Avoid potential negative array index access to cached text.
[LibreOffice.git] / sal / rtl / math.cxx
blob68068eaf979fa06ab87e7bc6d2c0c6d0fe9b8660
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include <rtl/math.h>
22 #include <osl/diagnose.h>
23 #include <rtl/character.hxx>
24 #include <rtl/math.hxx>
26 #include <algorithm>
27 #include <cassert>
28 #include <cfenv>
29 #include <cmath>
30 #include <float.h>
31 #include <limits>
32 #include <memory>
33 #include <stdlib.h>
35 #include "strtmpl.hxx"
37 #include <dtoa.h>
39 constexpr int minExp = -323, maxExp = 308;
40 constexpr double n10s[] = {
41 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
42 1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
43 1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
44 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
45 1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
46 1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
47 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
48 1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
49 1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
50 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
51 1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
52 1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
53 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
54 1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
55 1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
56 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
57 1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
58 1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
59 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
60 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
61 1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
62 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
63 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
64 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
65 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
66 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
67 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0,
68 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
69 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24,
70 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36,
71 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48,
72 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60,
73 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72,
74 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84,
75 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96,
76 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108,
77 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120,
78 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132,
79 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144,
80 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156,
81 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168,
82 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180,
83 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192,
84 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204,
85 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216,
86 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228,
87 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240,
88 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252,
89 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264,
90 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276,
91 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288,
92 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300,
93 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308,
95 static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1);
97 // return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
98 static double getN10Exp(int nExp)
100 if (nExp < minExp || nExp > maxExp)
101 return pow(10.0, static_cast<double>(nExp)); // will return 0 or INF with IEEE 754
102 return n10s[nExp - minExp];
105 namespace
107 /** If value (passed as absolute value) is an integer representable as double,
108 which we handle explicitly at some places.
110 bool isRepresentableInteger(double fAbsValue)
112 static_assert(std::numeric_limits<double>::is_iec559
113 && std::numeric_limits<double>::digits == 53);
114 assert(fAbsValue >= 0.0);
115 if (fAbsValue >= 0x1p53)
116 return false;
117 sal_Int64 nInt = static_cast<sal_Int64>(fAbsValue);
118 return nInt == fAbsValue;
121 // Returns 1-based index of least significant bit in a number, or zero if number is zero
122 int findFirstSetBit(unsigned n)
124 #if defined _WIN32
125 unsigned long pos;
126 unsigned char bNonZero = _BitScanForward(&pos, n);
127 return (bNonZero == 0) ? 0 : pos + 1;
128 #else
129 return __builtin_ffs(n);
130 #endif
133 /** Returns number of binary bits for fractional part of the number
134 Expects a proper non-negative double value, not +-INF, not NAN
136 int getBitsInFracPart(double fAbsValue)
138 assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
139 if (fAbsValue == 0.0)
140 return 0;
141 auto pValParts = reinterpret_cast<const sal_math_Double*>(&fAbsValue);
142 int nExponent = pValParts->inf_parts.exponent - 1023;
143 if (nExponent >= 52)
144 return 0; // All bits in fraction are in integer part of the number
145 int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
146 if (nLeastSignificant == 0)
148 nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
149 if (nLeastSignificant == 0)
150 nLeastSignificant = 53; // the implied leading 1 is the least significant
151 else
152 nLeastSignificant += 32;
154 int nFracSignificant = 53 - nLeastSignificant;
155 int nBitsInFracPart = nFracSignificant - nExponent;
157 return std::max(nBitsInFracPart, 0);
161 void SAL_CALL rtl_math_doubleToString(rtl_String** pResult, sal_Int32* pResultCapacity,
162 sal_Int32 nResultOffset, double fValue,
163 rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces,
164 char cDecSeparator, sal_Int32 const* pGroups,
165 char cGroupSeparator, sal_Bool bEraseTrailingDecZeros)
166 SAL_THROW_EXTERN_C()
168 rtl::str::doubleToString(pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
169 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
172 void SAL_CALL rtl_math_doubleToUString(rtl_uString** pResult, sal_Int32* pResultCapacity,
173 sal_Int32 nResultOffset, double fValue,
174 rtl_math_StringFormat eFormat, sal_Int32 nDecPlaces,
175 sal_Unicode cDecSeparator, sal_Int32 const* pGroups,
176 sal_Unicode cGroupSeparator, sal_Bool bEraseTrailingDecZeros)
177 SAL_THROW_EXTERN_C()
179 rtl::str::doubleToString(pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
180 cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
183 namespace
185 template <typename CharT>
186 double stringToDouble(CharT const* pBegin, CharT const* pEnd, CharT cDecSeparator,
187 CharT cGroupSeparator, rtl_math_ConversionStatus* pStatus,
188 CharT const** pParsedEnd)
190 double fVal = 0.0;
191 rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
193 CharT const* p0 = pBegin;
194 while (p0 != pEnd && (*p0 == ' ' || *p0 == '\t'))
196 ++p0;
199 bool bSign;
200 bool explicitSign = false;
201 if (p0 != pEnd && *p0 == '-')
203 bSign = true;
204 explicitSign = true;
205 ++p0;
207 else
209 bSign = false;
210 if (p0 != pEnd && *p0 == '+')
212 explicitSign = true;
213 ++p0;
217 CharT const* p = p0;
218 bool bDone = false;
220 // #i112652# XMLSchema-2
221 if ((pEnd - p) >= 3)
223 if (!explicitSign && ('N' == p[0]) && ('a' == p[1]) && ('N' == p[2]))
225 p += 3;
226 fVal = std::numeric_limits<double>::quiet_NaN();
227 bDone = true;
229 else if (('I' == p[0]) && ('N' == p[1]) && ('F' == p[2]))
231 p += 3;
232 fVal = HUGE_VAL;
233 eStatus = rtl_math_ConversionStatus_OutOfRange;
234 bDone = true;
238 if (!bDone) // do not recognize e.g. NaN1.23
240 std::unique_ptr<char[]> bufInHeap;
241 std::unique_ptr<const CharT* []> bufInHeapMap;
242 constexpr int bufOnStackSize = 256;
243 char bufOnStack[bufOnStackSize];
244 const CharT* bufOnStackMap[bufOnStackSize];
245 char* buf = bufOnStack;
246 const CharT** bufmap = bufOnStackMap;
247 int bufpos = 0;
248 const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
249 if (bufsize > bufOnStackSize)
251 bufInHeap = std::make_unique<char[]>(bufsize);
252 bufInHeapMap = std::make_unique<const CharT* []>(bufsize);
253 buf = bufInHeap.get();
254 bufmap = bufInHeapMap.get();
257 if (bSign)
259 buf[0] = '-';
260 bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
261 bufpos = 1;
263 // Put first zero to buffer for strings like "-0"
264 if (p != pEnd && *p == '0')
266 buf[bufpos] = '0';
267 bufmap[bufpos] = p;
268 ++bufpos;
269 ++p;
271 // Leading zeros and group separators between digits may be safely
272 // ignored. p0 < p implies that there was a leading 0 already,
273 // consecutive group separators may not happen as *(p+1) is checked for
274 // digit.
275 while (p != pEnd
276 && (*p == '0'
277 || (*p == cGroupSeparator && p0 < p && p + 1 < pEnd
278 && rtl::isAsciiDigit(*(p + 1)))))
280 ++p;
283 // integer part of mantissa
284 for (; p != pEnd; ++p)
286 CharT c = *p;
287 if (rtl::isAsciiDigit(c))
289 buf[bufpos] = static_cast<char>(c);
290 bufmap[bufpos] = p;
291 ++bufpos;
293 else if (c != cGroupSeparator)
295 break;
297 else if (p == p0 || (p + 1 == pEnd) || !rtl::isAsciiDigit(*(p + 1)))
299 // A leading or trailing (not followed by a digit) group
300 // separator character is not a group separator.
301 break;
305 // fraction part of mantissa
306 if (p != pEnd && *p == cDecSeparator)
308 buf[bufpos] = '.';
309 bufmap[bufpos] = p;
310 ++bufpos;
311 ++p;
313 for (; p != pEnd; ++p)
315 CharT c = *p;
316 if (!rtl::isAsciiDigit(c))
318 break;
320 buf[bufpos] = static_cast<char>(c);
321 bufmap[bufpos] = p;
322 ++bufpos;
326 // Exponent
327 if (p != p0 && p != pEnd && (*p == 'E' || *p == 'e'))
329 buf[bufpos] = 'E';
330 bufmap[bufpos] = p;
331 ++bufpos;
332 ++p;
333 if (p != pEnd && *p == '-')
335 buf[bufpos] = '-';
336 bufmap[bufpos] = p;
337 ++bufpos;
338 ++p;
340 else if (p != pEnd && *p == '+')
341 ++p;
343 for (; p != pEnd; ++p)
345 CharT c = *p;
346 if (!rtl::isAsciiDigit(c))
347 break;
349 buf[bufpos] = static_cast<char>(c);
350 bufmap[bufpos] = p;
351 ++bufpos;
354 else if (p - p0 == 2 && p != pEnd && p[0] == '#' && p[-1] == cDecSeparator && p[-2] == '1')
356 if (pEnd - p >= 4 && p[1] == 'I' && p[2] == 'N' && p[3] == 'F')
358 // "1.#INF", "+1.#INF", "-1.#INF"
359 p += 4;
360 fVal = HUGE_VAL;
361 eStatus = rtl_math_ConversionStatus_OutOfRange;
362 // Eat any further digits:
363 while (p != pEnd && rtl::isAsciiDigit(*p))
364 ++p;
365 bDone = true;
367 else if (pEnd - p >= 4 && p[1] == 'N' && p[2] == 'A' && p[3] == 'N')
369 // "1.#NAN", "+1.#NAN", "-1.#NAN"
370 p += 4;
371 fVal = std::copysign(std::numeric_limits<double>::quiet_NaN(), bSign ? -1.0 : 1.0);
372 bSign = false; // don't negate again
374 // Eat any further digits:
375 while (p != pEnd && rtl::isAsciiDigit(*p))
377 ++p;
379 bDone = true;
383 if (!bDone)
385 buf[bufpos] = '\0';
386 bufmap[bufpos] = p;
387 char* pCharParseEnd;
388 errno = 0;
389 fVal = strtod_nolocale(buf, &pCharParseEnd);
390 if (errno == ERANGE)
392 // Check for the dreaded rounded to 15 digits max value
393 // 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
394 // everywhere, accept with or without plus sign in exponent.
395 const char* b = buf;
396 if (b[0] == '-')
397 ++b;
398 if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
399 && !strncmp(b, "1.79769313486232", 16) && (b[16] == 'e' || b[16] == 'E')
400 && (((pCharParseEnd - b == 21) && !strncmp(b + 17, "+308", 4))
401 || ((pCharParseEnd - b == 20) && !strncmp(b + 17, "308", 3))))
403 fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
405 else
407 eStatus = rtl_math_ConversionStatus_OutOfRange;
410 p = bufmap[pCharParseEnd - buf];
411 bSign = false;
415 // overflow also if more than DBL_MAX_10_EXP digits without decimal
416 // separator, or 0. and more than DBL_MIN_10_EXP digits, ...
417 bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
418 if (bHuge)
419 eStatus = rtl_math_ConversionStatus_OutOfRange;
421 if (bSign)
422 fVal = -fVal;
424 if (pStatus)
425 *pStatus = eStatus;
427 if (pParsedEnd)
428 *pParsedEnd = p == p0 ? pBegin : p;
430 return fVal;
434 double SAL_CALL rtl_math_stringToDouble(char const* pBegin, char const* pEnd, char cDecSeparator,
435 char cGroupSeparator, rtl_math_ConversionStatus* pStatus,
436 char const** pParsedEnd) SAL_THROW_EXTERN_C()
438 return stringToDouble(reinterpret_cast<unsigned char const*>(pBegin),
439 reinterpret_cast<unsigned char const*>(pEnd),
440 static_cast<unsigned char>(cDecSeparator),
441 static_cast<unsigned char>(cGroupSeparator), pStatus,
442 reinterpret_cast<unsigned char const**>(pParsedEnd));
445 double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const* pBegin, sal_Unicode const* pEnd,
446 sal_Unicode cDecSeparator, sal_Unicode cGroupSeparator,
447 rtl_math_ConversionStatus* pStatus,
448 sal_Unicode const** pParsedEnd) SAL_THROW_EXTERN_C()
450 return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus, pParsedEnd);
453 double SAL_CALL rtl_math_round(double fValue, int nDecPlaces, enum rtl_math_RoundingMode eMode)
454 SAL_THROW_EXTERN_C()
456 if (!std::isfinite(fValue))
457 return fValue;
459 if (fValue == 0.0)
460 return fValue;
462 if (nDecPlaces == 0)
464 switch (eMode)
466 case rtl_math_RoundingMode_Corrected:
467 return std::round(fValue);
468 case rtl_math_RoundingMode_HalfEven:
469 if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0)
471 fValue = std::nearbyint(fValue);
472 std::fesetround(oldMode);
473 return fValue;
475 break;
476 default:
477 break;
481 const double fOrigValue = fValue;
483 // sign adjustment
484 bool bSign = std::signbit(fValue);
485 if (bSign)
486 fValue = -fValue;
488 // Rounding to decimals between integer distance precision (gaps) does not
489 // make sense, do not even try to multiply/divide and introduce inaccuracy.
490 // For same reasons, do not attempt to round integers to decimals.
491 if (nDecPlaces >= 0 && (fValue >= 0x1p52 || isRepresentableInteger(fValue)))
492 return fOrigValue;
494 double fFac = 0;
495 if (nDecPlaces != 0)
497 if (nDecPlaces > 0)
499 // Determine how many decimals are representable in the precision.
500 // Anything greater 2^52 and 0.0 was already ruled out above.
501 // Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
502 const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
503 const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
505 if (nDec <= 0)
507 assert(!"Shouldn't this had been caught already as large number?");
508 return fOrigValue;
511 if (nDec < nDecPlaces)
512 nDecPlaces = nDec;
515 // Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
516 // factors that later when dividing back spoil things. For negative
517 // decimals divide first with the inverse, then multiply the rounded
518 // value back.
519 fFac = getN10Exp(abs(nDecPlaces));
521 if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac)))
522 // Underflow, rounding to that many integer positions would be 0.
523 return 0.0;
525 if (!std::isfinite(fFac))
526 // Overflow with very small values and high number of decimals.
527 return fOrigValue;
529 if (nDecPlaces < 0)
530 fValue /= fFac;
531 else
532 fValue *= fFac;
534 if (!std::isfinite(fValue))
535 return fOrigValue;
538 // Round only if not already in distance precision gaps of integers, where
539 // for [2^52,2^53) adding 0.5 would even yield the next representable
540 // integer.
541 if (fValue < 0x1p52)
543 switch (eMode)
545 case rtl_math_RoundingMode_Corrected:
546 fValue = rtl::math::approxFloor(fValue + 0.5);
547 break;
548 case rtl_math_RoundingMode_Down:
549 fValue = rtl::math::approxFloor(fValue);
550 break;
551 case rtl_math_RoundingMode_Up:
552 fValue = rtl::math::approxCeil(fValue);
553 break;
554 case rtl_math_RoundingMode_Floor:
555 fValue = bSign ? rtl::math::approxCeil(fValue) : rtl::math::approxFloor(fValue);
556 break;
557 case rtl_math_RoundingMode_Ceiling:
558 fValue = bSign ? rtl::math::approxFloor(fValue) : rtl::math::approxCeil(fValue);
559 break;
560 case rtl_math_RoundingMode_HalfDown:
562 double f = floor(fValue);
563 fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
565 break;
566 case rtl_math_RoundingMode_HalfUp:
568 double f = floor(fValue);
569 fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
571 break;
572 case rtl_math_RoundingMode_HalfEven:
573 #if defined FLT_ROUNDS
575 Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
577 DBL_EPSILON is the smallest fractional number which can be represented,
578 its reciprocal is therefore the smallest number that cannot have a
579 fractional part. Once you add this reciprocal to `x', its fractional part
580 is stripped off. Simply subtracting the reciprocal back out returns `x'
581 without its fractional component.
582 Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
583 who placed it into public domain.
585 volatile: prevent compiler from being too smart
587 if (FLT_ROUNDS == 1)
589 volatile double x = fValue + 1.0 / DBL_EPSILON;
590 fValue = x - 1.0 / DBL_EPSILON;
592 else
593 #endif // FLT_ROUNDS
595 double f = floor(fValue);
596 if ((fValue - f) != 0.5)
598 fValue = floor(fValue + 0.5);
600 else
602 double g = f / 2.0;
603 fValue = (g == floor(g)) ? f : (f + 1.0);
606 break;
607 default:
608 OSL_ASSERT(false);
609 break;
613 if (nDecPlaces != 0)
615 if (nDecPlaces < 0)
616 fValue *= fFac;
617 else
618 fValue /= fFac;
621 if (!std::isfinite(fValue))
622 return fOrigValue;
624 return bSign ? -fValue : fValue;
627 double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
629 return fValue * getN10Exp(nExp);
632 double SAL_CALL rtl_math_approxValue(double fValue) SAL_THROW_EXTERN_C()
634 const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
635 if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite(fValue) || fValue > fBigInt)
637 // We don't handle these conditions. Bail out.
638 return fValue;
641 double fOrigValue = fValue;
643 bool bSign = std::signbit(fValue);
644 if (bSign)
645 fValue = -fValue;
647 // If the value is either integer representable as double,
648 // or only has small number of bits in fraction part, then we need not do any approximation
649 if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
650 return fOrigValue;
652 int nExp = static_cast<int>(floor(log10(fValue)));
653 nExp = 14 - nExp;
654 double fExpValue = getN10Exp(abs(nExp));
656 if (nExp < 0)
657 fValue /= fExpValue;
658 else
659 fValue *= fExpValue;
661 // If the original value was near DBL_MIN we got an overflow. Restore and
662 // bail out.
663 if (!std::isfinite(fValue))
664 return fOrigValue;
666 fValue = std::round(fValue);
668 if (nExp < 0)
669 fValue *= fExpValue;
670 else
671 fValue /= fExpValue;
673 // If the original value was near DBL_MAX we got an overflow. Restore and
674 // bail out.
675 if (!std::isfinite(fValue))
676 return fOrigValue;
678 return bSign ? -fValue : fValue;
681 bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
683 static const double e48 = 0x1p-48;
685 if (a == b)
686 return true;
688 if (a == 0.0 || b == 0.0 || std::signbit(a) != std::signbit(b))
689 return false;
691 const double d = fabs(a - b);
692 if (!std::isfinite(d))
693 return false; // Nan or Inf involved
695 a = fabs(a);
696 if (d >= (a * e48))
697 return false;
698 b = fabs(b);
699 if (d >= (b * e48))
700 return false;
702 if (isRepresentableInteger(a) && isRepresentableInteger(b))
703 return false; // special case for representable integers.
705 return true;
708 double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C() { return expm1(fValue); }
710 double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
712 #ifdef __APPLE__
713 if (fValue == -0.0)
714 return fValue; // macOS 10.8 libc returns 0.0 for -0.0
715 #endif
717 return log1p(fValue);
720 double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C() { return ::atanh(fValue); }
722 /** Parent error function (erf) */
723 double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C() { return erf(x); }
725 /** Parent complementary error function (erfc) */
726 double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C() { return erfc(x); }
728 /** improved accuracy of asinh for |x| large and for x near zero
729 @see #i97605#
731 double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
733 if (fX == 0.0)
734 return 0.0;
736 double fSign = 1.0;
737 if (fX < 0.0)
739 fX = -fX;
740 fSign = -1.0;
743 if (fX < 0.125)
744 return fSign * rtl_math_log1p(fX + fX * fX / (1.0 + sqrt(1.0 + fX * fX)));
746 if (fX < 1.25e7)
747 return fSign * log(fX + sqrt(1.0 + fX * fX));
749 return fSign * log(2.0 * fX);
752 /** improved accuracy of acosh for x large and for x near 1
753 @see #i97605#
755 double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
757 volatile double fZ = fX - 1.0;
758 if (fX < 1.0)
759 return std::numeric_limits<double>::quiet_NaN();
760 if (fX == 1.0)
761 return 0.0;
763 if (fX < 1.1)
764 return rtl_math_log1p(fZ + sqrt(fZ * fZ + 2.0 * fZ));
766 if (fX < 1.25e7)
767 return log(fX + sqrt(fX * fX - 1.0));
769 return log(2.0 * fX);
772 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */