tdf#154285 Check upper bound of arguments in SbRtl_Minute function
[LibreOffice.git] / chart2 / source / view / charttypes / Splines.cxx
blob15980b638bc8cefb9d22e84292d6dcd7e40a949a
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include "Splines.hxx"
21 #include <osl/diagnose.h>
22 #include <com/sun/star/drawing/Position3D.hpp>
24 #include <vector>
25 #include <algorithm>
26 #include <optional>
27 #include <cmath>
28 #include <limits>
30 namespace chart
32 using namespace ::com::sun::star;
34 namespace
37 typedef std::pair< double, double > tPointType;
38 typedef std::vector< tPointType > tPointVecType;
39 typedef tPointVecType::size_type lcl_tSizeType;
41 class lcl_SplineCalculation
43 public:
44 /** @descr creates an object that calculates cubic splines on construction
46 @param rSortedPoints the points for which splines shall be calculated, they need to be sorted in x values
47 @param fY1FirstDerivation the resulting spline should have the first
48 derivation equal to this value at the x-value of the first point
49 of rSortedPoints. If fY1FirstDerivation is set to infinity, a natural
50 spline is calculated.
51 @param fYnFirstDerivation the resulting spline should have the first
52 derivation equal to this value at the x-value of the last point
53 of rSortedPoints
55 lcl_SplineCalculation( tPointVecType && rSortedPoints,
56 double fY1FirstDerivation,
57 double fYnFirstDerivation );
59 /** @descr creates an object that calculates cubic splines on construction
60 for the special case of periodic cubic spline
62 @param rSortedPoints the points for which splines shall be calculated,
63 they need to be sorted in x values. First and last y value must be equal
65 explicit lcl_SplineCalculation( tPointVecType && rSortedPoints);
67 /** @descr this function corresponds to the function splint in [1].
69 [1] Numerical Recipes in C, 2nd edition
70 William H. Press, et al.,
71 Section 3.3, page 116
73 double GetInterpolatedValue( double x );
75 private:
76 /// a copy of the points given in the CTOR
77 tPointVecType m_aPoints;
79 /// the result of the Calculate() method
80 std::vector< double > m_aSecDerivY;
82 double m_fYp1;
83 double m_fYpN;
85 // these values are cached for performance reasons
86 lcl_tSizeType m_nKLow;
87 lcl_tSizeType m_nKHigh;
88 double m_fLastInterpolatedValue;
90 /** @descr this function corresponds to the function spline in [1].
92 [1] Numerical Recipes in C, 2nd edition
93 William H. Press, et al.,
94 Section 3.3, page 115
96 void Calculate();
98 /** @descr this function corresponds to the algorithm 4.76 in [2] and
99 theorem 5.3.7 in [3]
101 [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
102 Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
103 Section 4.10.2, page 175
105 [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
106 Veranstaltung im WS 2007/2008
107 Fachhochschule Aachen, 2009-09-19
108 Numerik_01.pdf, downloaded 2011-04-19 via
109 http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
110 Section 5.3, page 129
112 void CalculatePeriodic();
115 lcl_SplineCalculation::lcl_SplineCalculation(
116 tPointVecType && rSortedPoints,
117 double fY1FirstDerivation,
118 double fYnFirstDerivation )
119 : m_aPoints( std::move(rSortedPoints) ),
120 m_fYp1( fY1FirstDerivation ),
121 m_fYpN( fYnFirstDerivation ),
122 m_nKLow( 0 ),
123 m_nKHigh( m_aPoints.size() - 1 ),
124 m_fLastInterpolatedValue(std::numeric_limits<double>::infinity())
126 Calculate();
129 lcl_SplineCalculation::lcl_SplineCalculation(
130 tPointVecType && rSortedPoints)
131 : m_aPoints( std::move(rSortedPoints) ),
132 m_fYp1( 0.0 ), /*dummy*/
133 m_fYpN( 0.0 ), /*dummy*/
134 m_nKLow( 0 ),
135 m_nKHigh( m_aPoints.size() - 1 ),
136 m_fLastInterpolatedValue(std::numeric_limits<double>::infinity())
138 CalculatePeriodic();
141 void lcl_SplineCalculation::Calculate()
143 if( m_aPoints.size() <= 1 )
144 return;
146 // n is the last valid index to m_aPoints
147 const lcl_tSizeType n = m_aPoints.size() - 1;
148 std::vector< double > u( n );
149 m_aSecDerivY.resize( n + 1, 0.0 );
151 if( std::isinf( m_fYp1 ) )
153 // natural spline
154 m_aSecDerivY[ 0 ] = 0.0;
155 u[ 0 ] = 0.0;
157 else
159 m_aSecDerivY[ 0 ] = -0.5;
160 double xDiff = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
161 u[ 0 ] = ( 3.0 / xDiff ) *
162 ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
165 for( lcl_tSizeType i = 1; i < n; ++i )
167 tPointType
168 p_i = m_aPoints[ i ],
169 p_im1 = m_aPoints[ i - 1 ],
170 p_ip1 = m_aPoints[ i + 1 ];
172 double sig = ( p_i.first - p_im1.first ) /
173 ( p_ip1.first - p_im1.first );
174 double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
176 m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
177 u[ i ] =
178 ( ( p_ip1.second - p_i.second ) /
179 ( p_ip1.first - p_i.first ) ) -
180 ( ( p_i.second - p_im1.second ) /
181 ( p_i.first - p_im1.first ) );
182 u[ i ] =
183 ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
184 - sig * u[ i - 1 ] ) / p;
187 // initialize to values for natural splines (used for m_fYpN equal to
188 // infinity)
189 double qn = 0.0;
190 double un = 0.0;
192 if( ! std::isinf( m_fYpN ) )
194 qn = 0.5;
195 double xDiff = m_aPoints[ n ].first - m_aPoints[ n - 1 ].first;
196 un = ( 3.0 / xDiff ) *
197 ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
200 m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) / ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
202 // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
203 // may be (usually is) an unsigned type, we can not write k >= 0, as this
204 // is always true.
205 for( lcl_tSizeType k = n; k > 0; --k )
207 m_aSecDerivY[ k - 1 ] = (m_aSecDerivY[ k - 1 ] * m_aSecDerivY[ k ] ) + u[ k - 1 ];
211 void lcl_SplineCalculation::CalculatePeriodic()
213 if( m_aPoints.size() <= 1 )
214 return;
216 // n is the last valid index to m_aPoints
217 const lcl_tSizeType n = m_aPoints.size() - 1;
219 // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2],
220 // vector z in Rtranspose z = a and Dr=z in [2]
221 std::vector< double > u( n + 1, 0.0 );
223 // used for vector c in A*c=f and vector x in Ax=a in [2]
224 m_aSecDerivY.resize( n + 1, 0.0 );
226 // diagonal of matrix A, used index 1 to n
227 std::vector< double > Adiag( n + 1, 0.0 );
229 // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
230 std::vector< double > Aupper( n + 1, 0.0 );
232 // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
233 std::vector< double > Ddiag( n+1, 0.0 );
235 // right column of matrix R, used index 1 to n-2
236 std::vector< double > Rright( n-1, 0.0 );
238 // secondary diagonal of matrix R, used index 1 to n-1
239 std::vector< double > Rupper( n, 0.0 );
241 if (n<4)
243 if (n==3)
244 { // special handling of three polynomials, that are four points
245 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
246 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
247 double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
248 double xDiff2p1 = xDiff2 + xDiff1;
249 double xDiff0p2 = xDiff0 + xDiff2;
250 double xDiff1p0 = xDiff1 + xDiff0;
251 double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
252 double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
253 double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
254 double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
255 m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
256 m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
257 m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
258 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
260 else if (n==2)
262 // special handling of two polynomials, that are three points
263 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
264 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
265 double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
266 m_aSecDerivY[ 1 ] = fHelp ;
267 m_aSecDerivY[ 2 ] = -fHelp ;
268 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
270 else
272 // should be handled with natural spline, periodic not possible.
275 else
277 double xDiff_i =1.0; // values are dummy;
278 double xDiff_im1 =1.0;
279 double yDiff_i = 1.0;
280 double yDiff_im1 = 1.0;
281 // fill matrix A and fill right side vector u
282 for( lcl_tSizeType i=1; i<n; ++i )
284 xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
285 xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
286 yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
287 yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
288 Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
289 Aupper[ i ] = xDiff_i;
290 u [ i ] = 3 * (yDiff_i - yDiff_im1);
292 xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
293 xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
294 yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
295 yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
296 Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
297 Aupper[ n ] = xDiff_i;
298 u [ n ] = 3 * (yDiff_i - yDiff_im1);
300 // decomposite A=(R transpose)*D*R
301 Ddiag[1] = Adiag[1];
302 Rupper[1] = Aupper[1] / Ddiag[1];
303 Rright[1] = Aupper[n] / Ddiag[1];
304 for( lcl_tSizeType i=2; i<=n-2; ++i )
306 Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
307 Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
308 Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
310 Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
311 Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
312 double fSum = 0.0;
313 for ( lcl_tSizeType i=1; i<=n-2; ++i )
315 fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
317 Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
319 // solve forward (R transpose)*z=u, overwrite u with z
320 for ( lcl_tSizeType i=2; i<=n-1; ++i )
322 u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
324 fSum = 0.0;
325 for ( lcl_tSizeType i=1; i<=n-2; ++i )
327 fSum += Rright[ i ] * u[ i ];
329 u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
331 // solve forward D*r=z, z is in u, overwrite u with r
332 for ( lcl_tSizeType i=1; i<=n; ++i )
334 u[ i ] = u[i] / Ddiag[ i ];
337 // solve backward R*x= r, r is in u
338 m_aSecDerivY[ n ] = u[ n ];
339 m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
340 for ( lcl_tSizeType i=n-2; i>=1; --i)
342 m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
344 // periodic
345 m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
348 // adapt m_aSecDerivY for usage in GetInterpolatedValue()
349 for( lcl_tSizeType i = 0; i <= n ; ++i )
351 m_aSecDerivY[ i ] *= 2.0;
356 double lcl_SplineCalculation::GetInterpolatedValue( double x )
358 OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
359 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
360 "Trying to extrapolate" );
362 const lcl_tSizeType n = m_aPoints.size() - 1;
363 if( x < m_fLastInterpolatedValue )
365 m_nKLow = 0;
366 m_nKHigh = n;
368 // calculate m_nKLow and m_nKHigh
369 // first initialization is done in CTOR
370 while( m_nKHigh - m_nKLow > 1 )
372 lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
373 if( m_aPoints[ k ].first > x )
374 m_nKHigh = k;
375 else
376 m_nKLow = k;
379 else
381 while( ( m_nKHigh <= n ) &&
382 ( m_aPoints[ m_nKHigh ].first < x ) )
384 ++m_nKHigh;
385 ++m_nKLow;
387 OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
389 m_fLastInterpolatedValue = x;
391 double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
392 OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
394 double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
395 double b = ( x - m_aPoints[ m_nKLow ].first ) / h;
397 return ( a * m_aPoints[ m_nKLow ].second +
398 b * m_aPoints[ m_nKHigh ].second +
399 (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
400 ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
401 ( h*h ) / 6.0 );
404 // helper methods for B-spline
406 // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
407 bool createParameterT(const tPointVecType& rUniquePoints, double* t)
408 { // precondition: no adjacent identical points
409 // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
410 bool bIsSuccessful = true;
411 const lcl_tSizeType n = rUniquePoints.size() - 1;
412 t[0]=0.0;
413 double fDenominator = 0.0; // initialized for summing up
414 for (lcl_tSizeType i=1; i<=n ; ++i)
415 { // 4th root(dx^2+dy^2)
416 double dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
417 double dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
418 if (dx == 0 && dy == 0)
420 bIsSuccessful = false;
421 break;
423 else
425 fDenominator += sqrt(std::hypot(dx, dy));
428 if (fDenominator == 0.0)
430 bIsSuccessful = false;
432 if (bIsSuccessful)
434 for (lcl_tSizeType j=1; j<=n ; ++j)
436 double fNumerator = 0.0;
437 for (lcl_tSizeType i=1; i<=j ; ++i)
439 double dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
440 double dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
441 fNumerator += sqrt(std::hypot(dx, dy));
443 t[j] = fNumerator / fDenominator;
446 // postcondition check
447 t[n] = 1.0;
448 double fPrevious = 0.0;
449 for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
451 if (fPrevious >= t[i])
453 bIsSuccessful = false;
455 else
457 fPrevious = t[i];
461 return bIsSuccessful;
464 void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, const double* t, double* u)
465 { // precondition: 0 = t_0 < t_1 < ... < t_n = 1
466 for (lcl_tSizeType j = 0; j <= p; ++j)
468 u[j] = 0.0;
470 for (lcl_tSizeType j = 1; j <= n-p; ++j )
472 double fSum = 0.0;
473 for (lcl_tSizeType i = j; i <= j+p-1; ++i)
475 fSum += t[i];
477 assert(p != 0);
478 u[j+p] = fSum / p ;
480 for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
482 u[j] = 1.0;
486 void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
488 // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
490 // initialize with indicator function degree 0
491 rowN[p] = 1.0; // all others are zero
493 // calculate up to degree p
494 for (sal_uInt32 s = 1; s <= p; ++s)
496 // first element
497 double fLeftFactor = 0.0;
498 double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
499 // i-s "true index" - (i-p)"shift" = p-s
500 rowN[p-s] = fRightFactor * rowN[p-s+1];
502 // middle elements
503 for (sal_uInt32 j = s-1; j>=1 ; --j)
505 fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
506 fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
507 // i-j "true index" - (i-p)"shift" = p-j
508 rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1];
511 // last element
512 fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
513 // i "true index" - (i-p)"shift" = p
514 rowN[p] = fLeftFactor * rowN[p];
518 } // anonymous namespace
520 // Calculates uniform parametric splines with subinterval length 1,
521 // according ODF1.2 part 1, chapter 'chart interpolation'.
522 void SplineCalculater::CalculateCubicSplines(
523 const std::vector<std::vector<css::drawing::Position3D>>& rInput
524 , std::vector<std::vector<css::drawing::Position3D>>& rResult
525 , sal_uInt32 nGranularity )
527 OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
529 sal_uInt32 nOuterCount = rInput.size();
531 rResult.resize(nOuterCount);
533 auto pSequence = rResult.data();
535 if( !nOuterCount )
536 return;
538 for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
540 if( rInput[nOuter].size() <= 1 )
541 continue; //we need at least two points
543 sal_uInt32 nMaxIndexPoints = rInput[nOuter].size()-1; // is >=1
544 const css::drawing::Position3D* pOld = rInput[nOuter].data();
546 std::vector < double > aParameter(nMaxIndexPoints+1);
547 aParameter[0]=0.0;
548 for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
550 aParameter[nIndex]=aParameter[nIndex-1]+1;
553 // Split the calculation to X, Y and Z coordinate
554 tPointVecType aInputX;
555 aInputX.resize(nMaxIndexPoints+1);
556 tPointVecType aInputY;
557 aInputY.resize(nMaxIndexPoints+1);
558 tPointVecType aInputZ;
559 aInputZ.resize(nMaxIndexPoints+1);
560 for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
562 aInputX[ nN ].first=aParameter[nN];
563 aInputX[ nN ].second=pOld[ nN ].PositionX;
564 aInputY[ nN ].first=aParameter[nN];
565 aInputY[ nN ].second=pOld[ nN ].PositionY;
566 aInputZ[ nN ].first=aParameter[nN];
567 aInputZ[ nN ].second=pOld[ nN ].PositionZ;
570 // generate a spline for each coordinate. It holds the complete
571 // information to calculate each point of the curve
572 std::optional<lcl_SplineCalculation> aSplineX;
573 std::optional<lcl_SplineCalculation> aSplineY;
574 // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
575 // a data series are equal. No spline calculation needed, but copy
576 // coordinate to output
578 if( pOld[ 0 ].PositionX == pOld[nMaxIndexPoints].PositionX &&
579 pOld[ 0 ].PositionY == pOld[nMaxIndexPoints].PositionY &&
580 pOld[ 0 ].PositionZ == pOld[nMaxIndexPoints].PositionZ &&
581 nMaxIndexPoints >=2 )
582 { // periodic spline
583 aSplineX.emplace(std::move(aInputX));
584 aSplineY.emplace(std::move(aInputY));
586 else // generate the kind "natural spline"
588 double fXDerivation = std::numeric_limits<double>::infinity();
589 double fYDerivation = std::numeric_limits<double>::infinity();
590 aSplineX.emplace(std::move(aInputX), fXDerivation, fXDerivation);
591 aSplineY.emplace(std::move(aInputY), fYDerivation, fYDerivation);
594 // fill result polygon with calculated values
595 pSequence[nOuter].resize( nMaxIndexPoints*nGranularity + 1);
597 css::drawing::Position3D* pNew = pSequence[nOuter].data();
599 sal_uInt32 nNewPointIndex = 0; // Index in result points
601 for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
603 // given point is surely a curve point
604 pNew[nNewPointIndex].PositionX = pOld[ni].PositionX;
605 pNew[nNewPointIndex].PositionY = pOld[ni].PositionY;
606 pNew[nNewPointIndex].PositionZ = pOld[ni].PositionZ;
607 nNewPointIndex++;
609 // calculate intermediate points
610 double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
611 for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
613 double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
615 pNew[nNewPointIndex].PositionX = aSplineX->GetInterpolatedValue( fParam );
616 pNew[nNewPointIndex].PositionY = aSplineY->GetInterpolatedValue( fParam );
617 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
618 pNew[nNewPointIndex].PositionZ = pOld[ni].PositionZ;
619 nNewPointIndex++;
622 // add last point
623 pNew[nNewPointIndex] = pOld[nMaxIndexPoints];
627 void SplineCalculater::CalculateBSplines(
628 const std::vector<std::vector<css::drawing::Position3D>>& rInput
629 , std::vector<std::vector<css::drawing::Position3D>>& rResult
630 , sal_uInt32 nResolution
631 , sal_uInt32 nDegree )
633 // nResolution is ODF1.2 file format attribute chart:spline-resolution and
634 // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
635 // nDegree is ODF1.2 file format attribute chart:spline-order and
636 // ODF1.2 spec variable p
637 OSL_ASSERT( nResolution > 1 );
638 OSL_ASSERT( nDegree >= 1 );
640 // limit the b-spline degree at 15 to prevent insanely large sets of points
641 sal_uInt32 p = std::min<sal_uInt32>(nDegree, 15);
643 sal_Int32 nOuterCount = rInput.size();
645 rResult.resize(nOuterCount);
647 auto pSequence = rResult.data();
649 if( !nOuterCount )
650 return; // no input
652 for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
654 if( rInput[nOuter].size() <= 1 )
655 continue; // need at least 2 points, next piece of the series
657 // Copy input to vector of points and remove adjacent double points. The
658 // Z-coordinate is equal for all points in a series and holds the depth
659 // in 3D mode, simple copying is enough.
660 lcl_tSizeType nMaxIndexPoints = rInput[nOuter].size()-1; // is >=1
661 const css::drawing::Position3D* pOld = rInput[nOuter].data();
662 double fZCoordinate = pOld[0].PositionZ;
663 tPointVecType aPointsIn;
664 aPointsIn.resize(nMaxIndexPoints+1);
665 for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
667 aPointsIn[ i ].first = pOld[i].PositionX;
668 aPointsIn[ i ].second = pOld[i].PositionY;
670 aPointsIn.erase( std::unique( aPointsIn.begin(), aPointsIn.end()),
671 aPointsIn.end() );
673 // n is the last valid index to the reduced aPointsIn
674 // There are n+1 valid data points.
675 const lcl_tSizeType n = aPointsIn.size() - 1;
676 if (n < 1 || p > n)
677 continue; // need at least 2 points, degree p needs at least n+1 points
678 // next piece of series
680 std::vector<double> t(n + 1);
681 if (!createParameterT(aPointsIn, t.data()))
683 continue; // next piece of series
686 lcl_tSizeType m = n + p + 1;
687 std::vector<double> u(m + 1);
688 createKnotVector(n, p, t.data(), u.data());
690 // The matrix N contains the B-spline basis functions applied to parameters.
691 // In each row only p+1 adjacent elements are non-zero. The starting
692 // column in a higher row is equal or greater than in the lower row.
693 // To store this matrix the non-zero elements are shifted to column 0
694 // and the amount of shifting is remembered in an array.
695 std::vector<std::vector<double>> aMatN(n + 1, std::vector<double>(p + 1));
696 std::vector<lcl_tSizeType> aShift(n + 1);
697 aMatN[0][0] = 1.0; //all others are zero
698 aShift[0] = 0;
699 aMatN[n][0] = 1.0;
700 aShift[n] = n;
701 for (lcl_tSizeType k = 1; k<=n-1; ++k)
702 { // all basis functions are applied to t_k,
703 // results are elements in row k in matrix N
705 // find the one interval with u_i <= t_k < u_(i+1)
706 // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
707 lcl_tSizeType i = p;
708 while (u[i] > t[k] || t[k] >= u[i+1])
710 ++i;
713 // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
714 aShift[k] = i - p;
716 applyNtoParameterT(i, t[k], p, u.data(), aMatN[k].data());
717 } // next row k
719 // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
720 // aPointsIn is overwritten with C.
721 // Gaussian elimination is possible without pivoting, see reference
722 lcl_tSizeType r = 0; // true row index
723 lcl_tSizeType c = 0; // true column index
724 double fDivisor = 1.0; // used for diagonal element
725 double fEliminate = 1.0; // used for the element, that will become zero
726 bool bIsSuccessful = true;
727 for (c = 0 ; c <= n && bIsSuccessful; ++c)
729 // search for first non-zero downwards
730 r = c;
731 while ( r < n && aMatN[r][c-aShift[r]] == 0 )
733 ++r;
735 if (aMatN[r][c-aShift[r]] == 0.0)
737 // Matrix N is singular, although this is mathematically impossible
738 bIsSuccessful = false;
740 else
742 // exchange total row r with total row c if necessary
743 if (r != c)
745 std::swap( aMatN[r], aMatN[c] );
746 std::swap( aPointsIn[r], aPointsIn[c] );
747 std::swap( aShift[r], aShift[c] );
750 // divide row c, so that element(c,c) becomes 1
751 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
752 for (sal_uInt32 i = 0; i <= p; ++i)
754 aMatN[c][i] /= fDivisor;
756 aPointsIn[c].first /= fDivisor;
757 aPointsIn[c].second /= fDivisor;
759 // eliminate forward, examine row c+1 to n-1 (worst case)
760 // stop if first non-zero element in row has an higher column as c
761 // look at nShift for that, elements in nShift are equal or increasing
762 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
764 fEliminate = aMatN[r][0];
765 if (fEliminate != 0.0) // else accidentally zero, nothing to do
767 for (sal_uInt32 i = 1; i <= p; ++i)
769 aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
771 aMatN[r][p]=0;
772 aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
773 aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
774 ++aShift[r];
778 }// upper triangle form is reached
779 if( bIsSuccessful)
781 // eliminate backwards, begin with last column
782 for (lcl_tSizeType cc = n; cc >= 1; --cc )
784 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
785 // diagonal are zero and do not influence other rows.
786 // Full matrix N has semibandwidth < p, therefore element(r,c) is
787 // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc.
788 r = cc - 1;
789 while ( r !=0 && cc-r < p )
791 fEliminate = aMatN[r][ cc - aShift[r] ];
792 if ( fEliminate != 0.0) // else element is accidentally zero, no action needed
794 // row r -= fEliminate * row cc only relevant for right side
795 aMatN[r][cc - aShift[r]] = 0.0;
796 aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
797 aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
799 --r;
802 // aPointsIn contains the control points now.
804 // calculate the intermediate points according given resolution
805 // using deBoor-Cox algorithm
806 lcl_tSizeType nNewSize = nResolution * n + 1;
807 pSequence[nOuter].resize(nNewSize);
808 css::drawing::Position3D* pNew = pSequence[nOuter].data();
809 pNew[0].PositionX = aPointsIn[0].first;
810 pNew[0].PositionY = aPointsIn[0].second;
811 pNew[0].PositionZ = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
812 pNew[nNewSize -1 ].PositionX = aPointsIn[n].first;
813 pNew[nNewSize -1 ].PositionY = aPointsIn[n].second;
814 pNew[nNewSize -1 ].PositionZ = fZCoordinate;
815 std::vector<double> aP(m + 1);
816 lcl_tSizeType nLow = 0;
817 for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
819 for (sal_uInt32 nResolutionStep = 1;
820 nResolutionStep <= nResolution && ( nTIndex != n-1 || nResolutionStep != nResolution);
821 ++nResolutionStep)
823 lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
824 double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
826 // get index nLow, so that u[nLow]<= ux < u[nLow +1]
827 // continue from previous nLow
828 while ( u[nLow] <= ux)
830 ++nLow;
832 --nLow;
834 // x-coordinate
835 for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
837 aP[i] = aPointsIn[i].first;
839 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
841 for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
843 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
844 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
847 pNew[nNewIndex].PositionX = aP[nLow];
849 // y-coordinate
850 for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
852 aP[i] = aPointsIn[i].second;
854 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
856 for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
858 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
859 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
862 pNew[nNewIndex].PositionY = aP[nLow];
863 pNew[nNewIndex].PositionZ = fZCoordinate;
867 } // next piece of the series
870 } //namespace chart
872 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */