1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
21 #include "analysishelper.hxx"
23 #include <rtl/math.hxx>
25 using ::com::sun::star::lang::IllegalArgumentException
;
26 using ::com::sun::star::sheet::NoConvergenceException
;
31 const double f_PI
= 3.1415926535897932385;
32 const double f_PI_DIV_2
= f_PI
/ 2.0;
33 const double f_PI_DIV_4
= f_PI
/ 4.0;
34 const double f_2_DIV_PI
= 2.0 / f_PI
;
40 /* The BESSEL function, first kind, unmodified:
42 http://www.reference-global.com/isbn/978-3-11-020354-7
43 Numerical Mathematics 1 / Numerische Mathematik 1,
44 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
45 Deuflhard, Peter; Hohmann, Andreas
46 Berlin, New York (Walter de Gruyter) 2008
47 4. ueberarb. u. erw. Aufl. 2008
48 eBook ISBN: 978-3-11-020355-4
49 Chapter 6.3.2 , algorithm 6.24
50 The source is in German.
51 The BesselJ-function is a special case of the adjoint summation with
52 a_k = 2*(k-1)/x for k=1,...
53 b_k = -1, for all k, directly substituted
54 m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
55 alpha_k=1 for k=N and alpha_k=0 otherwise
58 double BesselJ( double x
, sal_Int32 N
) throw (IllegalArgumentException
, NoConvergenceException
)
62 throw IllegalArgumentException();
64 return (N
==0) ? 1.0 : 0.0;
66 /* The algorithm works only for x>0, therefore remember sign. BesselJ
67 with integer order N is an even function for even N (means J(-x)=J(x))
68 and an odd function for odd N (means J(-x)=-J(x)).*/
69 double fSign
= (N
% 2 == 1 && x
< 0) ? -1.0 : 1.0;
72 const double fMaxIteration
= 9000000.0; //experimental, for to return in < 3 seconds
73 double fEstimateIteration
= fX
* 1.5 + N
;
74 bool bAsymptoticPossible
= pow(fX
,0.4) > N
;
75 if (fEstimateIteration
> fMaxIteration
)
77 if (bAsymptoticPossible
)
78 return fSign
* sqrt(f_2_DIV_PI
/fX
)* cos(fX
-N
*f_PI_DIV_2
-f_PI_DIV_4
);
80 throw NoConvergenceException();
83 double epsilon
= 1.0e-15; // relative error
84 bool bHasfound
= false;
86 // e_{-1} = 0; e_0 = alpha_0 / b_2
87 double u
; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
89 // first used with k=1
90 double m_bar
; // m_bar_k = m_k * f_bar_{k-1}
91 double g_bar
; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
92 double g_bar_delta_u
; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
93 // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
94 // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
95 double g
= 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
96 double delta_u
= 0.0; // dummy initialize, first used with * 0
97 double f_bar
= -1.0; // f_bar_k = 1/f_k, but only used for k=0
102 u
= 1.0; // u_0 = alpha_0
103 // k = 1.0; at least one step is necessary
104 // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
105 g_bar_delta_u
= 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
106 g_bar
= - 2.0/fX
; // k = 1.0, g = 0.0
107 delta_u
= g_bar_delta_u
/ g_bar
;
108 u
= u
+ delta_u
; // u_k = u_{k-1} + delta_u_k
109 g
= -1.0 / g_bar
; // g_k=b_{k+2}/g_bar_k
110 f_bar
= f_bar
* g
; // f_bar_k = f_bar_{k-1}* g_k
112 // From now on all alpha_k = 0.0 and k > N+1
115 { // N >= 1 and alpha_k = 0.0 for k<N
116 u
=0.0; // u_0 = alpha_0
117 for (k
=1.0; k
<= N
-1; k
= k
+ 1.0)
119 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
120 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
; // alpha_k = 0.0
121 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
122 delta_u
= g_bar_delta_u
/ g_bar
;
127 // Step alpha_N = 1.0
128 m_bar
=2.0 * fmod(k
-1.0, 2.0) * f_bar
;
129 g_bar_delta_u
= f_bar
- g
* delta_u
- m_bar
* u
; // alpha_k = 1.0
130 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
131 delta_u
= g_bar_delta_u
/ g_bar
;
137 // Loop until desired accuracy, always alpha_k = 0.0
140 m_bar
= 2.0 * fmod(k
-1.0, 2.0) * f_bar
;
141 g_bar_delta_u
= - g
* delta_u
- m_bar
* u
;
142 g_bar
= m_bar
- 2.0*k
/fX
+ g
;
143 delta_u
= g_bar_delta_u
/ g_bar
;
147 bHasfound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
150 while (!bHasfound
&& k
<= fMaxIteration
);
154 throw NoConvergenceException(); // unlikely to happen
161 /* The BESSEL function, first kind, modified:
164 I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
167 No asymptotic approximation used, see issue 43040.
170 double BesselI( double x
, sal_Int32 n
) throw( IllegalArgumentException
, NoConvergenceException
)
172 const sal_Int32 nMaxIteration
= 2000;
173 const double fXHalf
= x
/ 2.0;
175 throw IllegalArgumentException();
177 double fResult
= 0.0;
179 /* Start the iteration without TERM(n,0), which is set here.
181 TERM(n,0) = (x/2)^n / n!
185 // avoid overflow in Fak(n)
186 for( nK
= 1; nK
<= n
; ++nK
)
188 fTerm
= fTerm
/ static_cast< double >( nK
) * fXHalf
;
190 fResult
= fTerm
; // Start result with TERM(n,0).
194 const double fEpsilon
= 1.0E-15;
197 /* Calculation of TERM(n,k) from TERM(n,k-1):
200 TERM(n,k) = --------------
203 (x/2)^2 (x/2)^(n+2(k-1))
204 = --------------------------
205 k (k-1)! (n+k) (n+k-1)!
207 (x/2)^2 (x/2)^(n+2(k-1))
208 = --------- * ------------------
209 k(n+k) (k-1)! (n+k-1)!
212 = -------- TERM(n,k-1)
215 fTerm
= fTerm
* fXHalf
/ static_cast<double>(nK
) * fXHalf
/ static_cast<double>(nK
+n
);
219 while( (fabs( fTerm
) > fabs(fResult
) * fEpsilon
) && (nK
< nMaxIteration
) );
226 double Besselk0( double fNum
) throw( IllegalArgumentException
, NoConvergenceException
)
232 double fNum2
= fNum
* 0.5;
233 double y
= fNum2
* fNum2
;
235 fRet
= -log( fNum2
) * BesselI( fNum
, 0 ) +
236 ( -0.57721566 + y
* ( 0.42278420 + y
* ( 0.23069756 + y
* ( 0.3488590e-1 +
237 y
* ( 0.262698e-2 + y
* ( 0.10750e-3 + y
* 0.74e-5 ) ) ) ) ) );
241 double y
= 2.0 / fNum
;
243 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( -0.7832358e-1 +
244 y
* ( 0.2189568e-1 + y
* ( -0.1062446e-1 + y
* ( 0.587872e-2 +
245 y
* ( -0.251540e-2 + y
* 0.53208e-3 ) ) ) ) ) );
252 double Besselk1( double fNum
) throw( IllegalArgumentException
, NoConvergenceException
)
258 double fNum2
= fNum
* 0.5;
259 double y
= fNum2
* fNum2
;
261 fRet
= log( fNum2
) * BesselI( fNum
, 1 ) +
262 ( 1.0 + y
* ( 0.15443144 + y
* ( -0.67278579 + y
* ( -0.18156897 + y
* ( -0.1919402e-1 +
263 y
* ( -0.110404e-2 + y
* ( -0.4686e-4 ) ) ) ) ) ) )
268 double y
= 2.0 / fNum
;
270 fRet
= exp( -fNum
) / sqrt( fNum
) * ( 1.25331414 + y
* ( 0.23498619 +
271 y
* ( -0.3655620e-1 + y
* ( 0.1504268e-1 + y
* ( -0.780353e-2 +
272 y
* ( 0.325614e-2 + y
* ( -0.68245e-3 ) ) ) ) ) ) );
279 double BesselK( double fNum
, sal_Int32 nOrder
) throw( IllegalArgumentException
, NoConvergenceException
)
283 case 0: return Besselk0( fNum
);
284 case 1: return Besselk1( fNum
);
287 double fTox
= 2.0 / fNum
;
288 double fBkm
= Besselk0( fNum
);
289 double fBk
= Besselk1( fNum
);
291 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
293 const double fBkp
= fBkm
+ double( n
) * fTox
* fBk
;
307 /* The BESSEL function, second kind, unmodified:
308 The algorithm for order 0 and for order 1 follows
309 http://www.reference-global.com/isbn/978-3-11-020354-7
310 Numerical Mathematics 1 / Numerische Mathematik 1,
311 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
312 Deuflhard, Peter; Hohmann, Andreas
313 Berlin, New York (Walter de Gruyter) 2008
314 4. ueberarb. u. erw. Aufl. 2008
315 eBook ISBN: 978-3-11-020355-4
316 Chapter 6.3.2 , algorithm 6.24
317 The source is in German.
318 See #i31656# for a commented version of the implementation, attachment #desc6
319 http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
322 double Bessely0( double fX
) throw( IllegalArgumentException
, NoConvergenceException
)
325 throw IllegalArgumentException();
326 const double fMaxIteration
= 9000000.0; // should not be reached
327 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
328 return sqrt(1/f_PI
/fX
)
329 *(rtl::math::sin(fX
)-rtl::math::cos(fX
));
330 const double epsilon
= 1.0e-15;
331 const double EulerGamma
= 0.57721566490153286060;
332 double alpha
= log(fX
/2.0)+EulerGamma
;
337 double g_bar_delta_u
= 0.0;
338 double g_bar
= -2.0 / fX
;
339 double delta_u
= g_bar_delta_u
/ g_bar
;
340 double g
= -1.0/g_bar
;
341 double f_bar
= -1 * g
;
343 double sign_alpha
= 1.0;
345 bool bHasFound
= false;
349 km1mod2
= fmod(k
-1.0,2.0);
350 m_bar
=(2.0*km1mod2
) * f_bar
;
355 alpha
= sign_alpha
* (4.0/k
);
356 sign_alpha
= -sign_alpha
;
358 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
359 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
360 delta_u
= g_bar_delta_u
/ g_bar
;
364 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
367 while (!bHasFound
&& k
<fMaxIteration
);
371 throw NoConvergenceException(); // not likely to happen
374 // See #i31656# for a commented version of this implementation, attachment #desc6
375 // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
376 double Bessely1( double fX
) throw( IllegalArgumentException
, NoConvergenceException
)
379 throw IllegalArgumentException();
380 const double fMaxIteration
= 9000000.0; // should not be reached
381 if (fX
> 5.0e+6) // iteration is not considerable better then approximation
382 return - sqrt(1/f_PI
/fX
)
383 *(rtl::math::sin(fX
)+rtl::math::cos(fX
));
384 const double epsilon
= 1.0e-15;
385 const double EulerGamma
= 0.57721566490153286060;
386 double alpha
= 1.0/fX
;
391 alpha
= 1.0 - EulerGamma
- log(fX
/2.0);
392 double g_bar_delta_u
= -alpha
;
393 double g_bar
= -2.0 / fX
;
394 double delta_u
= g_bar_delta_u
/ g_bar
;
396 double g
= -1.0/g_bar
;
398 double sign_alpha
= -1.0;
399 double km1mod2
; //will be (k-1) mod 2
400 double q
; // will be (k-1) div 2
401 bool bHasFound
= false;
405 km1mod2
= fmod(k
-1.0,2.0);
406 m_bar
=(2.0*km1mod2
) * f_bar
;
408 if (km1mod2
== 0.0) // k is odd
410 alpha
= sign_alpha
* (1.0/q
+ 1.0/(q
+1.0));
411 sign_alpha
= -sign_alpha
;
415 g_bar_delta_u
= f_bar
* alpha
- g
* delta_u
- m_bar
* u
;
416 g_bar
= m_bar
- (2.0*k
)/fX
+ g
;
417 delta_u
= g_bar_delta_u
/ g_bar
;
421 bHasFound
= (fabs(delta_u
)<=fabs(u
)*epsilon
);
424 while (!bHasFound
&& k
<fMaxIteration
);
428 throw NoConvergenceException();
431 double BesselY( double fNum
, sal_Int32 nOrder
) throw( IllegalArgumentException
, NoConvergenceException
)
435 case 0: return Bessely0( fNum
);
436 case 1: return Bessely1( fNum
);
439 double fTox
= 2.0 / fNum
;
440 double fBym
= Bessely0( fNum
);
441 double fBy
= Bessely1( fNum
);
443 for( sal_Int32 n
= 1 ; n
< nOrder
; n
++ )
445 const double fByp
= double( n
) * fTox
* fBy
- fBym
;
455 } // namespace analysis
458 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */