Bump version to 5.0-14
[LibreOffice.git] / scaddins / source / analysis / bessel.cxx
blob9161655f4c1a2bd47560a93662fb264b88031926
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include "bessel.hxx"
21 #include "analysishelper.hxx"
23 #include <rtl/math.hxx>
25 using ::com::sun::star::lang::IllegalArgumentException;
26 using ::com::sun::star::sheet::NoConvergenceException;
28 namespace sca {
29 namespace analysis {
31 const double f_PI = 3.1415926535897932385;
32 const double f_PI_DIV_2 = f_PI / 2.0;
33 const double f_PI_DIV_4 = f_PI / 4.0;
34 const double f_2_DIV_PI = 2.0 / f_PI;
37 // BESSEL J
40 /* The BESSEL function, first kind, unmodified:
41 The algorithm follows
42 http://www.reference-global.com/isbn/978-3-11-020354-7
43 Numerical Mathematics 1 / Numerische Mathematik 1,
44 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
45 Deuflhard, Peter; Hohmann, Andreas
46 Berlin, New York (Walter de Gruyter) 2008
47 4. ueberarb. u. erw. Aufl. 2008
48 eBook ISBN: 978-3-11-020355-4
49 Chapter 6.3.2 , algorithm 6.24
50 The source is in German.
51 The BesselJ-function is a special case of the adjoint summation with
52 a_k = 2*(k-1)/x for k=1,...
53 b_k = -1, for all k, directly substituted
54 m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
55 alpha_k=1 for k=N and alpha_k=0 otherwise
58 double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException)
61 if( N < 0 )
62 throw IllegalArgumentException();
63 if (x==0.0)
64 return (N==0) ? 1.0 : 0.0;
66 /* The algorithm works only for x>0, therefore remember sign. BesselJ
67 with integer order N is an even function for even N (means J(-x)=J(x))
68 and an odd function for odd N (means J(-x)=-J(x)).*/
69 double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0;
70 double fX = fabs(x);
72 const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds
73 double fEstimateIteration = fX * 1.5 + N;
74 bool bAsymptoticPossible = pow(fX,0.4) > N;
75 if (fEstimateIteration > fMaxIteration)
77 if (bAsymptoticPossible)
78 return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4);
79 else
80 throw NoConvergenceException();
83 double epsilon = 1.0e-15; // relative error
84 bool bHasfound = false;
85 double k= 0.0;
86 // e_{-1} = 0; e_0 = alpha_0 / b_2
87 double u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
89 // first used with k=1
90 double m_bar; // m_bar_k = m_k * f_bar_{k-1}
91 double g_bar; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
92 double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
93 // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
94 // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
95 double g = 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
96 double delta_u = 0.0; // dummy initialize, first used with * 0
97 double f_bar = -1.0; // f_bar_k = 1/f_k, but only used for k=0
99 if (N==0)
101 //k=0; alpha_0 = 1.0
102 u = 1.0; // u_0 = alpha_0
103 // k = 1.0; at least one step is necessary
104 // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
105 g_bar_delta_u = 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
106 g_bar = - 2.0/fX; // k = 1.0, g = 0.0
107 delta_u = g_bar_delta_u / g_bar;
108 u = u + delta_u ; // u_k = u_{k-1} + delta_u_k
109 g = -1.0 / g_bar; // g_k=b_{k+2}/g_bar_k
110 f_bar = f_bar * g; // f_bar_k = f_bar_{k-1}* g_k
111 k = 2.0;
112 // From now on all alpha_k = 0.0 and k > N+1
114 else
115 { // N >= 1 and alpha_k = 0.0 for k<N
116 u=0.0; // u_0 = alpha_0
117 for (k =1.0; k<= N-1; k = k + 1.0)
119 m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
120 g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0
121 g_bar = m_bar - 2.0*k/fX + g;
122 delta_u = g_bar_delta_u / g_bar;
123 u = u + delta_u;
124 g = -1.0/g_bar;
125 f_bar=f_bar * g;
127 // Step alpha_N = 1.0
128 m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
129 g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0
130 g_bar = m_bar - 2.0*k/fX + g;
131 delta_u = g_bar_delta_u / g_bar;
132 u = u + delta_u;
133 g = -1.0/g_bar;
134 f_bar = f_bar * g;
135 k = k + 1.0;
137 // Loop until desired accuracy, always alpha_k = 0.0
140 m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar;
141 g_bar_delta_u = - g * delta_u - m_bar * u;
142 g_bar = m_bar - 2.0*k/fX + g;
143 delta_u = g_bar_delta_u / g_bar;
144 u = u + delta_u;
145 g = -1.0/g_bar;
146 f_bar = f_bar * g;
147 bHasfound = (fabs(delta_u)<=fabs(u)*epsilon);
148 k = k + 1.0;
150 while (!bHasfound && k <= fMaxIteration);
151 if (bHasfound)
152 return u * fSign;
153 else
154 throw NoConvergenceException(); // unlikely to happen
158 // BESSEL I
161 /* The BESSEL function, first kind, modified:
163 inf (x/2)^(n+2k)
164 I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
165 k=0 k! (n+k)!
167 No asymptotic approximation used, see issue 43040.
170 double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
172 const sal_Int32 nMaxIteration = 2000;
173 const double fXHalf = x / 2.0;
174 if( n < 0 )
175 throw IllegalArgumentException();
177 double fResult = 0.0;
179 /* Start the iteration without TERM(n,0), which is set here.
181 TERM(n,0) = (x/2)^n / n!
183 sal_Int32 nK = 0;
184 double fTerm = 1.0;
185 // avoid overflow in Fak(n)
186 for( nK = 1; nK <= n; ++nK )
188 fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
190 fResult = fTerm; // Start result with TERM(n,0).
191 if( fTerm != 0.0 )
193 nK = 1;
194 const double fEpsilon = 1.0E-15;
197 /* Calculation of TERM(n,k) from TERM(n,k-1):
199 (x/2)^(n+2k)
200 TERM(n,k) = --------------
201 k! (n+k)!
203 (x/2)^2 (x/2)^(n+2(k-1))
204 = --------------------------
205 k (k-1)! (n+k) (n+k-1)!
207 (x/2)^2 (x/2)^(n+2(k-1))
208 = --------- * ------------------
209 k(n+k) (k-1)! (n+k-1)!
211 x^2/4
212 = -------- TERM(n,k-1)
213 k(n+k)
215 fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
216 fResult += fTerm;
217 nK++;
219 while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
222 return fResult;
226 double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
228 double fRet;
230 if( fNum <= 2.0 )
232 double fNum2 = fNum * 0.5;
233 double y = fNum2 * fNum2;
235 fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
236 ( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
237 y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
239 else
241 double y = 2.0 / fNum;
243 fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
244 y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
245 y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
248 return fRet;
252 double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
254 double fRet;
256 if( fNum <= 2.0 )
258 double fNum2 = fNum * 0.5;
259 double y = fNum2 * fNum2;
261 fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
262 ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
263 y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
264 / fNum;
266 else
268 double y = 2.0 / fNum;
270 fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
271 y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
272 y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
275 return fRet;
279 double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
281 switch( nOrder )
283 case 0: return Besselk0( fNum );
284 case 1: return Besselk1( fNum );
285 default:
287 double fTox = 2.0 / fNum;
288 double fBkm = Besselk0( fNum );
289 double fBk = Besselk1( fNum );
291 for( sal_Int32 n = 1 ; n < nOrder ; n++ )
293 const double fBkp = fBkm + double( n ) * fTox * fBk;
294 fBkm = fBk;
295 fBk = fBkp;
298 return fBk;
304 // BESSEL Y
307 /* The BESSEL function, second kind, unmodified:
308 The algorithm for order 0 and for order 1 follows
309 http://www.reference-global.com/isbn/978-3-11-020354-7
310 Numerical Mathematics 1 / Numerische Mathematik 1,
311 An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
312 Deuflhard, Peter; Hohmann, Andreas
313 Berlin, New York (Walter de Gruyter) 2008
314 4. ueberarb. u. erw. Aufl. 2008
315 eBook ISBN: 978-3-11-020355-4
316 Chapter 6.3.2 , algorithm 6.24
317 The source is in German.
318 See #i31656# for a commented version of the implementation, attachment #desc6
319 http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
322 double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException )
324 if (fX <= 0)
325 throw IllegalArgumentException();
326 const double fMaxIteration = 9000000.0; // should not be reached
327 if (fX > 5.0e+6) // iteration is not considerable better then approximation
328 return sqrt(1/f_PI/fX)
329 *(rtl::math::sin(fX)-rtl::math::cos(fX));
330 const double epsilon = 1.0e-15;
331 const double EulerGamma = 0.57721566490153286060;
332 double alpha = log(fX/2.0)+EulerGamma;
333 double u = alpha;
335 double k = 1.0;
336 double m_bar = 0.0;
337 double g_bar_delta_u = 0.0;
338 double g_bar = -2.0 / fX;
339 double delta_u = g_bar_delta_u / g_bar;
340 double g = -1.0/g_bar;
341 double f_bar = -1 * g;
343 double sign_alpha = 1.0;
344 double km1mod2;
345 bool bHasFound = false;
346 k = k + 1;
349 km1mod2 = fmod(k-1.0,2.0);
350 m_bar=(2.0*km1mod2) * f_bar;
351 if (km1mod2 == 0.0)
352 alpha = 0.0;
353 else
355 alpha = sign_alpha * (4.0/k);
356 sign_alpha = -sign_alpha;
358 g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
359 g_bar = m_bar - (2.0*k)/fX + g;
360 delta_u = g_bar_delta_u / g_bar;
361 u = u+delta_u;
362 g = -1.0 / g_bar;
363 f_bar = f_bar*g;
364 bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
365 k=k+1;
367 while (!bHasFound && k<fMaxIteration);
368 if (bHasFound)
369 return u*f_2_DIV_PI;
370 else
371 throw NoConvergenceException(); // not likely to happen
374 // See #i31656# for a commented version of this implementation, attachment #desc6
375 // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
376 double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException )
378 if (fX <= 0)
379 throw IllegalArgumentException();
380 const double fMaxIteration = 9000000.0; // should not be reached
381 if (fX > 5.0e+6) // iteration is not considerable better then approximation
382 return - sqrt(1/f_PI/fX)
383 *(rtl::math::sin(fX)+rtl::math::cos(fX));
384 const double epsilon = 1.0e-15;
385 const double EulerGamma = 0.57721566490153286060;
386 double alpha = 1.0/fX;
387 double f_bar = -1.0;
388 double u = alpha;
389 double k = 1.0;
390 double m_bar = 0.0;
391 alpha = 1.0 - EulerGamma - log(fX/2.0);
392 double g_bar_delta_u = -alpha;
393 double g_bar = -2.0 / fX;
394 double delta_u = g_bar_delta_u / g_bar;
395 u = u + delta_u;
396 double g = -1.0/g_bar;
397 f_bar = f_bar * g;
398 double sign_alpha = -1.0;
399 double km1mod2; //will be (k-1) mod 2
400 double q; // will be (k-1) div 2
401 bool bHasFound = false;
402 k = k + 1.0;
405 km1mod2 = fmod(k-1.0,2.0);
406 m_bar=(2.0*km1mod2) * f_bar;
407 q = (k-1.0)/2.0;
408 if (km1mod2 == 0.0) // k is odd
410 alpha = sign_alpha * (1.0/q + 1.0/(q+1.0));
411 sign_alpha = -sign_alpha;
413 else
414 alpha = 0.0;
415 g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
416 g_bar = m_bar - (2.0*k)/fX + g;
417 delta_u = g_bar_delta_u / g_bar;
418 u = u+delta_u;
419 g = -1.0 / g_bar;
420 f_bar = f_bar*g;
421 bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
422 k=k+1;
424 while (!bHasFound && k<fMaxIteration);
425 if (bHasFound)
426 return -u*2.0/f_PI;
427 else
428 throw NoConvergenceException();
431 double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
433 switch( nOrder )
435 case 0: return Bessely0( fNum );
436 case 1: return Bessely1( fNum );
437 default:
439 double fTox = 2.0 / fNum;
440 double fBym = Bessely0( fNum );
441 double fBy = Bessely1( fNum );
443 for( sal_Int32 n = 1 ; n < nOrder ; n++ )
445 const double fByp = double( n ) * fTox * fBy - fBym;
446 fBym = fBy;
447 fBy = fByp;
450 return fBy;
455 } // namespace analysis
456 } // namespace sca
458 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */