bump product version to 7.2.5.1
[LibreOffice.git] / sccomp / source / solver / DifferentialEvolution.hxx
blob97453437cdb3a3d23eb26261767a598671eb5d13
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 */
11 #pragma once
13 #include <vector>
14 #include <random>
15 #include <limits>
17 struct Individual
19 std::vector<double> mVariables;
22 template <typename DataProvider> class DifferentialEvolutionAlgorithm
24 static constexpr double mnDifferentialWeight = 0.5; // [0, 2]
25 static constexpr double mnCrossoverProbability = 0.9; // [0, 1]
27 static constexpr double constAcceptedPrecision = 0.000000001;
29 DataProvider& mrDataProvider;
31 size_t mnPopulationSize;
32 std::vector<Individual> maPopulation;
34 std::random_device maRandomDevice;
35 std::mt19937 maGenerator;
36 size_t mnDimensionality;
38 std::uniform_int_distribution<> maRandomPopulation;
39 std::uniform_int_distribution<> maRandomDimensionality;
40 std::uniform_real_distribution<> maRandom01;
42 Individual maBestCandidate;
43 double mfBestFitness;
44 int mnGeneration;
45 int mnLastChange;
47 public:
48 DifferentialEvolutionAlgorithm(DataProvider& rDataProvider, size_t nPopulationSize)
49 : mrDataProvider(rDataProvider)
50 , mnPopulationSize(nPopulationSize)
51 , maGenerator(maRandomDevice())
52 , mnDimensionality(mrDataProvider.getDimensionality())
53 , maRandomPopulation(0, mnPopulationSize - 1)
54 , maRandomDimensionality(0, mnDimensionality - 1)
55 , maRandom01(0.0, 1.0)
56 , mfBestFitness(std::numeric_limits<double>::lowest())
57 , mnGeneration(0)
58 , mnLastChange(0)
62 std::vector<double> const& getResult() { return maBestCandidate.mVariables; }
64 int getGeneration() { return mnGeneration; }
66 int getLastChange() { return mnLastChange; }
68 void initialize()
70 mnGeneration = 0;
71 mnLastChange = 0;
72 maPopulation.clear();
73 maBestCandidate.mVariables.clear();
75 // Initialize population with individuals that have been initialized with uniform random
76 // noise
77 // uniform noise means random value inside your search space
78 maPopulation.reserve(mnPopulationSize);
79 for (size_t i = 0; i < mnPopulationSize; ++i)
81 maPopulation.emplace_back();
82 Individual& rIndividual = maPopulation.back();
83 mrDataProvider.initializeVariables(rIndividual.mVariables, maGenerator);
87 // Calculate one generation
88 bool next()
90 bool bBestChanged = false;
92 for (size_t agentIndex = 0; agentIndex < mnPopulationSize; ++agentIndex)
94 // calculate new candidate solution
96 // pick random point from population
97 size_t x = agentIndex; // randomPopulation(generator);
98 size_t a, b, c;
100 // create a copy of chosen random agent in population
101 Individual& rOriginal = maPopulation[x];
102 Individual aCandidate(rOriginal);
104 // pick three different random points from population
107 a = maRandomPopulation(maGenerator);
108 } while (a == x);
112 b = maRandomPopulation(maGenerator);
113 } while (b == x || b == a);
117 c = maRandomPopulation(maGenerator);
119 } while (c == x || c == a || c == b);
121 size_t randomIndex = maRandomDimensionality(maGenerator);
123 for (size_t index = 0; index < mnDimensionality; ++index)
125 double randomCrossoverProbability = maRandom01(maGenerator);
126 if (index == randomIndex || randomCrossoverProbability < mnCrossoverProbability)
128 double fVarA = maPopulation[a].mVariables[index];
129 double fVarB = maPopulation[b].mVariables[index];
130 double fVarC = maPopulation[c].mVariables[index];
132 double fNewValue = fVarA + mnDifferentialWeight * (fVarB - fVarC);
133 fNewValue = mrDataProvider.boundVariable(index, fNewValue);
134 aCandidate.mVariables[index] = fNewValue;
138 double fCandidateFitness = mrDataProvider.calculateFitness(aCandidate.mVariables);
140 // see if is better than original, if so replace
141 if (fCandidateFitness > mrDataProvider.calculateFitness(rOriginal.mVariables))
143 maPopulation[x] = aCandidate;
145 if (fCandidateFitness > mfBestFitness)
147 if (std::abs(fCandidateFitness - mfBestFitness) > constAcceptedPrecision)
149 bBestChanged = true;
150 mnLastChange = mnGeneration;
152 mfBestFitness = fCandidateFitness;
153 maBestCandidate = maPopulation[x];
157 mnGeneration++;
158 return bBestChanged;
162 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */