1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
21 #include "analysishelper.hxx"
23 #include <rtl/math.hxx>
25 using ::com::sun::star::lang::IllegalArgumentException
;
26 using ::com::sun::star::sheet::NoConvergenceException
;
31 // ============================================================================
33 const double f_PI
= 3.1415926535897932385;
34 const double f_2_PI
= 2.0 * f_PI
;
35 const double f_PI_DIV_2
= f_PI
/ 2.0;
36 const double f_PI_DIV_4
= f_PI
/ 4.0;
37 const double f_2_DIV_PI
= 2.0 / f_PI
;
39 const double THRESHOLD
= 30.0; // Threshold for usage of approximation formula.
40 const double MAXEPSILON
= 1e-10; // Maximum epsilon for end of iteration.
41 const sal_Int32 MAXITER
= 100; // Maximum number of iterations.
43 // ============================================================================
45 // ============================================================================
47 /* The BESSEL function, first kind, unmodified:
49 http://www.reference-global.com/isbn/978-3-11-020354-7
50 Numerical Mathematics 1 / Numerische Mathematik 1,
51 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
52 Deuflhard, Peter; Hohmann, Andreas
53 Berlin, New York (Walter de Gruyter) 2008
54 4. ueberarb. u. erw. Aufl. 2008
55 eBook ISBN: 978-3-11-020355-4
56 Chapter 6.3.2 , algorithm 6.24
57 The source is in German.
58 The BesselJ-function is a special case of the adjoint summation with
59 a_k = 2*(k-1)/x for k=1,...
60 b_k = -1, for all k, directly substituted
61 m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
62 alpha_k=1 for k=N and alpha_k=0 otherwise
65 // ----------------------------------------------------------------------------
67 double BesselJ( double x
, sal_Int32 N
) throw (IllegalArgumentException
, NoConvergenceException
)
71 throw IllegalArgumentException();
73 return (N
==0) ? 1.0 : 0.0;
75 /* The algorithm works only for x>0, therefore remember sign. BesselJ
76 with integer order N is an even function for even N (means J(-x)=J(x))
77 and an odd function for odd N (means J(-x)=-J(x)).*/
78 double fSign
= (N
% 2 == 1 && x
< 0) ? -1.0 : 1.0;
81 const double fMaxIteration
= 9000000.0; //experimental, for to return in < 3 seconds
82 double fEstimateIteration
= fX
* 1.5 + N
;
83 bool bAsymptoticPossible
= pow(fX
,0.4) > N
;
84 if (fEstimateIteration
> fMaxIteration
)
86 if (bAsymptoticPossible
)
87 return fSign
* sqrt(f_2_DIV_PI
/fX
)* cos(fX
-N
*f_PI_DIV_2
-f_PI_DIV_4
);
89 throw NoConvergenceException();
92 double epsilon
= 1.0e-15; // relative error
93 bool bHasfound
= false;
95 // e_{-1} = 0; e_0 = alpha_0 / b_2
96 double u
; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
98 // first used with k=1
99 double m_bar
; // m_bar_k = m_k * f_bar_{k-1}
100 double g_bar
; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
101 double g_bar_delta_u
; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
102 // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
103 // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
104 double g
= 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
105 double delta_u
= 0.0; // dummy initialize, first used with * 0
106 double f_bar
= -1.0; // f_bar_k = 1/f_k, but only used for k=0
111 u
= 1.0; // u_0 = alpha_0
112 // k = 1.0; at least one step is necessary
113 // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
114 g_bar_delta_u
= 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
115 g_bar
= - 2.0/fX
; // k = 1.0, g = 0.0
116 delta_u
= g_bar_delta_u
/ g_bar
;
117 u
= u
+ delta_u
; // u_k = u_{k-1} + delta_u_k
118 g
= -1.0 / g_bar
; // g_k=b_{k+2}/g_bar_k
119 f_bar
= f_bar
* g
; // f_bar_k = f_bar_{k-1}* g_k
121 // From now on all alpha_k = 0.0 and k > N+1
124 { // N >= 1 and alpha_k = 0.0 for k<N
125 u
=0.0; // u_0 = alpha_0
126 for (k
=1.0; k
<= N
-1; k
= k
+ 1.0)
128 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
129 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
; // alpha_k = 0.0
130 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
131 delta_u
= g_bar_delta_u
/ g_bar
;
136 // Step alpha_N = 1.0
137 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
138 g_bar_delta_u
= f_bar
- g
* delta_u
- m_bar
* u
; // alpha_k = 1.0
139 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
140 delta_u
= g_bar_delta_u
/ g_bar
;
146 // Loop until desired accuracy, always alpha_k = 0.0
149 m_bar
= 2.0 * fmod(k
-1.0, 2.0) * f_bar
;
150 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
;
151 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
152 delta_u
= g_bar_delta_u
/ g_bar
;
156 bHasfound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
159 while (!bHasfound
&& k
<= fMaxIteration
);
163 throw NoConvergenceException(); // unlikely to happen
166 // ============================================================================
168 // ============================================================================
170 /* The BESSEL function, first kind, modified:
173 I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
176 No asymptotic approximation used, see issue 43040.
179 // ----------------------------------------------------------------------------
181 double BesselI( double x
, sal_Int32 n
) throw( IllegalArgumentException
, NoConvergenceException
)
183 const sal_Int32 nMaxIteration
= 2000;
184 const double fXHalf
= x
/ 2.0;
186 throw IllegalArgumentException();
188 double fResult
= 0.0;
190 /* Start the iteration without TERM(n,0), which is set here.
192 TERM(n,0) = (x/2)^n / n!
196 // avoid overflow in Fak(n)
197 for( nK
= 1; nK
<= n
; ++nK
)
199 fTerm
= fTerm
/ static_cast< double >( nK
) * fXHalf
;
201 fResult
= fTerm
; // Start result with TERM(n,0).
205 const double fEpsilon
= 1.0E-15;
208 /* Calculation of TERM(n,k) from TERM(n,k-1):
211 TERM(n,k) = --------------
214 (x/2)^2 (x/2)^(n+2(k-1))
215 = --------------------------
216 k (k-1)! (n+k) (n+k-1)!
218 (x/2)^2 (x/2)^(n+2(k-1))
219 = --------- * ------------------
220 k(n+k) (k-1)! (n+k-1)!
223 = -------- TERM(n,k-1)
226 fTerm
= fTerm
* fXHalf
/ static_cast<double>(nK
) * fXHalf
/ static_cast<double>(nK
+n
);
230 while( (fabs( fTerm
) > fabs(fResult
) * fEpsilon
) && (nK
< nMaxIteration
) );
237 // ============================================================================
239 double Besselk0( double fNum
) throw( IllegalArgumentException
, NoConvergenceException
)
245 double fNum2
= fNum
* 0.5;
246 double y
= fNum2
* fNum2
;
248 fRet
= -log( fNum2
) * BesselI( fNum
, 0 ) +
249 ( -0.57721566 + y
* ( 0.42278420 + y
* ( 0.23069756 + y
* ( 0.3488590e-1 +
250 y
* ( 0.262698e-2 + y
* ( 0.10750e-3 + y
* 0.74e-5 ) ) ) ) ) );
254 double y
= 2.0 / fNum
;
256 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( -0.7832358e-1 +
257 y
* ( 0.2189568e-1 + y
* ( -0.1062446e-1 + y
* ( 0.587872e-2 +
258 y
* ( -0.251540e-2 + y
* 0.53208e-3 ) ) ) ) ) );
265 double Besselk1( double fNum
) throw( IllegalArgumentException
, NoConvergenceException
)
271 double fNum2
= fNum
* 0.5;
272 double y
= fNum2
* fNum2
;
274 fRet
= log( fNum2
) * BesselI( fNum
, 1 ) +
275 ( 1.0 + y
* ( 0.15443144 + y
* ( -0.67278579 + y
* ( -0.18156897 + y
* ( -0.1919402e-1 +
276 y
* ( -0.110404e-2 + y
* ( -0.4686e-4 ) ) ) ) ) ) )
281 double y
= 2.0 / fNum
;
283 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( 0.23498619 +
284 y
* ( -0.3655620e-1 + y
* ( 0.1504268e-1 + y
* ( -0.780353e-2 +
285 y
* ( 0.325614e-2 + y
* ( -0.68245e-3 ) ) ) ) ) ) );
292 double BesselK( double fNum
, sal_Int32 nOrder
) throw( IllegalArgumentException
, NoConvergenceException
)
296 case 0: return Besselk0( fNum
);
297 case 1: return Besselk1( fNum
);
302 double fTox
= 2.0 / fNum
;
303 double fBkm
= Besselk0( fNum
);
304 double fBk
= Besselk1( fNum
);
306 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
308 fBkp
= fBkm
+ double( n
) * fTox
* fBk
;
318 // ============================================================================
320 // ============================================================================
322 /* The BESSEL function, second kind, unmodified:
323 The algorithm for order 0 and for order 1 follows
324 http://www.reference-global.com/isbn/978-3-11-020354-7
325 Numerical Mathematics 1 / Numerische Mathematik 1,
326 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
327 Deuflhard, Peter; Hohmann, Andreas
328 Berlin, New York (Walter de Gruyter) 2008
329 4. ueberarb. u. erw. Aufl. 2008
330 eBook ISBN: 978-3-11-020355-4
331 Chapter 6.3.2 , algorithm 6.24
332 The source is in German.
333 See #i31656# for a commented version of the implementation, attachment #desc6
334 http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
337 double Bessely0( double fX
) throw( IllegalArgumentException
, NoConvergenceException
)
340 throw IllegalArgumentException();
341 const double fMaxIteration
= 9000000.0; // should not be reached
342 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
343 return sqrt(1/f_PI
/fX
)
344 *(rtl::math::sin(fX
)-rtl::math::cos(fX
));
345 const double epsilon
= 1.0e-15;
346 const double EulerGamma
= 0.57721566490153286060;
347 double alpha
= log(fX
/2.0)+EulerGamma
;
352 double g_bar_delta_u
= 0.0;
353 double g_bar
= -2.0 / fX
;
354 double delta_u
= g_bar_delta_u
/ g_bar
;
355 double g
= -1.0/g_bar
;
356 double f_bar
= -1 * g
;
358 double sign_alpha
= 1.0;
360 bool bHasFound
= false;
364 km1mod2
= fmod(k
-1.0,2.0);
365 m_bar
=(2.0*km1mod2
) * f_bar
;
370 alpha
= sign_alpha
* (4.0/k
);
371 sign_alpha
= -sign_alpha
;
373 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
374 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
375 delta_u
= g_bar_delta_u
/ g_bar
;
379 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
382 while (!bHasFound
&& k
<fMaxIteration
);
386 throw NoConvergenceException(); // not likely to happen
389 // See #i31656# for a commented version of this implementation, attachment #desc6
390 // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
391 double Bessely1( double fX
) throw( IllegalArgumentException
, NoConvergenceException
)
394 throw IllegalArgumentException();
395 const double fMaxIteration
= 9000000.0; // should not be reached
396 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
397 return - sqrt(1/f_PI
/fX
)
398 *(rtl::math::sin(fX
)+rtl::math::cos(fX
));
399 const double epsilon
= 1.0e-15;
400 const double EulerGamma
= 0.57721566490153286060;
401 double alpha
= 1.0/fX
;
406 alpha
= 1.0 - EulerGamma
- log(fX
/2.0);
407 double g_bar_delta_u
= -alpha
;
408 double g_bar
= -2.0 / fX
;
409 double delta_u
= g_bar_delta_u
/ g_bar
;
411 double g
= -1.0/g_bar
;
413 double sign_alpha
= -1.0;
414 double km1mod2
; //will be (k-1) mod 2
415 double q
; // will be (k-1) div 2
416 bool bHasFound
= false;
420 km1mod2
= fmod(k
-1.0,2.0);
421 m_bar
=(2.0*km1mod2
) * f_bar
;
423 if (km1mod2
== 0.0) // k is odd
425 alpha
= sign_alpha
* (1.0/q
+ 1.0/(q
+1.0));
426 sign_alpha
= -sign_alpha
;
430 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
431 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
432 delta_u
= g_bar_delta_u
/ g_bar
;
436 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
439 while (!bHasFound
&& k
<fMaxIteration
);
443 throw NoConvergenceException();
446 double BesselY( double fNum
, sal_Int32 nOrder
) throw( IllegalArgumentException
, NoConvergenceException
)
450 case 0: return Bessely0( fNum
);
451 case 1: return Bessely1( fNum
);
456 double fTox
= 2.0 / fNum
;
457 double fBym
= Bessely0( fNum
);
458 double fBy
= Bessely1( fNum
);
460 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
462 fByp
= double( n
) * fTox
* fBy
- fBym
;
472 // ============================================================================
474 } // namespace analysis
477 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */