sal_Int64 nInt
= static_cast< sal_Int64
>(fAbsValue
);
120 // Check the integer range again because double comparison may yield
121 // true within the precision range.
122 // XXX loplugin:fpcomparison complains about floating-point comparison
123 // for static_cast<double>(nInt) == fAbsValue, though we actually want
127 double fInt
= static_cast< double >(nInt
);
128 return !(fInt
< fAbsValue
) && !(fInt
> fAbsValue
);
133 // Returns 1-based index of least significant bit in a number, or zero if number is zero
134 int findFirstSetBit(unsigned n
)
138 unsigned char bNonZero
= _BitScanForward(&pos
, n
);
139 return (bNonZero
== 0) ? 0 : pos
+ 1;
141 return __builtin_ffs(n
);
145 /** Returns number of binary bits for fractional part of the number
146 Expects a proper non-negative double value, not +-INF, not NAN
148 int getBitsInFracPart(double fAbsValue
)
150 assert(std::isfinite(fAbsValue
) && fAbsValue
>= 0.0);
151 if (fAbsValue
== 0.0)
153 auto pValParts
= reinterpret_cast< const sal_math_Double
* >(&fAbsValue
);
154 int nExponent
= pValParts
->inf_parts
.exponent
- 1023;
156 return 0; // All bits in fraction are in integer part of the number
157 int nLeastSignificant
= findFirstSetBit(pValParts
->inf_parts
.fraction_lo
);
158 if (nLeastSignificant
== 0)
160 nLeastSignificant
= findFirstSetBit(pValParts
->inf_parts
.fraction_hi
);
161 if (nLeastSignificant
== 0)
162 nLeastSignificant
= 53; // the implied leading 1 is the least significant
164 nLeastSignificant
+= 32;
166 int nFracSignificant
= 53 - nLeastSignificant
;
167 int nBitsInFracPart
= nFracSignificant
- nExponent
;
169 return std::max(nBitsInFracPart
, 0);
174 void SAL_CALL
rtl_math_doubleToString(rtl_String
** pResult
,
175 sal_Int32
* pResultCapacity
,
176 sal_Int32 nResultOffset
, double fValue
,
177 rtl_math_StringFormat eFormat
,
178 sal_Int32 nDecPlaces
,
180 sal_Int32
const * pGroups
,
181 char cGroupSeparator
,
182 sal_Bool bEraseTrailingDecZeros
)
185 rtl::str::doubleToString(
186 pResult
, pResultCapacity
, nResultOffset
, fValue
, eFormat
, nDecPlaces
,
187 cDecSeparator
, pGroups
, cGroupSeparator
, bEraseTrailingDecZeros
);
190 void SAL_CALL
rtl_math_doubleToUString(rtl_uString
** pResult
,
191 sal_Int32
* pResultCapacity
,
192 sal_Int32 nResultOffset
, double fValue
,
193 rtl_math_StringFormat eFormat
,
194 sal_Int32 nDecPlaces
,
195 sal_Unicode cDecSeparator
,
196 sal_Int32
const * pGroups
,
197 sal_Unicode cGroupSeparator
,
198 sal_Bool bEraseTrailingDecZeros
)
201 rtl::str::doubleToString(
202 pResult
, pResultCapacity
, nResultOffset
, fValue
, eFormat
, nDecPlaces
,
203 cDecSeparator
, pGroups
, cGroupSeparator
, bEraseTrailingDecZeros
);
208 template< typename CharT
>
209 double stringToDouble(CharT
const * pBegin
, CharT
const * pEnd
,
210 CharT cDecSeparator
, CharT cGroupSeparator
,
211 rtl_math_ConversionStatus
* pStatus
,
212 CharT
const ** pParsedEnd
)
215 rtl_math_ConversionStatus eStatus
= rtl_math_ConversionStatus_Ok
;
217 CharT
const * p0
= pBegin
;
218 while (p0
!= pEnd
&& (*p0
== CharT(' ') || *p0
== CharT('\t')))
224 bool explicitSign
= false;
225 if (p0
!= pEnd
&& *p0
== CharT('-'))
234 if (p0
!= pEnd
&& *p0
== CharT('+'))
241 CharT
const * p
= p0
;
244 // #i112652# XMLSchema-2
247 if (!explicitSign
&& (CharT('N') == p
[0]) && (CharT('a') == p
[1])
248 && (CharT('N') == p
[2]))
251 fVal
= std::numeric_limits
<double>::quiet_NaN();
254 else if ((CharT('I') == p
[0]) && (CharT('N') == p
[1])
255 && (CharT('F') == p
[2]))
259 eStatus
= rtl_math_ConversionStatus_OutOfRange
;
264 if (!bDone
) // do not recognize e.g. NaN1.23
266 std::unique_ptr
<char[]> bufInHeap
;
267 std::unique_ptr
<const CharT
* []> bufInHeapMap
;
268 constexpr int bufOnStackSize
= 256;
269 char bufOnStack
[bufOnStackSize
];
270 const CharT
* bufOnStackMap
[bufOnStackSize
];
271 char* buf
= bufOnStack
;
272 const CharT
** bufmap
= bufOnStackMap
;
274 const size_t bufsize
= pEnd
- p
+ (bSign
? 2 : 1);
275 if (bufsize
> bufOnStackSize
)
277 bufInHeap
= std::make_unique
<char[]>(bufsize
);
278 bufInHeapMap
= std::make_unique
<const CharT
*[]>(bufsize
);
279 buf
= bufInHeap
.get();
280 bufmap
= bufInHeapMap
.get();
286 bufmap
[0] = p
; // yes, this may be the same pointer as for the next mapping
289 // Put first zero to buffer for strings like "-0"
290 if (p
!= pEnd
&& *p
== CharT('0'))
297 // Leading zeros and group separators between digits may be safely
298 // ignored. p0 < p implies that there was a leading 0 already,
299 // consecutive group separators may not happen as *(p+1) is checked for
301 while (p
!= pEnd
&& (*p
== CharT('0') || (*p
== cGroupSeparator
302 && p0
< p
&& p
+1 < pEnd
&& rtl::isAsciiDigit(*(p
+1)))))
307 // integer part of mantissa
308 for (; p
!= pEnd
; ++p
)
311 if (rtl::isAsciiDigit(c
))
313 buf
[bufpos
] = static_cast<char>(c
);
317 else if (c
!= cGroupSeparator
)
321 else if (p
== p0
|| (p
+1 == pEnd
) || !rtl::isAsciiDigit(*(p
+1)))
323 // A leading or trailing (not followed by a digit) group
324 // separator character is not a group separator.
329 // fraction part of mantissa
330 if (p
!= pEnd
&& *p
== cDecSeparator
)
337 for (; p
!= pEnd
; ++p
)
340 if (!rtl::isAsciiDigit(c
))
344 buf
[bufpos
] = static_cast<char>(c
);
351 if (p
!= p0
&& p
!= pEnd
&& (*p
== CharT('E') || *p
== CharT('e')))
357 if (p
!= pEnd
&& *p
== CharT('-'))
364 else if (p
!= pEnd
&& *p
== CharT('+'))
367 for (; p
!= pEnd
; ++p
)
370 if (!rtl::isAsciiDigit(c
))
373 buf
[bufpos
] = static_cast<char>(c
);
378 else if (p
- p0
== 2 && p
!= pEnd
&& p
[0] == CharT('#')
379 && p
[-1] == cDecSeparator
&& p
[-2] == CharT('1'))
381 if (pEnd
- p
>= 4 && p
[1] == CharT('I') && p
[2] == CharT('N')
382 && p
[3] == CharT('F'))
384 // "1.#INF", "+1.#INF", "-1.#INF"
387 eStatus
= rtl_math_ConversionStatus_OutOfRange
;
388 // Eat any further digits:
389 while (p
!= pEnd
&& rtl::isAsciiDigit(*p
))
393 else if (pEnd
- p
>= 4 && p
[1] == CharT('N') && p
[2] == CharT('A')
394 && p
[3] == CharT('N'))
396 // "1.#NAN", "+1.#NAN", "-1.#NAN"
398 fVal
= std::copysign(std::numeric_limits
<double>::quiet_NaN(), bSign
? -1.0 : 1.0);
399 bSign
= false; // don't negate again
401 // Eat any further digits:
402 while (p
!= pEnd
&& rtl::isAsciiDigit(*p
))
416 fVal
= strtod_nolocale(buf
, &pCharParseEnd
);
419 // Check for the dreaded rounded to 15 digits max value
420 // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
421 // everywhere, accept with or without plus sign in exponent.
425 if (((pCharParseEnd
- b
== 21) || (pCharParseEnd
- b
== 20))
426 && !strncmp( b
, "1.79769313486232", 16)
427 && (b
[16] == 'e' || b
[16] == 'E')
428 && (((pCharParseEnd
- b
== 21) && !strncmp( b
+17, "+308", 4))
429 || ((pCharParseEnd
- b
== 20) && !strncmp( b
+17, "308", 3))))
431 fVal
= (buf
< b
) ? -DBL_MAX
: DBL_MAX
;
435 eStatus
= rtl_math_ConversionStatus_OutOfRange
;
438 p
= bufmap
[pCharParseEnd
- buf
];
443 // overflow also if more than DBL_MAX_10_EXP digits without decimal
444 // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
445 bool bHuge
= fVal
== HUGE_VAL
; // g++ 3.0.1 requires it this way...
447 eStatus
= rtl_math_ConversionStatus_OutOfRange
;
456 *pParsedEnd
= p
== p0
? pBegin
: p
;
463 double SAL_CALL
rtl_math_stringToDouble(char const * pBegin
,
466 char cGroupSeparator
,
467 rtl_math_ConversionStatus
* pStatus
,
468 char const ** pParsedEnd
)
471 return stringToDouble(
472 reinterpret_cast<unsigned char const *>(pBegin
),
473 reinterpret_cast<unsigned char const *>(pEnd
),
474 static_cast<unsigned char>(cDecSeparator
),
475 static_cast<unsigned char>(cGroupSeparator
), pStatus
,
476 reinterpret_cast<unsigned char const **>(pParsedEnd
));
479 double SAL_CALL
rtl_math_uStringToDouble(sal_Unicode
const * pBegin
,
480 sal_Unicode
const * pEnd
,
481 sal_Unicode cDecSeparator
,
482 sal_Unicode cGroupSeparator
,
483 rtl_math_ConversionStatus
* pStatus
,
484 sal_Unicode
const ** pParsedEnd
)
487 return stringToDouble(pBegin
, pEnd
, cDecSeparator
, cGroupSeparator
, pStatus
,
491 double SAL_CALL
rtl_math_round(double fValue
, int nDecPlaces
,
492 enum rtl_math_RoundingMode eMode
)
495 if (!std::isfinite(fValue
))
505 case rtl_math_RoundingMode_Corrected
:
506 return std::round(fValue
);
507 case rtl_math_RoundingMode_HalfEven
:
508 if (const int oldMode
= std::fegetround(); std::fesetround(FE_TONEAREST
) == 0)
510 fValue
= std::nearbyint(fValue
);
511 std::fesetround(oldMode
);
520 const double fOrigValue
= fValue
;
523 bool bSign
= std::signbit( fValue
);
527 // Rounding to decimals between integer distance precision (gaps) does not
528 // make sense, do not even try to multiply/divide and introduce inaccuracy.
529 // For same reasons, do not attempt to round integers to decimals.
532 || isRepresentableInteger(fValue
)))
540 // Determine how many decimals are representable in the precision.
541 // Anything greater 2^52 and 0.0 was already ruled out above.
542 // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
543 const sal_math_Double
* pd
= reinterpret_cast<const sal_math_Double
*>(&fValue
);
544 const sal_Int32 nDec
= 52 - (pd
->parts
.exponent
- 1023);
548 assert(!"Shouldn't this had been caught already as large number?");
552 if (nDec
< nDecPlaces
)
556 // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
557 // factors that later when dividing back spoil things. For negative
558 // decimals divide first with the inverse, then multiply the rounded
560 fFac
= getN10Exp(abs(nDecPlaces
));
562 if (fFac
== 0.0 || (nDecPlaces
< 0 && !std::isfinite(fFac
)))
563 // Underflow, rounding to that many integer positions would be 0.
566 if (!std::isfinite(fFac
))
567 // Overflow with very small values and high number of decimals.
575 if (!std::isfinite(fValue
))
579 // Round only if not already in distance precision gaps of integers, where
580 // for [2^52,2^53) adding 0.5 would even yield the next representable
586 case rtl_math_RoundingMode_Corrected
:
587 fValue
= rtl::math::approxFloor(fValue
+ 0.5);
589 case rtl_math_RoundingMode_Down
:
590 fValue
= rtl::math::approxFloor(fValue
);
592 case rtl_math_RoundingMode_Up
:
593 fValue
= rtl::math::approxCeil(fValue
);
595 case rtl_math_RoundingMode_Floor
:
596 fValue
= bSign
? rtl::math::approxCeil(fValue
)
597 : rtl::math::approxFloor( fValue
);
599 case rtl_math_RoundingMode_Ceiling
:
600 fValue
= bSign
? rtl::math::approxFloor(fValue
)
601 : rtl::math::approxCeil(fValue
);
603 case rtl_math_RoundingMode_HalfDown
:
605 double f
= floor(fValue
);
606 fValue
= ((fValue
- f
) <= 0.5) ? f
: ceil(fValue
);
609 case rtl_math_RoundingMode_HalfUp
:
611 double f
= floor(fValue
);
612 fValue
= ((fValue
- f
) < 0.5) ? f
: ceil(fValue
);
615 case rtl_math_RoundingMode_HalfEven
:
616 #if defined FLT_ROUNDS
618 Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
620 DBL_EPSILON is the smallest fractional number which can be represented,
621 its reciprocal is therefore the smallest number that cannot have a
622 fractional part. Once you add this reciprocal to `x', its fractional part
623 is stripped off. Simply subtracting the reciprocal back out returns `x'
624 without its fractional component.
625 Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
626 who placed it into public domain.
628 volatile: prevent compiler from being too smart
632 volatile double x
= fValue
+ 1.0 / DBL_EPSILON
;
633 fValue
= x
- 1.0 / DBL_EPSILON
;
638 double f
= floor(fValue
);
639 if ((fValue
- f
) != 0.5)
641 fValue
= floor( fValue
+ 0.5 );
646 fValue
= (g
== floor( g
)) ? f
: (f
+ 1.0);
664 if (!std::isfinite(fValue
))
667 return bSign
? -fValue
: fValue
;
670 double SAL_CALL
rtl_math_pow10Exp(double fValue
, int nExp
) SAL_THROW_EXTERN_C()
672 return fValue
* getN10Exp(nExp
);
675 double SAL_CALL
rtl_math_approxValue( double fValue
) SAL_THROW_EXTERN_C()
677 const double fBigInt
= 0x1p
41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
678 if (fValue
== 0.0 || fValue
== HUGE_VAL
|| !std::isfinite( fValue
) || fValue
> fBigInt
)
680 // We don't handle these conditions. Bail out.
684 double fOrigValue
= fValue
;
686 bool bSign
= std::signbit(fValue
);
690 // If the value is either integer representable as double,
691 // or only has small number of bits in fraction part, then we need not do any approximation
692 if (isRepresentableInteger(fValue
) || getBitsInFracPart(fValue
) <= 11)
695 int nExp
= static_cast< int >(floor(log10(fValue
)));
697 double fExpValue
= getN10Exp(abs(nExp
));
704 // If the original value was near DBL_MIN we got an overflow. Restore and
706 if (!std::isfinite(fValue
))
709 fValue
= std::round(fValue
);
716 // If the original value was near DBL_MAX we got an overflow. Restore and
718 if (!std::isfinite(fValue
))
721 return bSign
? -fValue
: fValue
;
724 bool SAL_CALL
rtl_math_approxEqual(double a
, double b
) SAL_THROW_EXTERN_C()
726 static const double e48
= 0x1p
-48;
727 static const double e44
= 0x1p
-44;
732 if (a
== 0.0 || b
== 0.0)
735 const double d
= fabs(a
- b
);
736 if (!std::isfinite(d
))
737 return false; // Nan or Inf involved
746 if (isRepresentableInteger(d
) && isRepresentableInteger(a
) && isRepresentableInteger(b
))
747 return false; // special case for representable integers.
749 return (d
< a
* e48
&& d
< b
* e48
);
752 double SAL_CALL
rtl_math_expm1(double fValue
) SAL_THROW_EXTERN_C()
754 return expm1(fValue
);
757 double SAL_CALL
rtl_math_log1p(double fValue
) SAL_THROW_EXTERN_C()
761 return fValue
; // macOS 10.8 libc returns 0.0 for -0.0
764 return log1p(fValue
);
767 double SAL_CALL
rtl_math_atanh(double fValue
) SAL_THROW_EXTERN_C()
769 return ::atanh(fValue
);
772 /** Parent error function (erf) */
773 double SAL_CALL
rtl_math_erf(double x
) SAL_THROW_EXTERN_C()
778 /** Parent complementary error function (erfc) */
779 double SAL_CALL
rtl_math_erfc(double x
) SAL_THROW_EXTERN_C()
784 /** improved accuracy of asinh for |x| large and for x near zero
787 double SAL_CALL
rtl_math_asinh(double fX
) SAL_THROW_EXTERN_C()
800 return fSign
* rtl_math_log1p( fX
+ fX
*fX
/ (1.0 + sqrt( 1.0 + fX
*fX
)));
803 return fSign
* log( fX
+ sqrt( 1.0 + fX
*fX
));
805 return fSign
* log( 2.0*fX
);
808 /** improved accuracy of acosh for x large and for x near 1
811 double SAL_CALL
rtl_math_acosh(double fX
) SAL_THROW_EXTERN_C()
813 volatile double fZ
= fX
- 1.0;
815 return std::numeric_limits
<double>::quiet_NaN();
820 return rtl_math_log1p( fZ
+ sqrt( fZ
*fZ
+ 2.0*fZ
));
823 return log( fX
+ sqrt( fX
*fX
- 1.0));
828 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */