1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
21 #include "analysishelper.hxx"
23 #include <rtl/math.hxx>
25 using ::com::sun::star::lang::IllegalArgumentException
;
26 using ::com::sun::star::sheet::NoConvergenceException
;
31 const double f_PI
= 3.1415926535897932385;
32 const double f_PI_DIV_2
= f_PI
/ 2.0;
33 const double f_PI_DIV_4
= f_PI
/ 4.0;
34 const double f_2_DIV_PI
= 2.0 / f_PI
;
40 /* The BESSEL function, first kind, unmodified:
42 http://www.reference-global.com/isbn/978-3-11-020354-7
43 Numerical Mathematics 1 / Numerische Mathematik 1,
44 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
45 Deuflhard, Peter; Hohmann, Andreas
46 Berlin, New York (Walter de Gruyter) 2008
47 4. ueberarb. u. erw. Aufl. 2008
48 eBook ISBN: 978-3-11-020355-4
49 Chapter 6.3.2 , algorithm 6.24
50 The source is in German.
51 The BesselJ-function is a special case of the adjoint summation with
52 a_k = 2*(k-1)/x for k=1,...
53 b_k = -1, for all k, directly substituted
54 m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
55 alpha_k=1 for k=N and alpha_k=0 otherwise
58 double BesselJ( double x
, sal_Int32 N
)
62 throw IllegalArgumentException();
64 return (N
==0) ? 1.0 : 0.0;
66 /* The algorithm works only for x>0, therefore remember sign. BesselJ
67 with integer order N is an even function for even N (means J(-x)=J(x))
68 and an odd function for odd N (means J(-x)=-J(x)).*/
69 double fSign
= (N
% 2 == 1 && x
< 0) ? -1.0 : 1.0;
72 const double fMaxIteration
= 9000000.0; //experimental, for to return in < 3 seconds
73 double fEstimateIteration
= fX
* 1.5 + N
;
74 bool bAsymptoticPossible
= pow(fX
,0.4) > N
;
75 if (fEstimateIteration
> fMaxIteration
)
77 if (!bAsymptoticPossible
)
78 throw NoConvergenceException();
79 return fSign
* sqrt(f_2_DIV_PI
/fX
)* cos(fX
-N
*f_PI_DIV_2
-f_PI_DIV_4
);
82 double const epsilon
= 1.0e-15; // relative error
83 bool bHasfound
= false;
85 // e_{-1} = 0; e_0 = alpha_0 / b_2
86 double u
; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
88 // first used with k=1
89 double m_bar
; // m_bar_k = m_k * f_bar_{k-1}
90 double g_bar
; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
91 double g_bar_delta_u
; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
92 // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
93 // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
94 double g
= 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
95 double delta_u
= 0.0; // dummy initialize, first used with * 0
96 double f_bar
= -1.0; // f_bar_k = 1/f_k, but only used for k=0
101 u
= 1.0; // u_0 = alpha_0
102 // k = 1.0; at least one step is necessary
103 // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
104 g_bar_delta_u
= 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
105 g_bar
= - 2.0/fX
; // k = 1.0, g = 0.0
106 delta_u
= g_bar_delta_u
/ g_bar
;
107 u
= u
+ delta_u
; // u_k = u_{k-1} + delta_u_k
108 g
= -1.0 / g_bar
; // g_k=b_{k+2}/g_bar_k
109 f_bar
= f_bar
* g
; // f_bar_k = f_bar_{k-1}* g_k
111 // From now on all alpha_k = 0.0 and k > N+1
114 { // N >= 1 and alpha_k = 0.0 for k<N
115 u
=0.0; // u_0 = alpha_0
116 for (k
=1.0; k
<= N
-1; k
= k
+ 1.0)
118 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
119 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
; // alpha_k = 0.0
120 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
121 delta_u
= g_bar_delta_u
/ g_bar
;
126 // Step alpha_N = 1.0
127 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
128 g_bar_delta_u
= f_bar
- g
* delta_u
- m_bar
* u
; // alpha_k = 1.0
129 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
130 delta_u
= g_bar_delta_u
/ g_bar
;
136 // Loop until desired accuracy, always alpha_k = 0.0
139 m_bar
= 2.0 * fmod(k
-1.0, 2.0) * f_bar
;
140 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
;
141 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
142 delta_u
= g_bar_delta_u
/ g_bar
;
146 bHasfound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
149 while (!bHasfound
&& k
<= fMaxIteration
);
151 throw NoConvergenceException(); // unlikely to happen
160 /* The BESSEL function, first kind, modified:
163 I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
166 No asymptotic approximation used, see issue 43040.
169 double BesselI( double x
, sal_Int32 n
)
171 const sal_Int32 nMaxIteration
= 2000;
172 const double fXHalf
= x
/ 2.0;
174 throw IllegalArgumentException();
176 double fResult
= 0.0;
178 /* Start the iteration without TERM(n,0), which is set here.
180 TERM(n,0) = (x/2)^n / n!
184 // avoid overflow in Fak(n)
185 for( nK
= 1; nK
<= n
; ++nK
)
187 fTerm
= fTerm
/ static_cast< double >( nK
) * fXHalf
;
189 fResult
= fTerm
; // Start result with TERM(n,0).
193 const double fEpsilon
= 1.0E-15;
196 /* Calculation of TERM(n,k) from TERM(n,k-1):
199 TERM(n,k) = --------------
202 (x/2)^2 (x/2)^(n+2(k-1))
203 = --------------------------
204 k (k-1)! (n+k) (n+k-1)!
206 (x/2)^2 (x/2)^(n+2(k-1))
207 = --------- * ------------------
208 k(n+k) (k-1)! (n+k-1)!
211 = -------- TERM(n,k-1)
214 fTerm
= fTerm
* fXHalf
/ static_cast<double>(nK
) * fXHalf
/ static_cast<double>(nK
+n
);
218 while( (fabs( fTerm
) > fabs(fResult
) * fEpsilon
) && (nK
< nMaxIteration
) );
224 /// @throws IllegalArgumentException
225 /// @throws NoConvergenceException
226 double Besselk0( double fNum
)
232 double fNum2
= fNum
* 0.5;
233 double y
= fNum2
* fNum2
;
235 fRet
= -log( fNum2
) * BesselI( fNum
, 0 ) +
236 ( -0.57721566 + y
* ( 0.42278420 + y
* ( 0.23069756 + y
* ( 0.3488590e-1 +
237 y
* ( 0.262698e-2 + y
* ( 0.10750e-3 + y
* 0.74e-5 ) ) ) ) ) );
241 double y
= 2.0 / fNum
;
243 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( -0.7832358e-1 +
244 y
* ( 0.2189568e-1 + y
* ( -0.1062446e-1 + y
* ( 0.587872e-2 +
245 y
* ( -0.251540e-2 + y
* 0.53208e-3 ) ) ) ) ) );
251 /// @throws IllegalArgumentException
252 /// @throws NoConvergenceException
253 double Besselk1( double fNum
)
259 double fNum2
= fNum
* 0.5;
260 double y
= fNum2
* fNum2
;
262 fRet
= log( fNum2
) * BesselI( fNum
, 1 ) +
263 ( 1.0 + y
* ( 0.15443144 + y
* ( -0.67278579 + y
* ( -0.18156897 + y
* ( -0.1919402e-1 +
264 y
* ( -0.110404e-2 + y
* ( -0.4686e-4 ) ) ) ) ) ) )
269 double y
= 2.0 / fNum
;
271 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( 0.23498619 +
272 y
* ( -0.3655620e-1 + y
* ( 0.1504268e-1 + y
* ( -0.780353e-2 +
273 y
* ( 0.325614e-2 + y
* ( -0.68245e-3 ) ) ) ) ) ) );
280 double BesselK( double fNum
, sal_Int32 nOrder
)
284 case 0: return Besselk0( fNum
);
285 case 1: return Besselk1( fNum
);
288 double fTox
= 2.0 / fNum
;
289 double fBkm
= Besselk0( fNum
);
290 double fBk
= Besselk1( fNum
);
292 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
294 const double fBkp
= fBkm
+ double( n
) * fTox
* fBk
;
308 /* The BESSEL function, second kind, unmodified:
309 The algorithm for order 0 and for order 1 follows
310 http://www.reference-global.com/isbn/978-3-11-020354-7
311 Numerical Mathematics 1 / Numerische Mathematik 1,
312 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
313 Deuflhard, Peter; Hohmann, Andreas
314 Berlin, New York (Walter de Gruyter) 2008
315 4. ueberarb. u. erw. Aufl. 2008
316 eBook ISBN: 978-3-11-020355-4
317 Chapter 6.3.2 , algorithm 6.24
318 The source is in German.
319 See #i31656# for a commented version of the implementation, attachment #desc6
320 http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
323 /// @throws IllegalArgumentException
324 /// @throws NoConvergenceException
325 double Bessely0( double fX
)
328 throw IllegalArgumentException();
329 const double fMaxIteration
= 9000000.0; // should not be reached
330 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
331 return sqrt(1/f_PI
/fX
)
332 *(rtl::math::sin(fX
)-rtl::math::cos(fX
));
333 const double epsilon
= 1.0e-15;
334 const double EulerGamma
= 0.57721566490153286060;
335 double alpha
= log(fX
/2.0)+EulerGamma
;
339 double g_bar_delta_u
= 0.0;
340 double g_bar
= -2.0 / fX
;
341 double delta_u
= g_bar_delta_u
/ g_bar
;
342 double g
= -1.0/g_bar
;
343 double f_bar
= -1 * g
;
345 double sign_alpha
= 1.0;
346 bool bHasFound
= false;
350 double km1mod2
= fmod(k
-1.0, 2.0);
351 double m_bar
= (2.0*km1mod2
) * f_bar
;
356 alpha
= sign_alpha
* (4.0/k
);
357 sign_alpha
= -sign_alpha
;
359 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
360 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
361 delta_u
= g_bar_delta_u
/ g_bar
;
365 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
368 while (!bHasFound
&& k
<fMaxIteration
);
370 throw NoConvergenceException(); // not likely to happen
374 // See #i31656# for a commented version of this implementation, attachment #desc6
375 // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
376 /// @throws IllegalArgumentException
377 /// @throws NoConvergenceException
378 double Bessely1( double fX
)
381 throw IllegalArgumentException();
382 const double fMaxIteration
= 9000000.0; // should not be reached
383 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
384 return - sqrt(1/f_PI
/fX
)
385 *(rtl::math::sin(fX
)+rtl::math::cos(fX
));
386 const double epsilon
= 1.0e-15;
387 const double EulerGamma
= 0.57721566490153286060;
388 double alpha
= 1.0/fX
;
392 alpha
= 1.0 - EulerGamma
- log(fX
/2.0);
393 double g_bar_delta_u
= -alpha
;
394 double g_bar
= -2.0 / fX
;
395 double delta_u
= g_bar_delta_u
/ g_bar
;
397 double g
= -1.0/g_bar
;
399 double sign_alpha
= -1.0;
400 bool bHasFound
= false;
404 double km1mod2
= fmod(k
-1.0,2.0);
405 double m_bar
= (2.0*km1mod2
) * f_bar
;
406 double q
= (k
-1.0)/2.0;
407 if (km1mod2
== 0.0) // k is odd
409 alpha
= sign_alpha
* (1.0/q
+ 1.0/(q
+1.0));
410 sign_alpha
= -sign_alpha
;
414 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
415 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
416 delta_u
= g_bar_delta_u
/ g_bar
;
420 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
423 while (!bHasFound
&& k
<fMaxIteration
);
425 throw NoConvergenceException();
429 double BesselY( double fNum
, sal_Int32 nOrder
)
433 case 0: return Bessely0( fNum
);
434 case 1: return Bessely1( fNum
);
437 double fTox
= 2.0 / fNum
;
438 double fBym
= Bessely0( fNum
);
439 double fBy
= Bessely1( fNum
);
441 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
443 const double fByp
= double( n
) * fTox
* fBy
- fBym
;
453 } // namespace analysis
456 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */