update credits
[LibreOffice.git] / hwpfilter / source / cspline.cxx
blobdc4f87f90dcd8c7efefab4c005f064a8774a5b04
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 // Natural, Clamped, or Periodic Cubic Splines
22 // Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
23 // from a function, a_i = f(x_i). The function f is unknown. Boundary
24 // conditions are
25 // (1) Natural splines: f"(x_0) = f"(x_N) = 0
26 // (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
27 // (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
28 // required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
30 // Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
31 // spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
32 // x_i <= x < x_{i+1}.
34 // The natural and clamped algorithms were implemented from
36 // Numerical Analysis, 3rd edition
37 // Richard L. Burden and J. Douglas Faires
38 // Prindle, Weber & Schmidt
39 // Boston, 1985, pp. 122-124.
41 // The algorithm sets up a tridiagonal linear system of equations in the
42 // c_i values. This can be solved in O(N) time.
44 // The periodic spline algorithm was implemented from my own derivation. The
45 // linear system of equations is not tridiagonal. For now I use a standard
46 // linear solver that does not take advantage of the sparseness of the
47 // matrix. Therefore for very large N, you may have to worry about memory
48 // usage.
50 #include "solver.h"
51 //-----------------------------------------------------------------------------
52 void NaturalSpline (int N, double* x, double* a, double*& b, double*& c,
53 double*& d)
55 const double oneThird = 1.0/3.0;
57 int i;
58 double* h = new double[N];
59 double* hdiff = new double[N];
60 double* alpha = new double[N];
62 for (i = 0; i < N; i++){
63 h[i] = x[i+1]-x[i];
66 for (i = 1; i < N; i++)
67 hdiff[i] = x[i+1]-x[i-1];
69 for (i = 1; i < N; i++)
71 double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]);
72 double denom = h[i-1]*h[i];
73 alpha[i] = numer/denom;
76 double* ell = new double[N+1];
77 double* mu = new double[N];
78 double* z = new double[N+1];
79 double recip;
81 ell[0] = 1.0;
82 mu[0] = 0.0;
83 z[0] = 0.0;
85 for (i = 1; i < N; i++)
87 ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1];
88 recip = 1.0/ell[i];
89 mu[i] = recip*h[i];
90 z[i] = recip*(alpha[i]-h[i-1]*z[i-1]);
92 ell[N] = 1.0;
93 z[N] = 0.0;
95 b = new double[N];
96 c = new double[N+1];
97 d = new double[N];
99 c[N] = 0.0;
101 for (i = N-1; i >= 0; i--)
103 c[i] = z[i]-mu[i]*c[i+1];
104 recip = 1.0/h[i];
105 b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird;
106 d[i] = oneThird*recip*(c[i+1]-c[i]);
109 delete[] h;
110 delete[] hdiff;
111 delete[] alpha;
112 delete[] ell;
113 delete[] mu;
114 delete[] z;
117 void PeriodicSpline (int N, double* x, double* a, double*& b, double*& c,
118 double*& d)
120 double* h = new double[N];
121 int i;
122 for (i = 0; i < N; i++)
123 h[i] = x[i+1]-x[i];
125 mgcLinearSystemD sys;
126 double** mat = sys.NewMatrix(N+1); // guaranteed to be zeroed memory
127 c = sys.NewVector(N+1); // guaranteed to be zeroed memory
129 // c[0] - c[N] = 0
130 mat[0][0] = +1.0f;
131 mat[0][N] = -1.0f;
133 // h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
134 // 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
135 for (i = 1; i <= N-1; i++)
137 mat[i][i-1] = h[i-1];
138 mat[i][i ] = 2.0f*(h[i-1]+h[i]);
139 mat[i][i+1] = h[i];
140 c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]);
143 // "wrap around equation" for periodicity
144 // h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
145 // 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
146 mat[N][N-1] = h[N-1];
147 mat[N][0 ] = 2.0f*(h[N-1]+h[0]);
148 mat[N][1 ] = h[0];
149 c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]);
151 // solve for c[0] through c[N]
152 sys.Solve(N+1,mat,c);
154 const double oneThird = 1.0/3.0;
155 b = new double[N];
156 d = new double[N];
157 for (i = 0; i < N; i++)
159 b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i];
160 d[i] = oneThird*(c[i+1]-c[i])/h[i];
163 delete[] h;
164 sys.DeleteMatrix(N+1,mat);
167 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */