bump product version to 4.1.6.2
[LibreOffice.git] / i18npool / source / calendar / calendar_hijri.cxx
blobac85e0a0bcc0698ceb48412c6f1468478b8bfa97
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
21 #include <stdlib.h>
22 #include <math.h>
24 #include "calendar_hijri.hxx"
26 using namespace ::com::sun::star::uno;
27 using namespace ::com::sun::star::lang;
29 #define GREGORIAN_CROSSOVER 2299161
31 namespace com { namespace sun { namespace star { namespace i18n {
33 // not used
34 //static UErrorCode status; // status is shared in all calls to Calendar, it has to be reset for each call.
36 // radians per degree (pi/180)
37 const double Calendar_hijri::RadPerDeg = 0.01745329251994329577;
39 // Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
40 const double Calendar_hijri::SynPeriod = 29.53058868;
41 const double Calendar_hijri::SynMonth = 365.25/29.53058868; // Solar days in a year/SynPeriod
43 // Julian day on Jan 1, 1900
44 const double Calendar_hijri::jd1900 = 2415020.75933;
46 // Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
47 const sal_Int32 Calendar_hijri::SynRef = 1252;
48 const sal_Int32 Calendar_hijri::GregRef = 1422;
50 // Local time specific to Saudi Arabia
51 const double Calendar_hijri::SA_TimeZone = 3.0;
53 const double Calendar_hijri::EveningPeriod = 6.0;
55 const sal_Int32 Calendar_hijri::LeapYear[] = {
56 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29
59 Calendar_hijri::Calendar_hijri()
61 cCalendar = "com.sun.star.i18n.Calendar_hijri";
64 #define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
66 // map field value from hijri calendar to gregorian calendar
67 void Calendar_hijri::mapToGregorian() throw(RuntimeException)
69 if (fieldSet & FIELDS) {
70 sal_Int32 day = (sal_Int32)fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH];
71 sal_Int32 month = (sal_Int32)fieldSetValue[CalendarFieldIndex::MONTH] + 1;
72 sal_Int32 year = (sal_Int32)fieldSetValue[CalendarFieldIndex::YEAR];
73 if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
74 year *= -1;
76 ToGregorian(&day, &month, &year);
78 fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
79 fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
80 fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16) day;
81 fieldSetValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
82 fieldSet |= FIELDS;
86 // map field value from gregorian calendar to hijri calendar
87 void Calendar_hijri::mapFromGregorian() throw(RuntimeException)
89 sal_Int32 month, day, year;
91 day = (sal_Int32)fieldValue[CalendarFieldIndex::DAY_OF_MONTH];
92 month = (sal_Int32)fieldValue[CalendarFieldIndex::MONTH] + 1;
93 year = (sal_Int32)fieldValue[CalendarFieldIndex::YEAR];
94 if (fieldValue[CalendarFieldIndex::ERA] == 0)
95 year *= -1;
97 // Get Hijri date
98 getHijri(&day, &month, &year);
100 fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = (sal_Int16)day;
101 fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
102 fieldValue[CalendarFieldIndex::YEAR] = (sal_Int16) abs(year);
103 fieldValue[CalendarFieldIndex::ERA] = (sal_Int16) year < 1 ? 0 : 1;
107 // This function returns the Julian date/time of the Nth new moon since
108 // January 1900. The synodic month is passed as parameter.
110 // Adapted from "Astronomical Formulae for Calculators" by
111 // Jean Meeus, Third Edition, Willmann-Bell, 1985.
113 double
114 Calendar_hijri::NewMoon(sal_Int32 n)
116 double jd, t, t2, t3, k, ma, sa, tf, xtra;
117 k = n;
118 t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
119 t2 = t * t;
120 t3 = t2 * t;
122 // Mean time of phase
123 jd = jd1900
124 + SynPeriod * k
125 - 0.0001178 * t2
126 - 0.000000155 * t3
127 + 0.00033 * sin(RadPerDeg * (166.56 + 132.87 * t - 0.009173 * t2));
129 // Sun's mean anomaly in radian
130 sa = RadPerDeg * (359.2242
131 + 29.10535608 * k
132 - 0.0000333 * t2
133 - 0.00000347 * t3);
135 // Moon's mean anomaly
136 ma = RadPerDeg * (306.0253
137 + 385.81691806 * k
138 + 0.0107306 * t2
139 + 0.00001236 * t3);
141 // Moon's argument of latitude
142 tf = RadPerDeg * 2.0 * (21.2964
143 + 390.67050646 * k
144 - 0.0016528 * t2
145 - 0.00000239 * t3);
147 // should reduce to interval between 0 to 1.0 before calculating further
148 // Corrections for New Moon
149 xtra = (0.1734 - 0.000393 * t) * sin(sa)
150 + 0.0021 * sin(sa * 2)
151 - 0.4068 * sin(ma)
152 + 0.0161 * sin(2 * ma)
153 - 0.0004 * sin(3 * ma)
154 + 0.0104 * sin(tf)
155 - 0.0051 * sin(sa + ma)
156 - 0.0074 * sin(sa - ma)
157 + 0.0004 * sin(tf + sa)
158 - 0.0004 * sin(tf - sa)
159 - 0.0006 * sin(tf + ma)
160 + 0.0010 * sin(tf - ma)
161 + 0.0005 * sin(sa + 2 * ma);
163 // convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
164 jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
166 return (jd);
169 // Get Hijri Date
170 void
171 Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
173 double prevday;
174 // double dayfraction;
175 sal_Int32 syndiff;
176 sal_Int32 newsyn;
177 double newjd;
178 double julday;
179 sal_Int32 synmonth;
181 // Get Julian Day from Gregorian
182 julday = getJulianDay(*day, *month, *year);
184 // obtain approx. of how many Synodic months since the beginning of the year 1900
185 synmonth = (sal_Int32)(0.5 + (julday - jd1900)/SynPeriod);
187 newsyn = synmonth;
188 prevday = (sal_Int32)julday - 0.5;
190 do {
191 newjd = NewMoon(newsyn);
193 // Decrement syndonic months
194 newsyn--;
195 } while (newjd > prevday);
196 newsyn++;
198 // difference from reference point
199 syndiff = newsyn - SynRef;
201 // Round up the day
202 *day = (sal_Int32)(((sal_Int32)julday) - newjd + 0.5);
203 *month = (syndiff % 12) + 1;
205 // currently not supported
206 //dayOfYear = (sal_Int32)(month * SynPeriod + day);
207 *year = GregRef + (sal_Int32)(syndiff / 12);
209 // If month negative, consider it previous year
210 if (syndiff != 0 && *month <= 0) {
211 *month += 12;
212 (*year)--;
215 // If Before Hijri subtract 1
216 if (*year <= 0) (*year)--;
219 void
220 Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
222 sal_Int32 nmonth;
223 // double dayfraction;
224 double jday;
225 // sal_Int32 dayint;
227 if ( *year < 0 ) (*year)++;
229 // Number of month from reference point
230 nmonth = *month + *year * 12 - (GregRef * 12 + 1);
232 // Add Synodic Reference point
233 nmonth += SynRef;
235 // Get Julian days add time too
236 jday = NewMoon(nmonth) + *day;
238 // Round-up
239 jday = (double)((sal_Int32)(jday + 0.5));
241 // Use algorithm from "Numerical Recipes in C"
242 getGregorianDay((sal_Int32)jday, day, month, year);
244 // Julian -> Gregorian only works for non-negative year
245 if ( *year <= 0 ) {
246 *day = -1;
247 *month = -1;
248 *year = -1;
252 /* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
253 /* this algorithm only valid for non-negative gregorian year */
254 void
255 Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
257 /* working variables */
258 long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
260 /* test whether to adjust for the Gregorian calendar crossover */
261 if (lJulianDay >= GREGORIAN_CROSSOVER) {
262 /* calculate a small adjustment */
263 long lAdjust = (long) (((float) (lJulianDay - 1867216) - 0.25) / 36524.25);
265 lFactorA = lJulianDay + 1 + lAdjust - ((long) (0.25 * lAdjust));
267 } else {
268 /* no adjustment needed */
269 lFactorA = lJulianDay;
272 lFactorB = lFactorA + 1524;
273 lFactorC = (long) (6680.0 + ((float) (lFactorB - 2439870) - 122.1) / 365.25);
274 lFactorD = (long) (365 * lFactorC + (0.25 * lFactorC));
275 lFactorE = (long) ((lFactorB - lFactorD) / 30.6001);
277 /* now, pull out the day number */
278 *pnDay = lFactorB - lFactorD - (long) (30.6001 * lFactorE);
280 /* ...and the month, adjusting it if necessary */
281 *pnMonth = lFactorE - 1;
282 if (*pnMonth > 12)
283 (*pnMonth) -= 12;
285 /* ...and similarly for the year */
286 *pnYear = lFactorC - 4715;
287 if (*pnMonth > 2)
288 (*pnYear)--;
290 // Negative year adjustments
291 if (*pnYear <= 0)
292 (*pnYear)--;
295 double
296 Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
298 double jy, jm;
300 if( year == 0 ) {
301 return -1.0;
304 if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
305 return -1.0;
308 if( month > 2 ) {
309 jy = year;
310 jm = month + 1;
311 } else {
312 jy = year - 1;
313 jm = month + 13;
316 sal_Int32 intgr = (sal_Int32)((sal_Int32)(365.25 * jy) + (sal_Int32)(30.6001 * jm) + day + 1720995 );
318 //check for switch to Gregorian calendar
319 double gregcal = 15 + 31 * ( 10 + 12 * 1582 );
321 if( day + 31 * (month + 12 * year) >= gregcal ) {
322 double ja;
323 ja = (sal_Int32)(0.01 * jy);
324 intgr += (sal_Int32)(2 - ja + (sal_Int32)(0.25 * ja));
327 return (double) intgr;
330 }}}}
332 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */