2 * FreeRTOS Kernel V10.4.3
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
6 * this software and associated documentation files (the "Software"), to deal in
7 * the Software without restriction, including without limitation the rights to
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9 * the Software, and to permit persons to whom the Software is furnished to do so,
10 * subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in all
13 * copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
22 * https://www.FreeRTOS.org
23 * https://github.com/FreeRTOS
27 /* Standard includes. */
31 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
32 * all the API functions to use the MPU wrappers. That should only be done when
33 * task.h is included from an application file. */
34 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
36 /* FreeRTOS includes. */
40 #include "stack_macros.h"
42 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
43 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
44 * for the header files above, but not in this file, in order to generate the
45 * correct privileged Vs unprivileged linkage and placement. */
46 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
48 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
49 * functions but without including stdio.h here. */
50 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
52 /* At the bottom of this file are two optional functions that can be used
53 * to generate human readable text from the raw data generated by the
54 * uxTaskGetSystemState() function. Note the formatting functions are provided
55 * for convenience only, and are NOT considered part of the kernel. */
57 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
59 #if ( configUSE_PREEMPTION == 0 )
61 /* If the cooperative scheduler is being used then a yield should not be
62 * performed just because a higher priority task has been woken. */
63 #define taskYIELD_IF_USING_PREEMPTION()
65 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
68 /* Values that can be assigned to the ucNotifyState member of the TCB. */
69 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
70 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
71 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
74 * The value used to fill the stack of a task when the task is created. This
75 * is used purely for checking the high water mark for tasks.
77 #define tskSTACK_FILL_BYTE ( 0xa5U )
79 /* Bits used to recored how a task's stack and TCB were allocated. */
80 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
81 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
82 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
84 /* If any of the following are set then task stacks are filled with a known
85 * value so the high water mark can be determined. If none of the following are
86 * set then don't fill the stack so there is no unnecessary dependency on memset. */
87 #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
88 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
90 #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
94 * Macros used by vListTask to indicate which state a task is in.
96 #define tskRUNNING_CHAR ( 'X' )
97 #define tskBLOCKED_CHAR ( 'B' )
98 #define tskREADY_CHAR ( 'R' )
99 #define tskDELETED_CHAR ( 'D' )
100 #define tskSUSPENDED_CHAR ( 'S' )
103 * Some kernel aware debuggers require the data the debugger needs access to be
104 * global, rather than file scope.
106 #ifdef portREMOVE_STATIC_QUALIFIER
110 /* The name allocated to the Idle task. This can be overridden by defining
111 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
112 #ifndef configIDLE_TASK_NAME
113 #define configIDLE_TASK_NAME "IDLE"
116 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
118 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
119 * performed in a generic way that is not optimised to any particular
120 * microcontroller architecture. */
122 /* uxTopReadyPriority holds the priority of the highest priority ready
124 #define taskRECORD_READY_PRIORITY( uxPriority ) \
126 if( ( uxPriority ) > uxTopReadyPriority ) \
128 uxTopReadyPriority = ( uxPriority ); \
130 } /* taskRECORD_READY_PRIORITY */
132 /*-----------------------------------------------------------*/
134 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
136 UBaseType_t uxTopPriority = uxTopReadyPriority; \
138 /* Find the highest priority queue that contains ready tasks. */ \
139 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
141 configASSERT( uxTopPriority ); \
145 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
146 * the same priority get an equal share of the processor time. */ \
147 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
148 uxTopReadyPriority = uxTopPriority; \
149 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
151 /*-----------------------------------------------------------*/
153 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
154 * they are only required when a port optimised method of task selection is
156 #define taskRESET_READY_PRIORITY( uxPriority )
157 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
159 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
161 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
162 * performed in a way that is tailored to the particular microcontroller
163 * architecture being used. */
165 /* A port optimised version is provided. Call the port defined macros. */
166 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
168 /*-----------------------------------------------------------*/
170 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
172 UBaseType_t uxTopPriority; \
174 /* Find the highest priority list that contains ready tasks. */ \
175 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
176 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
177 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
178 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
180 /*-----------------------------------------------------------*/
182 /* A port optimised version is provided, call it only if the TCB being reset
183 * is being referenced from a ready list. If it is referenced from a delayed
184 * or suspended list then it won't be in a ready list. */
185 #define taskRESET_READY_PRIORITY( uxPriority ) \
187 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
189 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
193 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
195 /*-----------------------------------------------------------*/
197 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
198 * count overflows. */
199 #define taskSWITCH_DELAYED_LISTS() \
203 /* The delayed tasks list should be empty when the lists are switched. */ \
204 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
206 pxTemp = pxDelayedTaskList; \
207 pxDelayedTaskList = pxOverflowDelayedTaskList; \
208 pxOverflowDelayedTaskList = pxTemp; \
210 prvResetNextTaskUnblockTime(); \
213 /*-----------------------------------------------------------*/
216 * Place the task represented by pxTCB into the appropriate ready list for
217 * the task. It is inserted at the end of the list.
219 #define prvAddTaskToReadyList( pxTCB ) \
220 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
221 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
222 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
223 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
224 /*-----------------------------------------------------------*/
227 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
228 * where NULL is used to indicate that the handle of the currently executing
229 * task should be used in place of the parameter. This macro simply checks to
230 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
232 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
234 /* The item value of the event list item is normally used to hold the priority
235 * of the task to which it belongs (coded to allow it to be held in reverse
236 * priority order). However, it is occasionally borrowed for other purposes. It
237 * is important its value is not updated due to a task priority change while it is
238 * being used for another purpose. The following bit definition is used to inform
239 * the scheduler that the value should not be changed - in which case it is the
240 * responsibility of whichever module is using the value to ensure it gets set back
241 * to its original value when it is released. */
242 #if ( configUSE_16_BIT_TICKS == 1 )
243 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
245 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
249 * Task control block. A task control block (TCB) is allocated for each task,
250 * and stores task state information, including a pointer to the task's context
251 * (the task's run time environment, including register values)
253 typedef struct tskTaskControlBlock
/* The old naming convention is used to prevent breaking kernel aware debuggers. */
255 volatile StackType_t
* pxTopOfStack
; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
257 #if ( portUSING_MPU_WRAPPERS == 1 )
258 xMPU_SETTINGS xMPUSettings
; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
261 ListItem_t xStateListItem
; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
262 ListItem_t xEventListItem
; /*< Used to reference a task from an event list. */
263 UBaseType_t uxPriority
; /*< The priority of the task. 0 is the lowest priority. */
264 StackType_t
* pxStack
; /*< Points to the start of the stack. */
265 char pcTaskName
[ configMAX_TASK_NAME_LEN
]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
267 #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
268 StackType_t
* pxEndOfStack
; /*< Points to the highest valid address for the stack. */
271 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
272 UBaseType_t uxCriticalNesting
; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
275 #if ( configUSE_TRACE_FACILITY == 1 )
276 UBaseType_t uxTCBNumber
; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
277 UBaseType_t uxTaskNumber
; /*< Stores a number specifically for use by third party trace code. */
280 #if ( configUSE_MUTEXES == 1 )
281 UBaseType_t uxBasePriority
; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
282 UBaseType_t uxMutexesHeld
;
285 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
286 TaskHookFunction_t pxTaskTag
;
289 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
290 void * pvThreadLocalStoragePointers
[ configNUM_THREAD_LOCAL_STORAGE_POINTERS
];
293 #if ( configGENERATE_RUN_TIME_STATS == 1 )
294 uint32_t ulRunTimeCounter
; /*< Stores the amount of time the task has spent in the Running state. */
297 #if ( configUSE_NEWLIB_REENTRANT == 1 )
299 /* Allocate a Newlib reent structure that is specific to this task.
300 * Note Newlib support has been included by popular demand, but is not
301 * used by the FreeRTOS maintainers themselves. FreeRTOS is not
302 * responsible for resulting newlib operation. User must be familiar with
303 * newlib and must provide system-wide implementations of the necessary
304 * stubs. Be warned that (at the time of writing) the current newlib design
305 * implements a system-wide malloc() that must be provided with locks.
307 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
308 * for additional information. */
309 struct _reent xNewLib_reent
;
312 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
313 volatile uint32_t ulNotifiedValue
[ configTASK_NOTIFICATION_ARRAY_ENTRIES
];
314 volatile uint8_t ucNotifyState
[ configTASK_NOTIFICATION_ARRAY_ENTRIES
];
317 /* See the comments in FreeRTOS.h with the definition of
318 * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
319 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
320 uint8_t ucStaticallyAllocated
; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
323 #if ( INCLUDE_xTaskAbortDelay == 1 )
324 uint8_t ucDelayAborted
;
327 #if ( configUSE_POSIX_ERRNO == 1 )
332 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
333 * below to enable the use of older kernel aware debuggers. */
334 typedef tskTCB TCB_t
;
336 /*lint -save -e956 A manual analysis and inspection has been used to determine
337 * which static variables must be declared volatile. */
338 PRIVILEGED_DATA TCB_t
* volatile pxCurrentTCB
= NULL
;
340 /* Lists for ready and blocked tasks. --------------------
341 * xDelayedTaskList1 and xDelayedTaskList2 could be move to function scople but
342 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
343 * the static qualifier. */
344 PRIVILEGED_DATA
static List_t pxReadyTasksLists
[ configMAX_PRIORITIES
]; /*< Prioritised ready tasks. */
345 PRIVILEGED_DATA
static List_t xDelayedTaskList1
; /*< Delayed tasks. */
346 PRIVILEGED_DATA
static List_t xDelayedTaskList2
; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
347 PRIVILEGED_DATA
static List_t
* volatile pxDelayedTaskList
; /*< Points to the delayed task list currently being used. */
348 PRIVILEGED_DATA
static List_t
* volatile pxOverflowDelayedTaskList
; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
349 PRIVILEGED_DATA
static List_t xPendingReadyList
; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
351 #if ( INCLUDE_vTaskDelete == 1 )
353 PRIVILEGED_DATA
static List_t xTasksWaitingTermination
; /*< Tasks that have been deleted - but their memory not yet freed. */
354 PRIVILEGED_DATA
static volatile UBaseType_t uxDeletedTasksWaitingCleanUp
= ( UBaseType_t
) 0U;
358 #if ( INCLUDE_vTaskSuspend == 1 )
360 PRIVILEGED_DATA
static List_t xSuspendedTaskList
; /*< Tasks that are currently suspended. */
364 /* Global POSIX errno. Its value is changed upon context switching to match
365 * the errno of the currently running task. */
366 #if ( configUSE_POSIX_ERRNO == 1 )
367 int FreeRTOS_errno
= 0;
370 /* Other file private variables. --------------------------------*/
371 PRIVILEGED_DATA
static volatile UBaseType_t uxCurrentNumberOfTasks
= ( UBaseType_t
) 0U;
372 PRIVILEGED_DATA
static volatile TickType_t xTickCount
= ( TickType_t
) configINITIAL_TICK_COUNT
;
373 PRIVILEGED_DATA
static volatile UBaseType_t uxTopReadyPriority
= tskIDLE_PRIORITY
;
374 PRIVILEGED_DATA
static volatile BaseType_t xSchedulerRunning
= pdFALSE
;
375 PRIVILEGED_DATA
static volatile TickType_t xPendedTicks
= ( TickType_t
) 0U;
376 PRIVILEGED_DATA
static volatile BaseType_t xYieldPending
= pdFALSE
;
377 PRIVILEGED_DATA
static volatile BaseType_t xNumOfOverflows
= ( BaseType_t
) 0;
378 PRIVILEGED_DATA
static UBaseType_t uxTaskNumber
= ( UBaseType_t
) 0U;
379 PRIVILEGED_DATA
static volatile TickType_t xNextTaskUnblockTime
= ( TickType_t
) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
380 PRIVILEGED_DATA
static TaskHandle_t xIdleTaskHandle
= NULL
; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
382 /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
383 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
384 * to determine the number of priority lists to read back from the remote target. */
385 const volatile UBaseType_t uxTopUsedPriority
= configMAX_PRIORITIES
- 1U;
387 /* Context switches are held pending while the scheduler is suspended. Also,
388 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
389 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
390 * If an interrupt needs to unblock a task while the scheduler is suspended then it
391 * moves the task's event list item into the xPendingReadyList, ready for the
392 * kernel to move the task from the pending ready list into the real ready list
393 * when the scheduler is unsuspended. The pending ready list itself can only be
394 * accessed from a critical section. */
395 PRIVILEGED_DATA
static volatile UBaseType_t uxSchedulerSuspended
= ( UBaseType_t
) pdFALSE
;
397 #if ( configGENERATE_RUN_TIME_STATS == 1 )
399 /* Do not move these variables to function scope as doing so prevents the
400 * code working with debuggers that need to remove the static qualifier. */
401 PRIVILEGED_DATA
static uint32_t ulTaskSwitchedInTime
= 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
402 PRIVILEGED_DATA
static volatile uint32_t ulTotalRunTime
= 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
408 /*-----------------------------------------------------------*/
410 /* File private functions. --------------------------------*/
413 * Utility task that simply returns pdTRUE if the task referenced by xTask is
414 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
415 * is in any other state.
417 #if ( INCLUDE_vTaskSuspend == 1 )
419 static BaseType_t
prvTaskIsTaskSuspended( const TaskHandle_t xTask
) PRIVILEGED_FUNCTION
;
421 #endif /* INCLUDE_vTaskSuspend */
424 * Utility to ready all the lists used by the scheduler. This is called
425 * automatically upon the creation of the first task.
427 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION
;
430 * The idle task, which as all tasks is implemented as a never ending loop.
431 * The idle task is automatically created and added to the ready lists upon
432 * creation of the first user task.
434 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
435 * language extensions. The equivalent prototype for this function is:
437 * void prvIdleTask( void *pvParameters );
440 static portTASK_FUNCTION_PROTO( prvIdleTask
, pvParameters
) PRIVILEGED_FUNCTION
;
443 * Utility to free all memory allocated by the scheduler to hold a TCB,
444 * including the stack pointed to by the TCB.
446 * This does not free memory allocated by the task itself (i.e. memory
447 * allocated by calls to pvPortMalloc from within the tasks application code).
449 #if ( INCLUDE_vTaskDelete == 1 )
451 static void prvDeleteTCB( TCB_t
* pxTCB
) PRIVILEGED_FUNCTION
;
456 * Used only by the idle task. This checks to see if anything has been placed
457 * in the list of tasks waiting to be deleted. If so the task is cleaned up
458 * and its TCB deleted.
460 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION
;
463 * The currently executing task is entering the Blocked state. Add the task to
464 * either the current or the overflow delayed task list.
466 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait
,
467 const BaseType_t xCanBlockIndefinitely
) PRIVILEGED_FUNCTION
;
470 * Fills an TaskStatus_t structure with information on each task that is
471 * referenced from the pxList list (which may be a ready list, a delayed list,
472 * a suspended list, etc.).
474 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
475 * NORMAL APPLICATION CODE.
477 #if ( configUSE_TRACE_FACILITY == 1 )
479 static UBaseType_t
prvListTasksWithinSingleList( TaskStatus_t
* pxTaskStatusArray
,
481 eTaskState eState
) PRIVILEGED_FUNCTION
;
486 * Searches pxList for a task with name pcNameToQuery - returning a handle to
487 * the task if it is found, or NULL if the task is not found.
489 #if ( INCLUDE_xTaskGetHandle == 1 )
491 static TCB_t
* prvSearchForNameWithinSingleList( List_t
* pxList
,
492 const char pcNameToQuery
[] ) PRIVILEGED_FUNCTION
;
497 * When a task is created, the stack of the task is filled with a known value.
498 * This function determines the 'high water mark' of the task stack by
499 * determining how much of the stack remains at the original preset value.
501 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
503 static configSTACK_DEPTH_TYPE
prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte
) PRIVILEGED_FUNCTION
;
508 * Return the amount of time, in ticks, that will pass before the kernel will
509 * next move a task from the Blocked state to the Running state.
511 * This conditional compilation should use inequality to 0, not equality to 1.
512 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
513 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
514 * set to a value other than 1.
516 #if ( configUSE_TICKLESS_IDLE != 0 )
518 static TickType_t
prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION
;
523 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
524 * will exit the Blocked state.
526 static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION
;
528 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
531 * Helper function used to pad task names with spaces when printing out
532 * human readable tables of task information.
534 static char * prvWriteNameToBuffer( char * pcBuffer
,
535 const char * pcTaskName
) PRIVILEGED_FUNCTION
;
540 * Called after a Task_t structure has been allocated either statically or
541 * dynamically to fill in the structure's members.
543 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode
,
544 const char * const pcName
, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
545 const uint32_t ulStackDepth
,
546 void * const pvParameters
,
547 UBaseType_t uxPriority
,
548 TaskHandle_t
* const pxCreatedTask
,
550 const MemoryRegion_t
* const xRegions
) PRIVILEGED_FUNCTION
;
553 * Called after a new task has been created and initialised to place the task
554 * under the control of the scheduler.
556 static void prvAddNewTaskToReadyList( TCB_t
* pxNewTCB
) PRIVILEGED_FUNCTION
;
559 * freertos_tasks_c_additions_init() should only be called if the user definable
560 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
561 * called by the function.
563 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
565 static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION
;
569 /*-----------------------------------------------------------*/
571 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
573 TaskHandle_t
xTaskCreateStatic( TaskFunction_t pxTaskCode
,
574 const char * const pcName
, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
575 const uint32_t ulStackDepth
,
576 void * const pvParameters
,
577 UBaseType_t uxPriority
,
578 StackType_t
* const puxStackBuffer
,
579 StaticTask_t
* const pxTaskBuffer
)
582 TaskHandle_t xReturn
;
584 configASSERT( puxStackBuffer
!= NULL
);
585 configASSERT( pxTaskBuffer
!= NULL
);
587 #if ( configASSERT_DEFINED == 1 )
589 /* Sanity check that the size of the structure used to declare a
590 * variable of type StaticTask_t equals the size of the real task
592 volatile size_t xSize
= sizeof( StaticTask_t
);
593 configASSERT( xSize
== sizeof( TCB_t
) );
594 ( void ) xSize
; /* Prevent lint warning when configASSERT() is not used. */
596 #endif /* configASSERT_DEFINED */
598 if( ( pxTaskBuffer
!= NULL
) && ( puxStackBuffer
!= NULL
) )
600 /* The memory used for the task's TCB and stack are passed into this
601 * function - use them. */
602 pxNewTCB
= ( TCB_t
* ) pxTaskBuffer
; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
603 pxNewTCB
->pxStack
= ( StackType_t
* ) puxStackBuffer
;
605 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
607 /* Tasks can be created statically or dynamically, so note this
608 * task was created statically in case the task is later deleted. */
609 pxNewTCB
->ucStaticallyAllocated
= tskSTATICALLY_ALLOCATED_STACK_AND_TCB
;
611 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
613 prvInitialiseNewTask( pxTaskCode
, pcName
, ulStackDepth
, pvParameters
, uxPriority
, &xReturn
, pxNewTCB
, NULL
);
614 prvAddNewTaskToReadyList( pxNewTCB
);
624 #endif /* SUPPORT_STATIC_ALLOCATION */
625 /*-----------------------------------------------------------*/
627 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
629 BaseType_t
xTaskCreateRestrictedStatic( const TaskParameters_t
* const pxTaskDefinition
,
630 TaskHandle_t
* pxCreatedTask
)
633 BaseType_t xReturn
= errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
;
635 configASSERT( pxTaskDefinition
->puxStackBuffer
!= NULL
);
636 configASSERT( pxTaskDefinition
->pxTaskBuffer
!= NULL
);
638 if( ( pxTaskDefinition
->puxStackBuffer
!= NULL
) && ( pxTaskDefinition
->pxTaskBuffer
!= NULL
) )
640 /* Allocate space for the TCB. Where the memory comes from depends
641 * on the implementation of the port malloc function and whether or
642 * not static allocation is being used. */
643 pxNewTCB
= ( TCB_t
* ) pxTaskDefinition
->pxTaskBuffer
;
645 /* Store the stack location in the TCB. */
646 pxNewTCB
->pxStack
= pxTaskDefinition
->puxStackBuffer
;
648 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
650 /* Tasks can be created statically or dynamically, so note this
651 * task was created statically in case the task is later deleted. */
652 pxNewTCB
->ucStaticallyAllocated
= tskSTATICALLY_ALLOCATED_STACK_AND_TCB
;
654 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
656 prvInitialiseNewTask( pxTaskDefinition
->pvTaskCode
,
657 pxTaskDefinition
->pcName
,
658 ( uint32_t ) pxTaskDefinition
->usStackDepth
,
659 pxTaskDefinition
->pvParameters
,
660 pxTaskDefinition
->uxPriority
,
661 pxCreatedTask
, pxNewTCB
,
662 pxTaskDefinition
->xRegions
);
664 prvAddNewTaskToReadyList( pxNewTCB
);
671 #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
672 /*-----------------------------------------------------------*/
674 #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
676 BaseType_t
xTaskCreateRestricted( const TaskParameters_t
* const pxTaskDefinition
,
677 TaskHandle_t
* pxCreatedTask
)
680 BaseType_t xReturn
= errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
;
682 configASSERT( pxTaskDefinition
->puxStackBuffer
);
684 if( pxTaskDefinition
->puxStackBuffer
!= NULL
)
686 /* Allocate space for the TCB. Where the memory comes from depends
687 * on the implementation of the port malloc function and whether or
688 * not static allocation is being used. */
689 pxNewTCB
= ( TCB_t
* ) pvPortMalloc( sizeof( TCB_t
) );
691 if( pxNewTCB
!= NULL
)
693 /* Store the stack location in the TCB. */
694 pxNewTCB
->pxStack
= pxTaskDefinition
->puxStackBuffer
;
696 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
698 /* Tasks can be created statically or dynamically, so note
699 * this task had a statically allocated stack in case it is
700 * later deleted. The TCB was allocated dynamically. */
701 pxNewTCB
->ucStaticallyAllocated
= tskSTATICALLY_ALLOCATED_STACK_ONLY
;
703 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
705 prvInitialiseNewTask( pxTaskDefinition
->pvTaskCode
,
706 pxTaskDefinition
->pcName
,
707 ( uint32_t ) pxTaskDefinition
->usStackDepth
,
708 pxTaskDefinition
->pvParameters
,
709 pxTaskDefinition
->uxPriority
,
710 pxCreatedTask
, pxNewTCB
,
711 pxTaskDefinition
->xRegions
);
713 prvAddNewTaskToReadyList( pxNewTCB
);
721 #endif /* portUSING_MPU_WRAPPERS */
722 /*-----------------------------------------------------------*/
724 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
726 BaseType_t
xTaskCreate( TaskFunction_t pxTaskCode
,
727 const char * const pcName
, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
728 const configSTACK_DEPTH_TYPE usStackDepth
,
729 void * const pvParameters
,
730 UBaseType_t uxPriority
,
731 TaskHandle_t
* const pxCreatedTask
)
736 /* If the stack grows down then allocate the stack then the TCB so the stack
737 * does not grow into the TCB. Likewise if the stack grows up then allocate
738 * the TCB then the stack. */
739 #if ( portSTACK_GROWTH > 0 )
741 /* Allocate space for the TCB. Where the memory comes from depends on
742 * the implementation of the port malloc function and whether or not static
743 * allocation is being used. */
744 pxNewTCB
= ( TCB_t
* ) pvPortMalloc( sizeof( TCB_t
) );
746 if( pxNewTCB
!= NULL
)
748 /* Allocate space for the stack used by the task being created.
749 * The base of the stack memory stored in the TCB so the task can
750 * be deleted later if required. */
751 pxNewTCB
->pxStack
= ( StackType_t
* ) pvPortMalloc( ( ( ( size_t ) usStackDepth
) * sizeof( StackType_t
) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
753 if( pxNewTCB
->pxStack
== NULL
)
755 /* Could not allocate the stack. Delete the allocated TCB. */
756 vPortFree( pxNewTCB
);
761 #else /* portSTACK_GROWTH */
763 StackType_t
* pxStack
;
765 /* Allocate space for the stack used by the task being created. */
766 pxStack
= pvPortMalloc( ( ( ( size_t ) usStackDepth
) * sizeof( StackType_t
) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
768 if( pxStack
!= NULL
)
770 /* Allocate space for the TCB. */
771 pxNewTCB
= ( TCB_t
* ) pvPortMalloc( sizeof( TCB_t
) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
773 if( pxNewTCB
!= NULL
)
775 /* Store the stack location in the TCB. */
776 pxNewTCB
->pxStack
= pxStack
;
780 /* The stack cannot be used as the TCB was not created. Free
782 vPortFree( pxStack
);
790 #endif /* portSTACK_GROWTH */
792 if( pxNewTCB
!= NULL
)
794 #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
796 /* Tasks can be created statically or dynamically, so note this
797 * task was created dynamically in case it is later deleted. */
798 pxNewTCB
->ucStaticallyAllocated
= tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB
;
800 #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
802 prvInitialiseNewTask( pxTaskCode
, pcName
, ( uint32_t ) usStackDepth
, pvParameters
, uxPriority
, pxCreatedTask
, pxNewTCB
, NULL
);
803 prvAddNewTaskToReadyList( pxNewTCB
);
808 xReturn
= errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
;
814 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
815 /*-----------------------------------------------------------*/
817 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode
,
818 const char * const pcName
, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
819 const uint32_t ulStackDepth
,
820 void * const pvParameters
,
821 UBaseType_t uxPriority
,
822 TaskHandle_t
* const pxCreatedTask
,
824 const MemoryRegion_t
* const xRegions
)
826 StackType_t
* pxTopOfStack
;
829 #if ( portUSING_MPU_WRAPPERS == 1 )
830 /* Should the task be created in privileged mode? */
831 BaseType_t xRunPrivileged
;
833 if( ( uxPriority
& portPRIVILEGE_BIT
) != 0U )
835 xRunPrivileged
= pdTRUE
;
839 xRunPrivileged
= pdFALSE
;
841 uxPriority
&= ~portPRIVILEGE_BIT
;
842 #endif /* portUSING_MPU_WRAPPERS == 1 */
844 /* Avoid dependency on memset() if it is not required. */
845 #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
847 /* Fill the stack with a known value to assist debugging. */
848 ( void ) memset( pxNewTCB
->pxStack
, ( int ) tskSTACK_FILL_BYTE
, ( size_t ) ulStackDepth
* sizeof( StackType_t
) );
850 #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
852 /* Calculate the top of stack address. This depends on whether the stack
853 * grows from high memory to low (as per the 80x86) or vice versa.
854 * portSTACK_GROWTH is used to make the result positive or negative as required
856 #if ( portSTACK_GROWTH < 0 )
858 pxTopOfStack
= &( pxNewTCB
->pxStack
[ ulStackDepth
- ( uint32_t ) 1 ] );
859 pxTopOfStack
= ( StackType_t
* ) ( ( ( portPOINTER_SIZE_TYPE
) pxTopOfStack
) & ( ~( ( portPOINTER_SIZE_TYPE
) portBYTE_ALIGNMENT_MASK
) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
861 /* Check the alignment of the calculated top of stack is correct. */
862 configASSERT( ( ( ( portPOINTER_SIZE_TYPE
) pxTopOfStack
& ( portPOINTER_SIZE_TYPE
) portBYTE_ALIGNMENT_MASK
) == 0UL ) );
864 #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
866 /* Also record the stack's high address, which may assist
868 pxNewTCB
->pxEndOfStack
= pxTopOfStack
;
870 #endif /* configRECORD_STACK_HIGH_ADDRESS */
872 #else /* portSTACK_GROWTH */
874 pxTopOfStack
= pxNewTCB
->pxStack
;
876 /* Check the alignment of the stack buffer is correct. */
877 configASSERT( ( ( ( portPOINTER_SIZE_TYPE
) pxNewTCB
->pxStack
& ( portPOINTER_SIZE_TYPE
) portBYTE_ALIGNMENT_MASK
) == 0UL ) );
879 /* The other extreme of the stack space is required if stack checking is
881 pxNewTCB
->pxEndOfStack
= pxNewTCB
->pxStack
+ ( ulStackDepth
- ( uint32_t ) 1 );
883 #endif /* portSTACK_GROWTH */
885 /* Store the task name in the TCB. */
888 for( x
= ( UBaseType_t
) 0; x
< ( UBaseType_t
) configMAX_TASK_NAME_LEN
; x
++ )
890 pxNewTCB
->pcTaskName
[ x
] = pcName
[ x
];
892 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
893 * configMAX_TASK_NAME_LEN characters just in case the memory after the
894 * string is not accessible (extremely unlikely). */
895 if( pcName
[ x
] == ( char ) 0x00 )
901 mtCOVERAGE_TEST_MARKER();
905 /* Ensure the name string is terminated in the case that the string length
906 * was greater or equal to configMAX_TASK_NAME_LEN. */
907 pxNewTCB
->pcTaskName
[ configMAX_TASK_NAME_LEN
- 1 ] = '\0';
911 /* The task has not been given a name, so just ensure there is a NULL
912 * terminator when it is read out. */
913 pxNewTCB
->pcTaskName
[ 0 ] = 0x00;
916 /* This is used as an array index so must ensure it's not too large. First
917 * remove the privilege bit if one is present. */
918 if( uxPriority
>= ( UBaseType_t
) configMAX_PRIORITIES
)
920 uxPriority
= ( UBaseType_t
) configMAX_PRIORITIES
- ( UBaseType_t
) 1U;
924 mtCOVERAGE_TEST_MARKER();
927 pxNewTCB
->uxPriority
= uxPriority
;
928 #if ( configUSE_MUTEXES == 1 )
930 pxNewTCB
->uxBasePriority
= uxPriority
;
931 pxNewTCB
->uxMutexesHeld
= 0;
933 #endif /* configUSE_MUTEXES */
935 vListInitialiseItem( &( pxNewTCB
->xStateListItem
) );
936 vListInitialiseItem( &( pxNewTCB
->xEventListItem
) );
938 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
939 * back to the containing TCB from a generic item in a list. */
940 listSET_LIST_ITEM_OWNER( &( pxNewTCB
->xStateListItem
), pxNewTCB
);
942 /* Event lists are always in priority order. */
943 listSET_LIST_ITEM_VALUE( &( pxNewTCB
->xEventListItem
), ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) uxPriority
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
944 listSET_LIST_ITEM_OWNER( &( pxNewTCB
->xEventListItem
), pxNewTCB
);
946 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
948 pxNewTCB
->uxCriticalNesting
= ( UBaseType_t
) 0U;
950 #endif /* portCRITICAL_NESTING_IN_TCB */
952 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
954 pxNewTCB
->pxTaskTag
= NULL
;
956 #endif /* configUSE_APPLICATION_TASK_TAG */
958 #if ( configGENERATE_RUN_TIME_STATS == 1 )
960 pxNewTCB
->ulRunTimeCounter
= 0UL;
962 #endif /* configGENERATE_RUN_TIME_STATS */
964 #if ( portUSING_MPU_WRAPPERS == 1 )
966 vPortStoreTaskMPUSettings( &( pxNewTCB
->xMPUSettings
), xRegions
, pxNewTCB
->pxStack
, ulStackDepth
);
970 /* Avoid compiler warning about unreferenced parameter. */
975 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
977 memset( ( void * ) &( pxNewTCB
->pvThreadLocalStoragePointers
[ 0 ] ), 0x00, sizeof( pxNewTCB
->pvThreadLocalStoragePointers
) );
981 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
983 memset( ( void * ) &( pxNewTCB
->ulNotifiedValue
[ 0 ] ), 0x00, sizeof( pxNewTCB
->ulNotifiedValue
) );
984 memset( ( void * ) &( pxNewTCB
->ucNotifyState
[ 0 ] ), 0x00, sizeof( pxNewTCB
->ucNotifyState
) );
988 #if ( configUSE_NEWLIB_REENTRANT == 1 )
990 /* Initialise this task's Newlib reent structure.
991 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
992 * for additional information. */
993 _REENT_INIT_PTR( ( &( pxNewTCB
->xNewLib_reent
) ) );
997 #if ( INCLUDE_xTaskAbortDelay == 1 )
999 pxNewTCB
->ucDelayAborted
= pdFALSE
;
1003 /* Initialize the TCB stack to look as if the task was already running,
1004 * but had been interrupted by the scheduler. The return address is set
1005 * to the start of the task function. Once the stack has been initialised
1006 * the top of stack variable is updated. */
1007 #if ( portUSING_MPU_WRAPPERS == 1 )
1009 /* If the port has capability to detect stack overflow,
1010 * pass the stack end address to the stack initialization
1011 * function as well. */
1012 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1014 #if ( portSTACK_GROWTH < 0 )
1016 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxNewTCB
->pxStack
, pxTaskCode
, pvParameters
, xRunPrivileged
);
1018 #else /* portSTACK_GROWTH */
1020 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxNewTCB
->pxEndOfStack
, pxTaskCode
, pvParameters
, xRunPrivileged
);
1022 #endif /* portSTACK_GROWTH */
1024 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1026 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxTaskCode
, pvParameters
, xRunPrivileged
);
1028 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1030 #else /* portUSING_MPU_WRAPPERS */
1032 /* If the port has capability to detect stack overflow,
1033 * pass the stack end address to the stack initialization
1034 * function as well. */
1035 #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
1037 #if ( portSTACK_GROWTH < 0 )
1039 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxNewTCB
->pxStack
, pxTaskCode
, pvParameters
);
1041 #else /* portSTACK_GROWTH */
1043 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxNewTCB
->pxEndOfStack
, pxTaskCode
, pvParameters
);
1045 #endif /* portSTACK_GROWTH */
1047 #else /* portHAS_STACK_OVERFLOW_CHECKING */
1049 pxNewTCB
->pxTopOfStack
= pxPortInitialiseStack( pxTopOfStack
, pxTaskCode
, pvParameters
);
1051 #endif /* portHAS_STACK_OVERFLOW_CHECKING */
1053 #endif /* portUSING_MPU_WRAPPERS */
1055 if( pxCreatedTask
!= NULL
)
1057 /* Pass the handle out in an anonymous way. The handle can be used to
1058 * change the created task's priority, delete the created task, etc.*/
1059 *pxCreatedTask
= ( TaskHandle_t
) pxNewTCB
;
1063 mtCOVERAGE_TEST_MARKER();
1066 /*-----------------------------------------------------------*/
1068 static void prvAddNewTaskToReadyList( TCB_t
* pxNewTCB
)
1070 /* Ensure interrupts don't access the task lists while the lists are being
1072 taskENTER_CRITICAL();
1074 uxCurrentNumberOfTasks
++;
1076 if( pxCurrentTCB
== NULL
)
1078 /* There are no other tasks, or all the other tasks are in
1079 * the suspended state - make this the current task. */
1080 pxCurrentTCB
= pxNewTCB
;
1082 if( uxCurrentNumberOfTasks
== ( UBaseType_t
) 1 )
1084 /* This is the first task to be created so do the preliminary
1085 * initialisation required. We will not recover if this call
1086 * fails, but we will report the failure. */
1087 prvInitialiseTaskLists();
1091 mtCOVERAGE_TEST_MARKER();
1096 /* If the scheduler is not already running, make this task the
1097 * current task if it is the highest priority task to be created
1099 if( xSchedulerRunning
== pdFALSE
)
1101 if( pxCurrentTCB
->uxPriority
<= pxNewTCB
->uxPriority
)
1103 pxCurrentTCB
= pxNewTCB
;
1107 mtCOVERAGE_TEST_MARKER();
1112 mtCOVERAGE_TEST_MARKER();
1118 #if ( configUSE_TRACE_FACILITY == 1 )
1120 /* Add a counter into the TCB for tracing only. */
1121 pxNewTCB
->uxTCBNumber
= uxTaskNumber
;
1123 #endif /* configUSE_TRACE_FACILITY */
1124 traceTASK_CREATE( pxNewTCB
);
1126 prvAddTaskToReadyList( pxNewTCB
);
1128 portSETUP_TCB( pxNewTCB
);
1130 taskEXIT_CRITICAL();
1132 if( xSchedulerRunning
!= pdFALSE
)
1134 /* If the created task is of a higher priority than the current task
1135 * then it should run now. */
1136 if( pxCurrentTCB
->uxPriority
< pxNewTCB
->uxPriority
)
1138 taskYIELD_IF_USING_PREEMPTION();
1142 mtCOVERAGE_TEST_MARKER();
1147 mtCOVERAGE_TEST_MARKER();
1150 /*-----------------------------------------------------------*/
1152 #if ( INCLUDE_vTaskDelete == 1 )
1154 void vTaskDelete( TaskHandle_t xTaskToDelete
)
1158 taskENTER_CRITICAL();
1160 /* If null is passed in here then it is the calling task that is
1162 pxTCB
= prvGetTCBFromHandle( xTaskToDelete
);
1164 /* Remove task from the ready/delayed list. */
1165 if( uxListRemove( &( pxTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
1167 taskRESET_READY_PRIORITY( pxTCB
->uxPriority
);
1171 mtCOVERAGE_TEST_MARKER();
1174 /* Is the task waiting on an event also? */
1175 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) != NULL
)
1177 ( void ) uxListRemove( &( pxTCB
->xEventListItem
) );
1181 mtCOVERAGE_TEST_MARKER();
1184 /* Increment the uxTaskNumber also so kernel aware debuggers can
1185 * detect that the task lists need re-generating. This is done before
1186 * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
1190 if( pxTCB
== pxCurrentTCB
)
1192 /* A task is deleting itself. This cannot complete within the
1193 * task itself, as a context switch to another task is required.
1194 * Place the task in the termination list. The idle task will
1195 * check the termination list and free up any memory allocated by
1196 * the scheduler for the TCB and stack of the deleted task. */
1197 vListInsertEnd( &xTasksWaitingTermination
, &( pxTCB
->xStateListItem
) );
1199 /* Increment the ucTasksDeleted variable so the idle task knows
1200 * there is a task that has been deleted and that it should therefore
1201 * check the xTasksWaitingTermination list. */
1202 ++uxDeletedTasksWaitingCleanUp
;
1204 /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
1205 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
1206 traceTASK_DELETE( pxTCB
);
1208 /* The pre-delete hook is primarily for the Windows simulator,
1209 * in which Windows specific clean up operations are performed,
1210 * after which it is not possible to yield away from this task -
1211 * hence xYieldPending is used to latch that a context switch is
1213 portPRE_TASK_DELETE_HOOK( pxTCB
, &xYieldPending
);
1217 --uxCurrentNumberOfTasks
;
1218 traceTASK_DELETE( pxTCB
);
1219 prvDeleteTCB( pxTCB
);
1221 /* Reset the next expected unblock time in case it referred to
1222 * the task that has just been deleted. */
1223 prvResetNextTaskUnblockTime();
1226 taskEXIT_CRITICAL();
1228 /* Force a reschedule if it is the currently running task that has just
1230 if( xSchedulerRunning
!= pdFALSE
)
1232 if( pxTCB
== pxCurrentTCB
)
1234 configASSERT( uxSchedulerSuspended
== 0 );
1235 portYIELD_WITHIN_API();
1239 mtCOVERAGE_TEST_MARKER();
1244 #endif /* INCLUDE_vTaskDelete */
1245 /*-----------------------------------------------------------*/
1247 #if ( INCLUDE_xTaskDelayUntil == 1 )
1249 BaseType_t
xTaskDelayUntil( TickType_t
* const pxPreviousWakeTime
,
1250 const TickType_t xTimeIncrement
)
1252 TickType_t xTimeToWake
;
1253 BaseType_t xAlreadyYielded
, xShouldDelay
= pdFALSE
;
1255 configASSERT( pxPreviousWakeTime
);
1256 configASSERT( ( xTimeIncrement
> 0U ) );
1257 configASSERT( uxSchedulerSuspended
== 0 );
1261 /* Minor optimisation. The tick count cannot change in this
1263 const TickType_t xConstTickCount
= xTickCount
;
1265 /* Generate the tick time at which the task wants to wake. */
1266 xTimeToWake
= *pxPreviousWakeTime
+ xTimeIncrement
;
1268 if( xConstTickCount
< *pxPreviousWakeTime
)
1270 /* The tick count has overflowed since this function was
1271 * lasted called. In this case the only time we should ever
1272 * actually delay is if the wake time has also overflowed,
1273 * and the wake time is greater than the tick time. When this
1274 * is the case it is as if neither time had overflowed. */
1275 if( ( xTimeToWake
< *pxPreviousWakeTime
) && ( xTimeToWake
> xConstTickCount
) )
1277 xShouldDelay
= pdTRUE
;
1281 mtCOVERAGE_TEST_MARKER();
1286 /* The tick time has not overflowed. In this case we will
1287 * delay if either the wake time has overflowed, and/or the
1288 * tick time is less than the wake time. */
1289 if( ( xTimeToWake
< *pxPreviousWakeTime
) || ( xTimeToWake
> xConstTickCount
) )
1291 xShouldDelay
= pdTRUE
;
1295 mtCOVERAGE_TEST_MARKER();
1299 /* Update the wake time ready for the next call. */
1300 *pxPreviousWakeTime
= xTimeToWake
;
1302 if( xShouldDelay
!= pdFALSE
)
1304 traceTASK_DELAY_UNTIL( xTimeToWake
);
1306 /* prvAddCurrentTaskToDelayedList() needs the block time, not
1307 * the time to wake, so subtract the current tick count. */
1308 prvAddCurrentTaskToDelayedList( xTimeToWake
- xConstTickCount
, pdFALSE
);
1312 mtCOVERAGE_TEST_MARKER();
1315 xAlreadyYielded
= xTaskResumeAll();
1317 /* Force a reschedule if xTaskResumeAll has not already done so, we may
1318 * have put ourselves to sleep. */
1319 if( xAlreadyYielded
== pdFALSE
)
1321 portYIELD_WITHIN_API();
1325 mtCOVERAGE_TEST_MARKER();
1328 return xShouldDelay
;
1331 #endif /* INCLUDE_xTaskDelayUntil */
1332 /*-----------------------------------------------------------*/
1334 #if ( INCLUDE_vTaskDelay == 1 )
1336 void vTaskDelay( const TickType_t xTicksToDelay
)
1338 BaseType_t xAlreadyYielded
= pdFALSE
;
1340 /* A delay time of zero just forces a reschedule. */
1341 if( xTicksToDelay
> ( TickType_t
) 0U )
1343 configASSERT( uxSchedulerSuspended
== 0 );
1348 /* A task that is removed from the event list while the
1349 * scheduler is suspended will not get placed in the ready
1350 * list or removed from the blocked list until the scheduler
1353 * This task cannot be in an event list as it is the currently
1354 * executing task. */
1355 prvAddCurrentTaskToDelayedList( xTicksToDelay
, pdFALSE
);
1357 xAlreadyYielded
= xTaskResumeAll();
1361 mtCOVERAGE_TEST_MARKER();
1364 /* Force a reschedule if xTaskResumeAll has not already done so, we may
1365 * have put ourselves to sleep. */
1366 if( xAlreadyYielded
== pdFALSE
)
1368 portYIELD_WITHIN_API();
1372 mtCOVERAGE_TEST_MARKER();
1376 #endif /* INCLUDE_vTaskDelay */
1377 /*-----------------------------------------------------------*/
1379 #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
1381 eTaskState
eTaskGetState( TaskHandle_t xTask
)
1384 List_t
const * pxStateList
, * pxDelayedList
, * pxOverflowedDelayedList
;
1385 const TCB_t
* const pxTCB
= xTask
;
1387 configASSERT( pxTCB
);
1389 if( pxTCB
== pxCurrentTCB
)
1391 /* The task calling this function is querying its own state. */
1396 taskENTER_CRITICAL();
1398 pxStateList
= listLIST_ITEM_CONTAINER( &( pxTCB
->xStateListItem
) );
1399 pxDelayedList
= pxDelayedTaskList
;
1400 pxOverflowedDelayedList
= pxOverflowDelayedTaskList
;
1402 taskEXIT_CRITICAL();
1404 if( ( pxStateList
== pxDelayedList
) || ( pxStateList
== pxOverflowedDelayedList
) )
1406 /* The task being queried is referenced from one of the Blocked
1411 #if ( INCLUDE_vTaskSuspend == 1 )
1412 else if( pxStateList
== &xSuspendedTaskList
)
1414 /* The task being queried is referenced from the suspended
1415 * list. Is it genuinely suspended or is it blocked
1417 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) == NULL
)
1419 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
1423 /* The task does not appear on the event list item of
1424 * and of the RTOS objects, but could still be in the
1425 * blocked state if it is waiting on its notification
1426 * rather than waiting on an object. If not, is
1428 eReturn
= eSuspended
;
1430 for( x
= 0; x
< configTASK_NOTIFICATION_ARRAY_ENTRIES
; x
++ )
1432 if( pxTCB
->ucNotifyState
[ x
] == taskWAITING_NOTIFICATION
)
1439 #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
1441 eReturn
= eSuspended
;
1443 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
1450 #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
1452 #if ( INCLUDE_vTaskDelete == 1 )
1453 else if( ( pxStateList
== &xTasksWaitingTermination
) || ( pxStateList
== NULL
) )
1455 /* The task being queried is referenced from the deleted
1456 * tasks list, or it is not referenced from any lists at
1462 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
1464 /* If the task is not in any other state, it must be in the
1465 * Ready (including pending ready) state. */
1471 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
1473 #endif /* INCLUDE_eTaskGetState */
1474 /*-----------------------------------------------------------*/
1476 #if ( INCLUDE_uxTaskPriorityGet == 1 )
1478 UBaseType_t
uxTaskPriorityGet( const TaskHandle_t xTask
)
1480 TCB_t
const * pxTCB
;
1481 UBaseType_t uxReturn
;
1483 taskENTER_CRITICAL();
1485 /* If null is passed in here then it is the priority of the task
1486 * that called uxTaskPriorityGet() that is being queried. */
1487 pxTCB
= prvGetTCBFromHandle( xTask
);
1488 uxReturn
= pxTCB
->uxPriority
;
1490 taskEXIT_CRITICAL();
1495 #endif /* INCLUDE_uxTaskPriorityGet */
1496 /*-----------------------------------------------------------*/
1498 #if ( INCLUDE_uxTaskPriorityGet == 1 )
1500 UBaseType_t
uxTaskPriorityGetFromISR( const TaskHandle_t xTask
)
1502 TCB_t
const * pxTCB
;
1503 UBaseType_t uxReturn
, uxSavedInterruptState
;
1505 /* RTOS ports that support interrupt nesting have the concept of a
1506 * maximum system call (or maximum API call) interrupt priority.
1507 * Interrupts that are above the maximum system call priority are keep
1508 * permanently enabled, even when the RTOS kernel is in a critical section,
1509 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
1510 * is defined in FreeRTOSConfig.h then
1511 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1512 * failure if a FreeRTOS API function is called from an interrupt that has
1513 * been assigned a priority above the configured maximum system call
1514 * priority. Only FreeRTOS functions that end in FromISR can be called
1515 * from interrupts that have been assigned a priority at or (logically)
1516 * below the maximum system call interrupt priority. FreeRTOS maintains a
1517 * separate interrupt safe API to ensure interrupt entry is as fast and as
1518 * simple as possible. More information (albeit Cortex-M specific) is
1519 * provided on the following link:
1520 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1521 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1523 uxSavedInterruptState
= portSET_INTERRUPT_MASK_FROM_ISR();
1525 /* If null is passed in here then it is the priority of the calling
1526 * task that is being queried. */
1527 pxTCB
= prvGetTCBFromHandle( xTask
);
1528 uxReturn
= pxTCB
->uxPriority
;
1530 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState
);
1535 #endif /* INCLUDE_uxTaskPriorityGet */
1536 /*-----------------------------------------------------------*/
1538 #if ( INCLUDE_vTaskPrioritySet == 1 )
1540 void vTaskPrioritySet( TaskHandle_t xTask
,
1541 UBaseType_t uxNewPriority
)
1544 UBaseType_t uxCurrentBasePriority
, uxPriorityUsedOnEntry
;
1545 BaseType_t xYieldRequired
= pdFALSE
;
1547 configASSERT( ( uxNewPriority
< configMAX_PRIORITIES
) );
1549 /* Ensure the new priority is valid. */
1550 if( uxNewPriority
>= ( UBaseType_t
) configMAX_PRIORITIES
)
1552 uxNewPriority
= ( UBaseType_t
) configMAX_PRIORITIES
- ( UBaseType_t
) 1U;
1556 mtCOVERAGE_TEST_MARKER();
1559 taskENTER_CRITICAL();
1561 /* If null is passed in here then it is the priority of the calling
1562 * task that is being changed. */
1563 pxTCB
= prvGetTCBFromHandle( xTask
);
1565 traceTASK_PRIORITY_SET( pxTCB
, uxNewPriority
);
1567 #if ( configUSE_MUTEXES == 1 )
1569 uxCurrentBasePriority
= pxTCB
->uxBasePriority
;
1573 uxCurrentBasePriority
= pxTCB
->uxPriority
;
1577 if( uxCurrentBasePriority
!= uxNewPriority
)
1579 /* The priority change may have readied a task of higher
1580 * priority than the calling task. */
1581 if( uxNewPriority
> uxCurrentBasePriority
)
1583 if( pxTCB
!= pxCurrentTCB
)
1585 /* The priority of a task other than the currently
1586 * running task is being raised. Is the priority being
1587 * raised above that of the running task? */
1588 if( uxNewPriority
>= pxCurrentTCB
->uxPriority
)
1590 xYieldRequired
= pdTRUE
;
1594 mtCOVERAGE_TEST_MARKER();
1599 /* The priority of the running task is being raised,
1600 * but the running task must already be the highest
1601 * priority task able to run so no yield is required. */
1604 else if( pxTCB
== pxCurrentTCB
)
1606 /* Setting the priority of the running task down means
1607 * there may now be another task of higher priority that
1608 * is ready to execute. */
1609 xYieldRequired
= pdTRUE
;
1613 /* Setting the priority of any other task down does not
1614 * require a yield as the running task must be above the
1615 * new priority of the task being modified. */
1618 /* Remember the ready list the task might be referenced from
1619 * before its uxPriority member is changed so the
1620 * taskRESET_READY_PRIORITY() macro can function correctly. */
1621 uxPriorityUsedOnEntry
= pxTCB
->uxPriority
;
1623 #if ( configUSE_MUTEXES == 1 )
1625 /* Only change the priority being used if the task is not
1626 * currently using an inherited priority. */
1627 if( pxTCB
->uxBasePriority
== pxTCB
->uxPriority
)
1629 pxTCB
->uxPriority
= uxNewPriority
;
1633 mtCOVERAGE_TEST_MARKER();
1636 /* The base priority gets set whatever. */
1637 pxTCB
->uxBasePriority
= uxNewPriority
;
1639 #else /* if ( configUSE_MUTEXES == 1 ) */
1641 pxTCB
->uxPriority
= uxNewPriority
;
1643 #endif /* if ( configUSE_MUTEXES == 1 ) */
1645 /* Only reset the event list item value if the value is not
1646 * being used for anything else. */
1647 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB
->xEventListItem
) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE
) == 0UL )
1649 listSET_LIST_ITEM_VALUE( &( pxTCB
->xEventListItem
), ( ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) uxNewPriority
) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
1653 mtCOVERAGE_TEST_MARKER();
1656 /* If the task is in the blocked or suspended list we need do
1657 * nothing more than change its priority variable. However, if
1658 * the task is in a ready list it needs to be removed and placed
1659 * in the list appropriate to its new priority. */
1660 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists
[ uxPriorityUsedOnEntry
] ), &( pxTCB
->xStateListItem
) ) != pdFALSE
)
1662 /* The task is currently in its ready list - remove before
1663 * adding it to it's new ready list. As we are in a critical
1664 * section we can do this even if the scheduler is suspended. */
1665 if( uxListRemove( &( pxTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
1667 /* It is known that the task is in its ready list so
1668 * there is no need to check again and the port level
1669 * reset macro can be called directly. */
1670 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry
, uxTopReadyPriority
);
1674 mtCOVERAGE_TEST_MARKER();
1677 prvAddTaskToReadyList( pxTCB
);
1681 mtCOVERAGE_TEST_MARKER();
1684 if( xYieldRequired
!= pdFALSE
)
1686 taskYIELD_IF_USING_PREEMPTION();
1690 mtCOVERAGE_TEST_MARKER();
1693 /* Remove compiler warning about unused variables when the port
1694 * optimised task selection is not being used. */
1695 ( void ) uxPriorityUsedOnEntry
;
1698 taskEXIT_CRITICAL();
1701 #endif /* INCLUDE_vTaskPrioritySet */
1702 /*-----------------------------------------------------------*/
1704 #if ( INCLUDE_vTaskSuspend == 1 )
1706 void vTaskSuspend( TaskHandle_t xTaskToSuspend
)
1710 taskENTER_CRITICAL();
1712 /* If null is passed in here then it is the running task that is
1713 * being suspended. */
1714 pxTCB
= prvGetTCBFromHandle( xTaskToSuspend
);
1716 traceTASK_SUSPEND( pxTCB
);
1718 /* Remove task from the ready/delayed list and place in the
1719 * suspended list. */
1720 if( uxListRemove( &( pxTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
1722 taskRESET_READY_PRIORITY( pxTCB
->uxPriority
);
1726 mtCOVERAGE_TEST_MARKER();
1729 /* Is the task waiting on an event also? */
1730 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) != NULL
)
1732 ( void ) uxListRemove( &( pxTCB
->xEventListItem
) );
1736 mtCOVERAGE_TEST_MARKER();
1739 vListInsertEnd( &xSuspendedTaskList
, &( pxTCB
->xStateListItem
) );
1741 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
1745 for( x
= 0; x
< configTASK_NOTIFICATION_ARRAY_ENTRIES
; x
++ )
1747 if( pxTCB
->ucNotifyState
[ x
] == taskWAITING_NOTIFICATION
)
1749 /* The task was blocked to wait for a notification, but is
1750 * now suspended, so no notification was received. */
1751 pxTCB
->ucNotifyState
[ x
] = taskNOT_WAITING_NOTIFICATION
;
1755 #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
1757 taskEXIT_CRITICAL();
1759 if( xSchedulerRunning
!= pdFALSE
)
1761 /* Reset the next expected unblock time in case it referred to the
1762 * task that is now in the Suspended state. */
1763 taskENTER_CRITICAL();
1765 prvResetNextTaskUnblockTime();
1767 taskEXIT_CRITICAL();
1771 mtCOVERAGE_TEST_MARKER();
1774 if( pxTCB
== pxCurrentTCB
)
1776 if( xSchedulerRunning
!= pdFALSE
)
1778 /* The current task has just been suspended. */
1779 configASSERT( uxSchedulerSuspended
== 0 );
1780 portYIELD_WITHIN_API();
1784 /* The scheduler is not running, but the task that was pointed
1785 * to by pxCurrentTCB has just been suspended and pxCurrentTCB
1786 * must be adjusted to point to a different task. */
1787 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList
) == uxCurrentNumberOfTasks
) /*lint !e931 Right has no side effect, just volatile. */
1789 /* No other tasks are ready, so set pxCurrentTCB back to
1790 * NULL so when the next task is created pxCurrentTCB will
1791 * be set to point to it no matter what its relative priority
1793 pxCurrentTCB
= NULL
;
1797 vTaskSwitchContext();
1803 mtCOVERAGE_TEST_MARKER();
1807 #endif /* INCLUDE_vTaskSuspend */
1808 /*-----------------------------------------------------------*/
1810 #if ( INCLUDE_vTaskSuspend == 1 )
1812 static BaseType_t
prvTaskIsTaskSuspended( const TaskHandle_t xTask
)
1814 BaseType_t xReturn
= pdFALSE
;
1815 const TCB_t
* const pxTCB
= xTask
;
1817 /* Accesses xPendingReadyList so must be called from a critical
1820 /* It does not make sense to check if the calling task is suspended. */
1821 configASSERT( xTask
);
1823 /* Is the task being resumed actually in the suspended list? */
1824 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList
, &( pxTCB
->xStateListItem
) ) != pdFALSE
)
1826 /* Has the task already been resumed from within an ISR? */
1827 if( listIS_CONTAINED_WITHIN( &xPendingReadyList
, &( pxTCB
->xEventListItem
) ) == pdFALSE
)
1829 /* Is it in the suspended list because it is in the Suspended
1830 * state, or because is is blocked with no timeout? */
1831 if( listIS_CONTAINED_WITHIN( NULL
, &( pxTCB
->xEventListItem
) ) != pdFALSE
) /*lint !e961. The cast is only redundant when NULL is used. */
1837 mtCOVERAGE_TEST_MARKER();
1842 mtCOVERAGE_TEST_MARKER();
1847 mtCOVERAGE_TEST_MARKER();
1851 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
1853 #endif /* INCLUDE_vTaskSuspend */
1854 /*-----------------------------------------------------------*/
1856 #if ( INCLUDE_vTaskSuspend == 1 )
1858 void vTaskResume( TaskHandle_t xTaskToResume
)
1860 TCB_t
* const pxTCB
= xTaskToResume
;
1862 /* It does not make sense to resume the calling task. */
1863 configASSERT( xTaskToResume
);
1865 /* The parameter cannot be NULL as it is impossible to resume the
1866 * currently executing task. */
1867 if( ( pxTCB
!= pxCurrentTCB
) && ( pxTCB
!= NULL
) )
1869 taskENTER_CRITICAL();
1871 if( prvTaskIsTaskSuspended( pxTCB
) != pdFALSE
)
1873 traceTASK_RESUME( pxTCB
);
1875 /* The ready list can be accessed even if the scheduler is
1876 * suspended because this is inside a critical section. */
1877 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
1878 prvAddTaskToReadyList( pxTCB
);
1880 /* A higher priority task may have just been resumed. */
1881 if( pxTCB
->uxPriority
>= pxCurrentTCB
->uxPriority
)
1883 /* This yield may not cause the task just resumed to run,
1884 * but will leave the lists in the correct state for the
1886 taskYIELD_IF_USING_PREEMPTION();
1890 mtCOVERAGE_TEST_MARKER();
1895 mtCOVERAGE_TEST_MARKER();
1898 taskEXIT_CRITICAL();
1902 mtCOVERAGE_TEST_MARKER();
1906 #endif /* INCLUDE_vTaskSuspend */
1908 /*-----------------------------------------------------------*/
1910 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
1912 BaseType_t
xTaskResumeFromISR( TaskHandle_t xTaskToResume
)
1914 BaseType_t xYieldRequired
= pdFALSE
;
1915 TCB_t
* const pxTCB
= xTaskToResume
;
1916 UBaseType_t uxSavedInterruptStatus
;
1918 configASSERT( xTaskToResume
);
1920 /* RTOS ports that support interrupt nesting have the concept of a
1921 * maximum system call (or maximum API call) interrupt priority.
1922 * Interrupts that are above the maximum system call priority are keep
1923 * permanently enabled, even when the RTOS kernel is in a critical section,
1924 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
1925 * is defined in FreeRTOSConfig.h then
1926 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1927 * failure if a FreeRTOS API function is called from an interrupt that has
1928 * been assigned a priority above the configured maximum system call
1929 * priority. Only FreeRTOS functions that end in FromISR can be called
1930 * from interrupts that have been assigned a priority at or (logically)
1931 * below the maximum system call interrupt priority. FreeRTOS maintains a
1932 * separate interrupt safe API to ensure interrupt entry is as fast and as
1933 * simple as possible. More information (albeit Cortex-M specific) is
1934 * provided on the following link:
1935 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1936 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1938 uxSavedInterruptStatus
= portSET_INTERRUPT_MASK_FROM_ISR();
1940 if( prvTaskIsTaskSuspended( pxTCB
) != pdFALSE
)
1942 traceTASK_RESUME_FROM_ISR( pxTCB
);
1944 /* Check the ready lists can be accessed. */
1945 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
1947 /* Ready lists can be accessed so move the task from the
1948 * suspended list to the ready list directly. */
1949 if( pxTCB
->uxPriority
>= pxCurrentTCB
->uxPriority
)
1951 xYieldRequired
= pdTRUE
;
1953 /* Mark that a yield is pending in case the user is not
1954 * using the return value to initiate a context switch
1955 * from the ISR using portYIELD_FROM_ISR. */
1956 xYieldPending
= pdTRUE
;
1960 mtCOVERAGE_TEST_MARKER();
1963 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
1964 prvAddTaskToReadyList( pxTCB
);
1968 /* The delayed or ready lists cannot be accessed so the task
1969 * is held in the pending ready list until the scheduler is
1971 vListInsertEnd( &( xPendingReadyList
), &( pxTCB
->xEventListItem
) );
1976 mtCOVERAGE_TEST_MARKER();
1979 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus
);
1981 return xYieldRequired
;
1984 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
1985 /*-----------------------------------------------------------*/
1987 void vTaskStartScheduler( void )
1991 /* Add the idle task at the lowest priority. */
1992 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1994 StaticTask_t
* pxIdleTaskTCBBuffer
= NULL
;
1995 StackType_t
* pxIdleTaskStackBuffer
= NULL
;
1996 uint32_t ulIdleTaskStackSize
;
1998 /* The Idle task is created using user provided RAM - obtain the
1999 * address of the RAM then create the idle task. */
2000 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer
, &pxIdleTaskStackBuffer
, &ulIdleTaskStackSize
);
2001 xIdleTaskHandle
= xTaskCreateStatic( prvIdleTask
,
2002 configIDLE_TASK_NAME
,
2003 ulIdleTaskStackSize
,
2004 ( void * ) NULL
, /*lint !e961. The cast is not redundant for all compilers. */
2005 portPRIVILEGE_BIT
, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
2006 pxIdleTaskStackBuffer
,
2007 pxIdleTaskTCBBuffer
); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
2009 if( xIdleTaskHandle
!= NULL
)
2018 #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
2020 /* The Idle task is being created using dynamically allocated RAM. */
2021 xReturn
= xTaskCreate( prvIdleTask
,
2022 configIDLE_TASK_NAME
,
2023 configMINIMAL_STACK_SIZE
,
2025 portPRIVILEGE_BIT
, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
2026 &xIdleTaskHandle
); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
2028 #endif /* configSUPPORT_STATIC_ALLOCATION */
2030 #if ( configUSE_TIMERS == 1 )
2032 if( xReturn
== pdPASS
)
2034 xReturn
= xTimerCreateTimerTask();
2038 mtCOVERAGE_TEST_MARKER();
2041 #endif /* configUSE_TIMERS */
2043 if( xReturn
== pdPASS
)
2045 /* freertos_tasks_c_additions_init() should only be called if the user
2046 * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
2047 * the only macro called by the function. */
2048 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
2050 freertos_tasks_c_additions_init();
2054 /* Interrupts are turned off here, to ensure a tick does not occur
2055 * before or during the call to xPortStartScheduler(). The stacks of
2056 * the created tasks contain a status word with interrupts switched on
2057 * so interrupts will automatically get re-enabled when the first task
2059 portDISABLE_INTERRUPTS();
2061 #if ( configUSE_NEWLIB_REENTRANT == 1 )
2063 /* Switch Newlib's _impure_ptr variable to point to the _reent
2064 * structure specific to the task that will run first.
2065 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
2066 * for additional information. */
2067 _impure_ptr
= &( pxCurrentTCB
->xNewLib_reent
);
2069 #endif /* configUSE_NEWLIB_REENTRANT */
2071 xNextTaskUnblockTime
= portMAX_DELAY
;
2072 xSchedulerRunning
= pdTRUE
;
2073 xTickCount
= ( TickType_t
) configINITIAL_TICK_COUNT
;
2075 /* If configGENERATE_RUN_TIME_STATS is defined then the following
2076 * macro must be defined to configure the timer/counter used to generate
2077 * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
2078 * is set to 0 and the following line fails to build then ensure you do not
2079 * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
2080 * FreeRTOSConfig.h file. */
2081 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
2083 traceTASK_SWITCHED_IN();
2085 /* Setting up the timer tick is hardware specific and thus in the
2086 * portable interface. */
2087 if( xPortStartScheduler() != pdFALSE
)
2089 /* Should not reach here as if the scheduler is running the
2090 * function will not return. */
2094 /* Should only reach here if a task calls xTaskEndScheduler(). */
2099 /* This line will only be reached if the kernel could not be started,
2100 * because there was not enough FreeRTOS heap to create the idle task
2101 * or the timer task. */
2102 configASSERT( xReturn
!= errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
);
2105 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
2106 * meaning xIdleTaskHandle is not used anywhere else. */
2107 ( void ) xIdleTaskHandle
;
2109 /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
2110 * from getting optimized out as it is no longer used by the kernel. */
2111 ( void ) uxTopUsedPriority
;
2113 /*-----------------------------------------------------------*/
2115 void vTaskEndScheduler( void )
2117 /* Stop the scheduler interrupts and call the portable scheduler end
2118 * routine so the original ISRs can be restored if necessary. The port
2119 * layer must ensure interrupts enable bit is left in the correct state. */
2120 portDISABLE_INTERRUPTS();
2121 xSchedulerRunning
= pdFALSE
;
2122 vPortEndScheduler();
2124 /*----------------------------------------------------------*/
2126 void vTaskSuspendAll( void )
2128 /* A critical section is not required as the variable is of type
2129 * BaseType_t. Please read Richard Barry's reply in the following link to a
2130 * post in the FreeRTOS support forum before reporting this as a bug! -
2131 * https://goo.gl/wu4acr */
2133 /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
2134 * do not otherwise exhibit real time behaviour. */
2135 portSOFTWARE_BARRIER();
2137 /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
2138 * is used to allow calls to vTaskSuspendAll() to nest. */
2139 ++uxSchedulerSuspended
;
2141 /* Enforces ordering for ports and optimised compilers that may otherwise place
2142 * the above increment elsewhere. */
2143 portMEMORY_BARRIER();
2145 /*----------------------------------------------------------*/
2147 #if ( configUSE_TICKLESS_IDLE != 0 )
2149 static TickType_t
prvGetExpectedIdleTime( void )
2152 UBaseType_t uxHigherPriorityReadyTasks
= pdFALSE
;
2154 /* uxHigherPriorityReadyTasks takes care of the case where
2155 * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
2156 * task that are in the Ready state, even though the idle task is
2158 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
2160 if( uxTopReadyPriority
> tskIDLE_PRIORITY
)
2162 uxHigherPriorityReadyTasks
= pdTRUE
;
2167 const UBaseType_t uxLeastSignificantBit
= ( UBaseType_t
) 0x01;
2169 /* When port optimised task selection is used the uxTopReadyPriority
2170 * variable is used as a bit map. If bits other than the least
2171 * significant bit are set then there are tasks that have a priority
2172 * above the idle priority that are in the Ready state. This takes
2173 * care of the case where the co-operative scheduler is in use. */
2174 if( uxTopReadyPriority
> uxLeastSignificantBit
)
2176 uxHigherPriorityReadyTasks
= pdTRUE
;
2179 #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
2181 if( pxCurrentTCB
->uxPriority
> tskIDLE_PRIORITY
)
2185 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists
[ tskIDLE_PRIORITY
] ) ) > 1 )
2187 /* There are other idle priority tasks in the ready state. If
2188 * time slicing is used then the very next tick interrupt must be
2192 else if( uxHigherPriorityReadyTasks
!= pdFALSE
)
2194 /* There are tasks in the Ready state that have a priority above the
2195 * idle priority. This path can only be reached if
2196 * configUSE_PREEMPTION is 0. */
2201 xReturn
= xNextTaskUnblockTime
- xTickCount
;
2207 #endif /* configUSE_TICKLESS_IDLE */
2208 /*----------------------------------------------------------*/
2210 BaseType_t
xTaskResumeAll( void )
2212 TCB_t
* pxTCB
= NULL
;
2213 BaseType_t xAlreadyYielded
= pdFALSE
;
2215 /* If uxSchedulerSuspended is zero then this function does not match a
2216 * previous call to vTaskSuspendAll(). */
2217 configASSERT( uxSchedulerSuspended
);
2219 /* It is possible that an ISR caused a task to be removed from an event
2220 * list while the scheduler was suspended. If this was the case then the
2221 * removed task will have been added to the xPendingReadyList. Once the
2222 * scheduler has been resumed it is safe to move all the pending ready
2223 * tasks from this list into their appropriate ready list. */
2224 taskENTER_CRITICAL();
2226 --uxSchedulerSuspended
;
2228 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
2230 if( uxCurrentNumberOfTasks
> ( UBaseType_t
) 0U )
2232 /* Move any readied tasks from the pending list into the
2233 * appropriate ready list. */
2234 while( listLIST_IS_EMPTY( &xPendingReadyList
) == pdFALSE
)
2236 pxTCB
= listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList
) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
2237 ( void ) uxListRemove( &( pxTCB
->xEventListItem
) );
2238 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
2239 prvAddTaskToReadyList( pxTCB
);
2241 /* If the moved task has a priority higher than the current
2242 * task then a yield must be performed. */
2243 if( pxTCB
->uxPriority
>= pxCurrentTCB
->uxPriority
)
2245 xYieldPending
= pdTRUE
;
2249 mtCOVERAGE_TEST_MARKER();
2255 /* A task was unblocked while the scheduler was suspended,
2256 * which may have prevented the next unblock time from being
2257 * re-calculated, in which case re-calculate it now. Mainly
2258 * important for low power tickless implementations, where
2259 * this can prevent an unnecessary exit from low power
2261 prvResetNextTaskUnblockTime();
2264 /* If any ticks occurred while the scheduler was suspended then
2265 * they should be processed now. This ensures the tick count does
2266 * not slip, and that any delayed tasks are resumed at the correct
2269 TickType_t xPendedCounts
= xPendedTicks
; /* Non-volatile copy. */
2271 if( xPendedCounts
> ( TickType_t
) 0U )
2275 if( xTaskIncrementTick() != pdFALSE
)
2277 xYieldPending
= pdTRUE
;
2281 mtCOVERAGE_TEST_MARKER();
2285 } while( xPendedCounts
> ( TickType_t
) 0U );
2291 mtCOVERAGE_TEST_MARKER();
2295 if( xYieldPending
!= pdFALSE
)
2297 #if ( configUSE_PREEMPTION != 0 )
2299 xAlreadyYielded
= pdTRUE
;
2302 taskYIELD_IF_USING_PREEMPTION();
2306 mtCOVERAGE_TEST_MARKER();
2312 mtCOVERAGE_TEST_MARKER();
2315 taskEXIT_CRITICAL();
2317 return xAlreadyYielded
;
2319 /*-----------------------------------------------------------*/
2321 TickType_t
xTaskGetTickCount( void )
2325 /* Critical section required if running on a 16 bit processor. */
2326 portTICK_TYPE_ENTER_CRITICAL();
2328 xTicks
= xTickCount
;
2330 portTICK_TYPE_EXIT_CRITICAL();
2334 /*-----------------------------------------------------------*/
2336 TickType_t
xTaskGetTickCountFromISR( void )
2339 UBaseType_t uxSavedInterruptStatus
;
2341 /* RTOS ports that support interrupt nesting have the concept of a maximum
2342 * system call (or maximum API call) interrupt priority. Interrupts that are
2343 * above the maximum system call priority are kept permanently enabled, even
2344 * when the RTOS kernel is in a critical section, but cannot make any calls to
2345 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2346 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2347 * failure if a FreeRTOS API function is called from an interrupt that has been
2348 * assigned a priority above the configured maximum system call priority.
2349 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2350 * that have been assigned a priority at or (logically) below the maximum
2351 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2352 * safe API to ensure interrupt entry is as fast and as simple as possible.
2353 * More information (albeit Cortex-M specific) is provided on the following
2354 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2355 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2357 uxSavedInterruptStatus
= portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
2359 xReturn
= xTickCount
;
2361 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus
);
2365 /*-----------------------------------------------------------*/
2367 UBaseType_t
uxTaskGetNumberOfTasks( void )
2369 /* A critical section is not required because the variables are of type
2371 return uxCurrentNumberOfTasks
;
2373 /*-----------------------------------------------------------*/
2375 char * pcTaskGetName( TaskHandle_t xTaskToQuery
) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2379 /* If null is passed in here then the name of the calling task is being
2381 pxTCB
= prvGetTCBFromHandle( xTaskToQuery
);
2382 configASSERT( pxTCB
);
2383 return &( pxTCB
->pcTaskName
[ 0 ] );
2385 /*-----------------------------------------------------------*/
2387 #if ( INCLUDE_xTaskGetHandle == 1 )
2389 static TCB_t
* prvSearchForNameWithinSingleList( List_t
* pxList
,
2390 const char pcNameToQuery
[] )
2392 TCB_t
* pxNextTCB
, * pxFirstTCB
, * pxReturn
= NULL
;
2395 BaseType_t xBreakLoop
;
2397 /* This function is called with the scheduler suspended. */
2399 if( listCURRENT_LIST_LENGTH( pxList
) > ( UBaseType_t
) 0 )
2401 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB
, pxList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
2405 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB
, pxList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
2407 /* Check each character in the name looking for a match or
2409 xBreakLoop
= pdFALSE
;
2411 for( x
= ( UBaseType_t
) 0; x
< ( UBaseType_t
) configMAX_TASK_NAME_LEN
; x
++ )
2413 cNextChar
= pxNextTCB
->pcTaskName
[ x
];
2415 if( cNextChar
!= pcNameToQuery
[ x
] )
2417 /* Characters didn't match. */
2418 xBreakLoop
= pdTRUE
;
2420 else if( cNextChar
== ( char ) 0x00 )
2422 /* Both strings terminated, a match must have been
2424 pxReturn
= pxNextTCB
;
2425 xBreakLoop
= pdTRUE
;
2429 mtCOVERAGE_TEST_MARKER();
2432 if( xBreakLoop
!= pdFALSE
)
2438 if( pxReturn
!= NULL
)
2440 /* The handle has been found. */
2443 } while( pxNextTCB
!= pxFirstTCB
);
2447 mtCOVERAGE_TEST_MARKER();
2453 #endif /* INCLUDE_xTaskGetHandle */
2454 /*-----------------------------------------------------------*/
2456 #if ( INCLUDE_xTaskGetHandle == 1 )
2458 TaskHandle_t
xTaskGetHandle( const char * pcNameToQuery
) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2460 UBaseType_t uxQueue
= configMAX_PRIORITIES
;
2463 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
2464 configASSERT( strlen( pcNameToQuery
) < configMAX_TASK_NAME_LEN
);
2468 /* Search the ready lists. */
2472 pxTCB
= prvSearchForNameWithinSingleList( ( List_t
* ) &( pxReadyTasksLists
[ uxQueue
] ), pcNameToQuery
);
2476 /* Found the handle. */
2479 } while( uxQueue
> ( UBaseType_t
) tskIDLE_PRIORITY
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
2481 /* Search the delayed lists. */
2484 pxTCB
= prvSearchForNameWithinSingleList( ( List_t
* ) pxDelayedTaskList
, pcNameToQuery
);
2489 pxTCB
= prvSearchForNameWithinSingleList( ( List_t
* ) pxOverflowDelayedTaskList
, pcNameToQuery
);
2492 #if ( INCLUDE_vTaskSuspend == 1 )
2496 /* Search the suspended list. */
2497 pxTCB
= prvSearchForNameWithinSingleList( &xSuspendedTaskList
, pcNameToQuery
);
2502 #if ( INCLUDE_vTaskDelete == 1 )
2506 /* Search the deleted list. */
2507 pxTCB
= prvSearchForNameWithinSingleList( &xTasksWaitingTermination
, pcNameToQuery
);
2512 ( void ) xTaskResumeAll();
2517 #endif /* INCLUDE_xTaskGetHandle */
2518 /*-----------------------------------------------------------*/
2520 #if ( configUSE_TRACE_FACILITY == 1 )
2522 UBaseType_t
uxTaskGetSystemState( TaskStatus_t
* const pxTaskStatusArray
,
2523 const UBaseType_t uxArraySize
,
2524 uint32_t * const pulTotalRunTime
)
2526 UBaseType_t uxTask
= 0, uxQueue
= configMAX_PRIORITIES
;
2530 /* Is there a space in the array for each task in the system? */
2531 if( uxArraySize
>= uxCurrentNumberOfTasks
)
2533 /* Fill in an TaskStatus_t structure with information on each
2534 * task in the Ready state. */
2538 uxTask
+= prvListTasksWithinSingleList( &( pxTaskStatusArray
[ uxTask
] ), &( pxReadyTasksLists
[ uxQueue
] ), eReady
);
2539 } while( uxQueue
> ( UBaseType_t
) tskIDLE_PRIORITY
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
2541 /* Fill in an TaskStatus_t structure with information on each
2542 * task in the Blocked state. */
2543 uxTask
+= prvListTasksWithinSingleList( &( pxTaskStatusArray
[ uxTask
] ), ( List_t
* ) pxDelayedTaskList
, eBlocked
);
2544 uxTask
+= prvListTasksWithinSingleList( &( pxTaskStatusArray
[ uxTask
] ), ( List_t
* ) pxOverflowDelayedTaskList
, eBlocked
);
2546 #if ( INCLUDE_vTaskDelete == 1 )
2548 /* Fill in an TaskStatus_t structure with information on
2549 * each task that has been deleted but not yet cleaned up. */
2550 uxTask
+= prvListTasksWithinSingleList( &( pxTaskStatusArray
[ uxTask
] ), &xTasksWaitingTermination
, eDeleted
);
2554 #if ( INCLUDE_vTaskSuspend == 1 )
2556 /* Fill in an TaskStatus_t structure with information on
2557 * each task in the Suspended state. */
2558 uxTask
+= prvListTasksWithinSingleList( &( pxTaskStatusArray
[ uxTask
] ), &xSuspendedTaskList
, eSuspended
);
2562 #if ( configGENERATE_RUN_TIME_STATS == 1 )
2564 if( pulTotalRunTime
!= NULL
)
2566 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
2567 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime
) );
2569 *pulTotalRunTime
= portGET_RUN_TIME_COUNTER_VALUE();
2573 #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
2575 if( pulTotalRunTime
!= NULL
)
2577 *pulTotalRunTime
= 0;
2580 #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
2584 mtCOVERAGE_TEST_MARKER();
2587 ( void ) xTaskResumeAll();
2592 #endif /* configUSE_TRACE_FACILITY */
2593 /*----------------------------------------------------------*/
2595 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
2597 TaskHandle_t
xTaskGetIdleTaskHandle( void )
2599 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
2600 * started, then xIdleTaskHandle will be NULL. */
2601 configASSERT( ( xIdleTaskHandle
!= NULL
) );
2602 return xIdleTaskHandle
;
2605 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
2606 /*----------------------------------------------------------*/
2608 /* This conditional compilation should use inequality to 0, not equality to 1.
2609 * This is to ensure vTaskStepTick() is available when user defined low power mode
2610 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
2612 #if ( configUSE_TICKLESS_IDLE != 0 )
2614 void vTaskStepTick( const TickType_t xTicksToJump
)
2616 /* Correct the tick count value after a period during which the tick
2617 * was suppressed. Note this does *not* call the tick hook function for
2618 * each stepped tick. */
2619 configASSERT( ( xTickCount
+ xTicksToJump
) <= xNextTaskUnblockTime
);
2620 xTickCount
+= xTicksToJump
;
2621 traceINCREASE_TICK_COUNT( xTicksToJump
);
2624 #endif /* configUSE_TICKLESS_IDLE */
2625 /*----------------------------------------------------------*/
2627 BaseType_t
xTaskCatchUpTicks( TickType_t xTicksToCatchUp
)
2629 BaseType_t xYieldOccurred
;
2631 /* Must not be called with the scheduler suspended as the implementation
2632 * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
2633 configASSERT( uxSchedulerSuspended
== 0 );
2635 /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
2636 * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
2638 xPendedTicks
+= xTicksToCatchUp
;
2639 xYieldOccurred
= xTaskResumeAll();
2641 return xYieldOccurred
;
2643 /*----------------------------------------------------------*/
2645 #if ( INCLUDE_xTaskAbortDelay == 1 )
2647 BaseType_t
xTaskAbortDelay( TaskHandle_t xTask
)
2649 TCB_t
* pxTCB
= xTask
;
2652 configASSERT( pxTCB
);
2656 /* A task can only be prematurely removed from the Blocked state if
2657 * it is actually in the Blocked state. */
2658 if( eTaskGetState( xTask
) == eBlocked
)
2662 /* Remove the reference to the task from the blocked list. An
2663 * interrupt won't touch the xStateListItem because the
2664 * scheduler is suspended. */
2665 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
2667 /* Is the task waiting on an event also? If so remove it from
2668 * the event list too. Interrupts can touch the event list item,
2669 * even though the scheduler is suspended, so a critical section
2671 taskENTER_CRITICAL();
2673 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) != NULL
)
2675 ( void ) uxListRemove( &( pxTCB
->xEventListItem
) );
2677 /* This lets the task know it was forcibly removed from the
2678 * blocked state so it should not re-evaluate its block time and
2679 * then block again. */
2680 pxTCB
->ucDelayAborted
= pdTRUE
;
2684 mtCOVERAGE_TEST_MARKER();
2687 taskEXIT_CRITICAL();
2689 /* Place the unblocked task into the appropriate ready list. */
2690 prvAddTaskToReadyList( pxTCB
);
2692 /* A task being unblocked cannot cause an immediate context
2693 * switch if preemption is turned off. */
2694 #if ( configUSE_PREEMPTION == 1 )
2696 /* Preemption is on, but a context switch should only be
2697 * performed if the unblocked task has a priority that is
2698 * equal to or higher than the currently executing task. */
2699 if( pxTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
2701 /* Pend the yield to be performed when the scheduler
2702 * is unsuspended. */
2703 xYieldPending
= pdTRUE
;
2707 mtCOVERAGE_TEST_MARKER();
2710 #endif /* configUSE_PREEMPTION */
2717 ( void ) xTaskResumeAll();
2722 #endif /* INCLUDE_xTaskAbortDelay */
2723 /*----------------------------------------------------------*/
2725 BaseType_t
xTaskIncrementTick( void )
2728 TickType_t xItemValue
;
2729 BaseType_t xSwitchRequired
= pdFALSE
;
2731 /* Called by the portable layer each time a tick interrupt occurs.
2732 * Increments the tick then checks to see if the new tick value will cause any
2733 * tasks to be unblocked. */
2734 traceTASK_INCREMENT_TICK( xTickCount
);
2736 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
2738 /* Minor optimisation. The tick count cannot change in this
2740 const TickType_t xConstTickCount
= xTickCount
+ ( TickType_t
) 1;
2742 /* Increment the RTOS tick, switching the delayed and overflowed
2743 * delayed lists if it wraps to 0. */
2744 xTickCount
= xConstTickCount
;
2746 if( xConstTickCount
== ( TickType_t
) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
2748 taskSWITCH_DELAYED_LISTS();
2752 mtCOVERAGE_TEST_MARKER();
2755 /* See if this tick has made a timeout expire. Tasks are stored in
2756 * the queue in the order of their wake time - meaning once one task
2757 * has been found whose block time has not expired there is no need to
2758 * look any further down the list. */
2759 if( xConstTickCount
>= xNextTaskUnblockTime
)
2763 if( listLIST_IS_EMPTY( pxDelayedTaskList
) != pdFALSE
)
2765 /* The delayed list is empty. Set xNextTaskUnblockTime
2766 * to the maximum possible value so it is extremely
2768 * if( xTickCount >= xNextTaskUnblockTime ) test will pass
2769 * next time through. */
2770 xNextTaskUnblockTime
= portMAX_DELAY
; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
2775 /* The delayed list is not empty, get the value of the
2776 * item at the head of the delayed list. This is the time
2777 * at which the task at the head of the delayed list must
2778 * be removed from the Blocked state. */
2779 pxTCB
= listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
2780 xItemValue
= listGET_LIST_ITEM_VALUE( &( pxTCB
->xStateListItem
) );
2782 if( xConstTickCount
< xItemValue
)
2784 /* It is not time to unblock this item yet, but the
2785 * item value is the time at which the task at the head
2786 * of the blocked list must be removed from the Blocked
2787 * state - so record the item value in
2788 * xNextTaskUnblockTime. */
2789 xNextTaskUnblockTime
= xItemValue
;
2790 break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
2794 mtCOVERAGE_TEST_MARKER();
2797 /* It is time to remove the item from the Blocked state. */
2798 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
2800 /* Is the task waiting on an event also? If so remove
2801 * it from the event list. */
2802 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) != NULL
)
2804 ( void ) uxListRemove( &( pxTCB
->xEventListItem
) );
2808 mtCOVERAGE_TEST_MARKER();
2811 /* Place the unblocked task into the appropriate ready
2813 prvAddTaskToReadyList( pxTCB
);
2815 /* A task being unblocked cannot cause an immediate
2816 * context switch if preemption is turned off. */
2817 #if ( configUSE_PREEMPTION == 1 )
2819 /* Preemption is on, but a context switch should
2820 * only be performed if the unblocked task has a
2821 * priority that is equal to or higher than the
2822 * currently executing task. */
2823 if( pxTCB
->uxPriority
>= pxCurrentTCB
->uxPriority
)
2825 xSwitchRequired
= pdTRUE
;
2829 mtCOVERAGE_TEST_MARKER();
2832 #endif /* configUSE_PREEMPTION */
2837 /* Tasks of equal priority to the currently running task will share
2838 * processing time (time slice) if preemption is on, and the application
2839 * writer has not explicitly turned time slicing off. */
2840 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
2842 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists
[ pxCurrentTCB
->uxPriority
] ) ) > ( UBaseType_t
) 1 )
2844 xSwitchRequired
= pdTRUE
;
2848 mtCOVERAGE_TEST_MARKER();
2851 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
2853 #if ( configUSE_TICK_HOOK == 1 )
2855 /* Guard against the tick hook being called when the pended tick
2856 * count is being unwound (when the scheduler is being unlocked). */
2857 if( xPendedTicks
== ( TickType_t
) 0 )
2859 vApplicationTickHook();
2863 mtCOVERAGE_TEST_MARKER();
2866 #endif /* configUSE_TICK_HOOK */
2868 #if ( configUSE_PREEMPTION == 1 )
2870 if( xYieldPending
!= pdFALSE
)
2872 xSwitchRequired
= pdTRUE
;
2876 mtCOVERAGE_TEST_MARKER();
2879 #endif /* configUSE_PREEMPTION */
2885 /* The tick hook gets called at regular intervals, even if the
2886 * scheduler is locked. */
2887 #if ( configUSE_TICK_HOOK == 1 )
2889 vApplicationTickHook();
2894 return xSwitchRequired
;
2896 /*-----------------------------------------------------------*/
2898 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
2900 void vTaskSetApplicationTaskTag( TaskHandle_t xTask
,
2901 TaskHookFunction_t pxHookFunction
)
2905 /* If xTask is NULL then it is the task hook of the calling task that is
2909 xTCB
= ( TCB_t
* ) pxCurrentTCB
;
2916 /* Save the hook function in the TCB. A critical section is required as
2917 * the value can be accessed from an interrupt. */
2918 taskENTER_CRITICAL();
2920 xTCB
->pxTaskTag
= pxHookFunction
;
2922 taskEXIT_CRITICAL();
2925 #endif /* configUSE_APPLICATION_TASK_TAG */
2926 /*-----------------------------------------------------------*/
2928 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
2930 TaskHookFunction_t
xTaskGetApplicationTaskTag( TaskHandle_t xTask
)
2933 TaskHookFunction_t xReturn
;
2935 /* If xTask is NULL then set the calling task's hook. */
2936 pxTCB
= prvGetTCBFromHandle( xTask
);
2938 /* Save the hook function in the TCB. A critical section is required as
2939 * the value can be accessed from an interrupt. */
2940 taskENTER_CRITICAL();
2942 xReturn
= pxTCB
->pxTaskTag
;
2944 taskEXIT_CRITICAL();
2949 #endif /* configUSE_APPLICATION_TASK_TAG */
2950 /*-----------------------------------------------------------*/
2952 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
2954 TaskHookFunction_t
xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask
)
2957 TaskHookFunction_t xReturn
;
2958 UBaseType_t uxSavedInterruptStatus
;
2960 /* If xTask is NULL then set the calling task's hook. */
2961 pxTCB
= prvGetTCBFromHandle( xTask
);
2963 /* Save the hook function in the TCB. A critical section is required as
2964 * the value can be accessed from an interrupt. */
2965 uxSavedInterruptStatus
= portSET_INTERRUPT_MASK_FROM_ISR();
2967 xReturn
= pxTCB
->pxTaskTag
;
2969 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus
);
2974 #endif /* configUSE_APPLICATION_TASK_TAG */
2975 /*-----------------------------------------------------------*/
2977 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
2979 BaseType_t
xTaskCallApplicationTaskHook( TaskHandle_t xTask
,
2980 void * pvParameter
)
2985 /* If xTask is NULL then we are calling our own task hook. */
2988 xTCB
= pxCurrentTCB
;
2995 if( xTCB
->pxTaskTag
!= NULL
)
2997 xReturn
= xTCB
->pxTaskTag( pvParameter
);
3007 #endif /* configUSE_APPLICATION_TASK_TAG */
3008 /*-----------------------------------------------------------*/
3010 void vTaskSwitchContext( void )
3012 if( uxSchedulerSuspended
!= ( UBaseType_t
) pdFALSE
)
3014 /* The scheduler is currently suspended - do not allow a context
3016 xYieldPending
= pdTRUE
;
3020 xYieldPending
= pdFALSE
;
3021 traceTASK_SWITCHED_OUT();
3023 #if ( configGENERATE_RUN_TIME_STATS == 1 )
3025 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
3026 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime
);
3028 ulTotalRunTime
= portGET_RUN_TIME_COUNTER_VALUE();
3031 /* Add the amount of time the task has been running to the
3032 * accumulated time so far. The time the task started running was
3033 * stored in ulTaskSwitchedInTime. Note that there is no overflow
3034 * protection here so count values are only valid until the timer
3035 * overflows. The guard against negative values is to protect
3036 * against suspect run time stat counter implementations - which
3037 * are provided by the application, not the kernel. */
3038 if( ulTotalRunTime
> ulTaskSwitchedInTime
)
3040 pxCurrentTCB
->ulRunTimeCounter
+= ( ulTotalRunTime
- ulTaskSwitchedInTime
);
3044 mtCOVERAGE_TEST_MARKER();
3047 ulTaskSwitchedInTime
= ulTotalRunTime
;
3049 #endif /* configGENERATE_RUN_TIME_STATS */
3051 /* Check for stack overflow, if configured. */
3052 taskCHECK_FOR_STACK_OVERFLOW();
3054 /* Before the currently running task is switched out, save its errno. */
3055 #if ( configUSE_POSIX_ERRNO == 1 )
3057 pxCurrentTCB
->iTaskErrno
= FreeRTOS_errno
;
3061 /* Select a new task to run using either the generic C or port
3062 * optimised asm code. */
3063 taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3064 traceTASK_SWITCHED_IN();
3066 /* After the new task is switched in, update the global errno. */
3067 #if ( configUSE_POSIX_ERRNO == 1 )
3069 FreeRTOS_errno
= pxCurrentTCB
->iTaskErrno
;
3073 #if ( configUSE_NEWLIB_REENTRANT == 1 )
3075 /* Switch Newlib's _impure_ptr variable to point to the _reent
3076 * structure specific to this task.
3077 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
3078 * for additional information. */
3079 _impure_ptr
= &( pxCurrentTCB
->xNewLib_reent
);
3081 #endif /* configUSE_NEWLIB_REENTRANT */
3084 /*-----------------------------------------------------------*/
3086 void vTaskPlaceOnEventList( List_t
* const pxEventList
,
3087 const TickType_t xTicksToWait
)
3089 configASSERT( pxEventList
);
3091 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
3092 * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
3094 /* Place the event list item of the TCB in the appropriate event list.
3095 * This is placed in the list in priority order so the highest priority task
3096 * is the first to be woken by the event. The queue that contains the event
3097 * list is locked, preventing simultaneous access from interrupts. */
3098 vListInsert( pxEventList
, &( pxCurrentTCB
->xEventListItem
) );
3100 prvAddCurrentTaskToDelayedList( xTicksToWait
, pdTRUE
);
3102 /*-----------------------------------------------------------*/
3104 void vTaskPlaceOnUnorderedEventList( List_t
* pxEventList
,
3105 const TickType_t xItemValue
,
3106 const TickType_t xTicksToWait
)
3108 configASSERT( pxEventList
);
3110 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
3111 * the event groups implementation. */
3112 configASSERT( uxSchedulerSuspended
!= 0 );
3114 /* Store the item value in the event list item. It is safe to access the
3115 * event list item here as interrupts won't access the event list item of a
3116 * task that is not in the Blocked state. */
3117 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB
->xEventListItem
), xItemValue
| taskEVENT_LIST_ITEM_VALUE_IN_USE
);
3119 /* Place the event list item of the TCB at the end of the appropriate event
3120 * list. It is safe to access the event list here because it is part of an
3121 * event group implementation - and interrupts don't access event groups
3122 * directly (instead they access them indirectly by pending function calls to
3123 * the task level). */
3124 vListInsertEnd( pxEventList
, &( pxCurrentTCB
->xEventListItem
) );
3126 prvAddCurrentTaskToDelayedList( xTicksToWait
, pdTRUE
);
3128 /*-----------------------------------------------------------*/
3130 #if ( configUSE_TIMERS == 1 )
3132 void vTaskPlaceOnEventListRestricted( List_t
* const pxEventList
,
3133 TickType_t xTicksToWait
,
3134 const BaseType_t xWaitIndefinitely
)
3136 configASSERT( pxEventList
);
3138 /* This function should not be called by application code hence the
3139 * 'Restricted' in its name. It is not part of the public API. It is
3140 * designed for use by kernel code, and has special calling requirements -
3141 * it should be called with the scheduler suspended. */
3144 /* Place the event list item of the TCB in the appropriate event list.
3145 * In this case it is assume that this is the only task that is going to
3146 * be waiting on this event list, so the faster vListInsertEnd() function
3147 * can be used in place of vListInsert. */
3148 vListInsertEnd( pxEventList
, &( pxCurrentTCB
->xEventListItem
) );
3150 /* If the task should block indefinitely then set the block time to a
3151 * value that will be recognised as an indefinite delay inside the
3152 * prvAddCurrentTaskToDelayedList() function. */
3153 if( xWaitIndefinitely
!= pdFALSE
)
3155 xTicksToWait
= portMAX_DELAY
;
3158 traceTASK_DELAY_UNTIL( ( xTickCount
+ xTicksToWait
) );
3159 prvAddCurrentTaskToDelayedList( xTicksToWait
, xWaitIndefinitely
);
3162 #endif /* configUSE_TIMERS */
3163 /*-----------------------------------------------------------*/
3165 BaseType_t
xTaskRemoveFromEventList( const List_t
* const pxEventList
)
3167 TCB_t
* pxUnblockedTCB
;
3170 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
3171 * called from a critical section within an ISR. */
3173 /* The event list is sorted in priority order, so the first in the list can
3174 * be removed as it is known to be the highest priority. Remove the TCB from
3175 * the delayed list, and add it to the ready list.
3177 * If an event is for a queue that is locked then this function will never
3178 * get called - the lock count on the queue will get modified instead. This
3179 * means exclusive access to the event list is guaranteed here.
3181 * This function assumes that a check has already been made to ensure that
3182 * pxEventList is not empty. */
3183 pxUnblockedTCB
= listGET_OWNER_OF_HEAD_ENTRY( pxEventList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3184 configASSERT( pxUnblockedTCB
);
3185 ( void ) uxListRemove( &( pxUnblockedTCB
->xEventListItem
) );
3187 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
3189 ( void ) uxListRemove( &( pxUnblockedTCB
->xStateListItem
) );
3190 prvAddTaskToReadyList( pxUnblockedTCB
);
3192 #if ( configUSE_TICKLESS_IDLE != 0 )
3194 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
3195 * might be set to the blocked task's time out time. If the task is
3196 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
3197 * normally left unchanged, because it is automatically reset to a new
3198 * value when the tick count equals xNextTaskUnblockTime. However if
3199 * tickless idling is used it might be more important to enter sleep mode
3200 * at the earliest possible time - so reset xNextTaskUnblockTime here to
3201 * ensure it is updated at the earliest possible time. */
3202 prvResetNextTaskUnblockTime();
3208 /* The delayed and ready lists cannot be accessed, so hold this task
3209 * pending until the scheduler is resumed. */
3210 vListInsertEnd( &( xPendingReadyList
), &( pxUnblockedTCB
->xEventListItem
) );
3213 if( pxUnblockedTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
3215 /* Return true if the task removed from the event list has a higher
3216 * priority than the calling task. This allows the calling task to know if
3217 * it should force a context switch now. */
3220 /* Mark that a yield is pending in case the user is not using the
3221 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
3222 xYieldPending
= pdTRUE
;
3231 /*-----------------------------------------------------------*/
3233 void vTaskRemoveFromUnorderedEventList( ListItem_t
* pxEventListItem
,
3234 const TickType_t xItemValue
)
3236 TCB_t
* pxUnblockedTCB
;
3238 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
3239 * the event flags implementation. */
3240 configASSERT( uxSchedulerSuspended
!= pdFALSE
);
3242 /* Store the new item value in the event list. */
3243 listSET_LIST_ITEM_VALUE( pxEventListItem
, xItemValue
| taskEVENT_LIST_ITEM_VALUE_IN_USE
);
3245 /* Remove the event list form the event flag. Interrupts do not access
3247 pxUnblockedTCB
= listGET_LIST_ITEM_OWNER( pxEventListItem
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3248 configASSERT( pxUnblockedTCB
);
3249 ( void ) uxListRemove( pxEventListItem
);
3251 #if ( configUSE_TICKLESS_IDLE != 0 )
3253 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
3254 * might be set to the blocked task's time out time. If the task is
3255 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
3256 * normally left unchanged, because it is automatically reset to a new
3257 * value when the tick count equals xNextTaskUnblockTime. However if
3258 * tickless idling is used it might be more important to enter sleep mode
3259 * at the earliest possible time - so reset xNextTaskUnblockTime here to
3260 * ensure it is updated at the earliest possible time. */
3261 prvResetNextTaskUnblockTime();
3265 /* Remove the task from the delayed list and add it to the ready list. The
3266 * scheduler is suspended so interrupts will not be accessing the ready
3268 ( void ) uxListRemove( &( pxUnblockedTCB
->xStateListItem
) );
3269 prvAddTaskToReadyList( pxUnblockedTCB
);
3271 if( pxUnblockedTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
3273 /* The unblocked task has a priority above that of the calling task, so
3274 * a context switch is required. This function is called with the
3275 * scheduler suspended so xYieldPending is set so the context switch
3276 * occurs immediately that the scheduler is resumed (unsuspended). */
3277 xYieldPending
= pdTRUE
;
3280 /*-----------------------------------------------------------*/
3282 void vTaskSetTimeOutState( TimeOut_t
* const pxTimeOut
)
3284 configASSERT( pxTimeOut
);
3285 taskENTER_CRITICAL();
3287 pxTimeOut
->xOverflowCount
= xNumOfOverflows
;
3288 pxTimeOut
->xTimeOnEntering
= xTickCount
;
3290 taskEXIT_CRITICAL();
3292 /*-----------------------------------------------------------*/
3294 void vTaskInternalSetTimeOutState( TimeOut_t
* const pxTimeOut
)
3296 /* For internal use only as it does not use a critical section. */
3297 pxTimeOut
->xOverflowCount
= xNumOfOverflows
;
3298 pxTimeOut
->xTimeOnEntering
= xTickCount
;
3300 /*-----------------------------------------------------------*/
3302 BaseType_t
xTaskCheckForTimeOut( TimeOut_t
* const pxTimeOut
,
3303 TickType_t
* const pxTicksToWait
)
3307 configASSERT( pxTimeOut
);
3308 configASSERT( pxTicksToWait
);
3310 taskENTER_CRITICAL();
3312 /* Minor optimisation. The tick count cannot change in this block. */
3313 const TickType_t xConstTickCount
= xTickCount
;
3314 const TickType_t xElapsedTime
= xConstTickCount
- pxTimeOut
->xTimeOnEntering
;
3316 #if ( INCLUDE_xTaskAbortDelay == 1 )
3317 if( pxCurrentTCB
->ucDelayAborted
!= ( uint8_t ) pdFALSE
)
3319 /* The delay was aborted, which is not the same as a time out,
3320 * but has the same result. */
3321 pxCurrentTCB
->ucDelayAborted
= pdFALSE
;
3327 #if ( INCLUDE_vTaskSuspend == 1 )
3328 if( *pxTicksToWait
== portMAX_DELAY
)
3330 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
3331 * specified is the maximum block time then the task should block
3332 * indefinitely, and therefore never time out. */
3338 if( ( xNumOfOverflows
!= pxTimeOut
->xOverflowCount
) && ( xConstTickCount
>= pxTimeOut
->xTimeOnEntering
) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
3340 /* The tick count is greater than the time at which
3341 * vTaskSetTimeout() was called, but has also overflowed since
3342 * vTaskSetTimeOut() was called. It must have wrapped all the way
3343 * around and gone past again. This passed since vTaskSetTimeout()
3346 *pxTicksToWait
= ( TickType_t
) 0;
3348 else if( xElapsedTime
< *pxTicksToWait
) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
3350 /* Not a genuine timeout. Adjust parameters for time remaining. */
3351 *pxTicksToWait
-= xElapsedTime
;
3352 vTaskInternalSetTimeOutState( pxTimeOut
);
3357 *pxTicksToWait
= ( TickType_t
) 0;
3361 taskEXIT_CRITICAL();
3365 /*-----------------------------------------------------------*/
3367 void vTaskMissedYield( void )
3369 xYieldPending
= pdTRUE
;
3371 /*-----------------------------------------------------------*/
3373 #if ( configUSE_TRACE_FACILITY == 1 )
3375 UBaseType_t
uxTaskGetTaskNumber( TaskHandle_t xTask
)
3377 UBaseType_t uxReturn
;
3378 TCB_t
const * pxTCB
;
3383 uxReturn
= pxTCB
->uxTaskNumber
;
3393 #endif /* configUSE_TRACE_FACILITY */
3394 /*-----------------------------------------------------------*/
3396 #if ( configUSE_TRACE_FACILITY == 1 )
3398 void vTaskSetTaskNumber( TaskHandle_t xTask
,
3399 const UBaseType_t uxHandle
)
3406 pxTCB
->uxTaskNumber
= uxHandle
;
3410 #endif /* configUSE_TRACE_FACILITY */
3413 * -----------------------------------------------------------
3415 * ----------------------------------------------------------
3417 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
3418 * language extensions. The equivalent prototype for this function is:
3420 * void prvIdleTask( void *pvParameters );
3423 static portTASK_FUNCTION( prvIdleTask
, pvParameters
)
3425 /* Stop warnings. */
3426 ( void ) pvParameters
;
3428 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
3429 * SCHEDULER IS STARTED. **/
3431 /* In case a task that has a secure context deletes itself, in which case
3432 * the idle task is responsible for deleting the task's secure context, if
3434 portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE
);
3438 /* See if any tasks have deleted themselves - if so then the idle task
3439 * is responsible for freeing the deleted task's TCB and stack. */
3440 prvCheckTasksWaitingTermination();
3442 #if ( configUSE_PREEMPTION == 0 )
3444 /* If we are not using preemption we keep forcing a task switch to
3445 * see if any other task has become available. If we are using
3446 * preemption we don't need to do this as any task becoming available
3447 * will automatically get the processor anyway. */
3450 #endif /* configUSE_PREEMPTION */
3452 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
3454 /* When using preemption tasks of equal priority will be
3455 * timesliced. If a task that is sharing the idle priority is ready
3456 * to run then the idle task should yield before the end of the
3459 * A critical region is not required here as we are just reading from
3460 * the list, and an occasional incorrect value will not matter. If
3461 * the ready list at the idle priority contains more than one task
3462 * then a task other than the idle task is ready to execute. */
3463 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists
[ tskIDLE_PRIORITY
] ) ) > ( UBaseType_t
) 1 )
3469 mtCOVERAGE_TEST_MARKER();
3472 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
3474 #if ( configUSE_IDLE_HOOK == 1 )
3476 extern void vApplicationIdleHook( void );
3478 /* Call the user defined function from within the idle task. This
3479 * allows the application designer to add background functionality
3480 * without the overhead of a separate task.
3481 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
3482 * CALL A FUNCTION THAT MIGHT BLOCK. */
3483 vApplicationIdleHook();
3485 #endif /* configUSE_IDLE_HOOK */
3487 /* This conditional compilation should use inequality to 0, not equality
3488 * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
3489 * user defined low power mode implementations require
3490 * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
3491 #if ( configUSE_TICKLESS_IDLE != 0 )
3493 TickType_t xExpectedIdleTime
;
3495 /* It is not desirable to suspend then resume the scheduler on
3496 * each iteration of the idle task. Therefore, a preliminary
3497 * test of the expected idle time is performed without the
3498 * scheduler suspended. The result here is not necessarily
3500 xExpectedIdleTime
= prvGetExpectedIdleTime();
3502 if( xExpectedIdleTime
>= configEXPECTED_IDLE_TIME_BEFORE_SLEEP
)
3506 /* Now the scheduler is suspended, the expected idle
3507 * time can be sampled again, and this time its value can
3509 configASSERT( xNextTaskUnblockTime
>= xTickCount
);
3510 xExpectedIdleTime
= prvGetExpectedIdleTime();
3512 /* Define the following macro to set xExpectedIdleTime to 0
3513 * if the application does not want
3514 * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
3515 configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime
);
3517 if( xExpectedIdleTime
>= configEXPECTED_IDLE_TIME_BEFORE_SLEEP
)
3519 traceLOW_POWER_IDLE_BEGIN();
3520 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime
);
3521 traceLOW_POWER_IDLE_END();
3525 mtCOVERAGE_TEST_MARKER();
3528 ( void ) xTaskResumeAll();
3532 mtCOVERAGE_TEST_MARKER();
3535 #endif /* configUSE_TICKLESS_IDLE */
3538 /*-----------------------------------------------------------*/
3540 #if ( configUSE_TICKLESS_IDLE != 0 )
3542 eSleepModeStatus
eTaskConfirmSleepModeStatus( void )
3544 /* The idle task exists in addition to the application tasks. */
3545 const UBaseType_t uxNonApplicationTasks
= 1;
3546 eSleepModeStatus eReturn
= eStandardSleep
;
3548 /* This function must be called from a critical section. */
3550 if( listCURRENT_LIST_LENGTH( &xPendingReadyList
) != 0 )
3552 /* A task was made ready while the scheduler was suspended. */
3553 eReturn
= eAbortSleep
;
3555 else if( xYieldPending
!= pdFALSE
)
3557 /* A yield was pended while the scheduler was suspended. */
3558 eReturn
= eAbortSleep
;
3560 else if( xPendedTicks
!= 0 )
3562 /* A tick interrupt has already occurred but was held pending
3563 * because the scheduler is suspended. */
3564 eReturn
= eAbortSleep
;
3568 /* If all the tasks are in the suspended list (which might mean they
3569 * have an infinite block time rather than actually being suspended)
3570 * then it is safe to turn all clocks off and just wait for external
3572 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList
) == ( uxCurrentNumberOfTasks
- uxNonApplicationTasks
) )
3574 eReturn
= eNoTasksWaitingTimeout
;
3578 mtCOVERAGE_TEST_MARKER();
3585 #endif /* configUSE_TICKLESS_IDLE */
3586 /*-----------------------------------------------------------*/
3588 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
3590 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet
,
3596 if( xIndex
< configNUM_THREAD_LOCAL_STORAGE_POINTERS
)
3598 pxTCB
= prvGetTCBFromHandle( xTaskToSet
);
3599 configASSERT( pxTCB
!= NULL
);
3600 pxTCB
->pvThreadLocalStoragePointers
[ xIndex
] = pvValue
;
3604 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
3605 /*-----------------------------------------------------------*/
3607 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
3609 void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery
,
3612 void * pvReturn
= NULL
;
3615 if( xIndex
< configNUM_THREAD_LOCAL_STORAGE_POINTERS
)
3617 pxTCB
= prvGetTCBFromHandle( xTaskToQuery
);
3618 pvReturn
= pxTCB
->pvThreadLocalStoragePointers
[ xIndex
];
3628 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
3629 /*-----------------------------------------------------------*/
3631 #if ( portUSING_MPU_WRAPPERS == 1 )
3633 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify
,
3634 const MemoryRegion_t
* const xRegions
)
3638 /* If null is passed in here then we are modifying the MPU settings of
3639 * the calling task. */
3640 pxTCB
= prvGetTCBFromHandle( xTaskToModify
);
3642 vPortStoreTaskMPUSettings( &( pxTCB
->xMPUSettings
), xRegions
, NULL
, 0 );
3645 #endif /* portUSING_MPU_WRAPPERS */
3646 /*-----------------------------------------------------------*/
3648 static void prvInitialiseTaskLists( void )
3650 UBaseType_t uxPriority
;
3652 for( uxPriority
= ( UBaseType_t
) 0U; uxPriority
< ( UBaseType_t
) configMAX_PRIORITIES
; uxPriority
++ )
3654 vListInitialise( &( pxReadyTasksLists
[ uxPriority
] ) );
3657 vListInitialise( &xDelayedTaskList1
);
3658 vListInitialise( &xDelayedTaskList2
);
3659 vListInitialise( &xPendingReadyList
);
3661 #if ( INCLUDE_vTaskDelete == 1 )
3663 vListInitialise( &xTasksWaitingTermination
);
3665 #endif /* INCLUDE_vTaskDelete */
3667 #if ( INCLUDE_vTaskSuspend == 1 )
3669 vListInitialise( &xSuspendedTaskList
);
3671 #endif /* INCLUDE_vTaskSuspend */
3673 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
3675 pxDelayedTaskList
= &xDelayedTaskList1
;
3676 pxOverflowDelayedTaskList
= &xDelayedTaskList2
;
3678 /*-----------------------------------------------------------*/
3680 static void prvCheckTasksWaitingTermination( void )
3682 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
3684 #if ( INCLUDE_vTaskDelete == 1 )
3688 /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
3689 * being called too often in the idle task. */
3690 while( uxDeletedTasksWaitingCleanUp
> ( UBaseType_t
) 0U )
3692 taskENTER_CRITICAL();
3694 pxTCB
= listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination
) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3695 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
3696 --uxCurrentNumberOfTasks
;
3697 --uxDeletedTasksWaitingCleanUp
;
3699 taskEXIT_CRITICAL();
3701 prvDeleteTCB( pxTCB
);
3704 #endif /* INCLUDE_vTaskDelete */
3706 /*-----------------------------------------------------------*/
3708 #if ( configUSE_TRACE_FACILITY == 1 )
3710 void vTaskGetInfo( TaskHandle_t xTask
,
3711 TaskStatus_t
* pxTaskStatus
,
3712 BaseType_t xGetFreeStackSpace
,
3717 /* xTask is NULL then get the state of the calling task. */
3718 pxTCB
= prvGetTCBFromHandle( xTask
);
3720 pxTaskStatus
->xHandle
= ( TaskHandle_t
) pxTCB
;
3721 pxTaskStatus
->pcTaskName
= ( const char * ) &( pxTCB
->pcTaskName
[ 0 ] );
3722 pxTaskStatus
->uxCurrentPriority
= pxTCB
->uxPriority
;
3723 pxTaskStatus
->pxStackBase
= pxTCB
->pxStack
;
3724 pxTaskStatus
->xTaskNumber
= pxTCB
->uxTCBNumber
;
3726 #if ( configUSE_MUTEXES == 1 )
3728 pxTaskStatus
->uxBasePriority
= pxTCB
->uxBasePriority
;
3732 pxTaskStatus
->uxBasePriority
= 0;
3736 #if ( configGENERATE_RUN_TIME_STATS == 1 )
3738 pxTaskStatus
->ulRunTimeCounter
= pxTCB
->ulRunTimeCounter
;
3742 pxTaskStatus
->ulRunTimeCounter
= 0;
3746 /* Obtaining the task state is a little fiddly, so is only done if the
3747 * value of eState passed into this function is eInvalid - otherwise the
3748 * state is just set to whatever is passed in. */
3749 if( eState
!= eInvalid
)
3751 if( pxTCB
== pxCurrentTCB
)
3753 pxTaskStatus
->eCurrentState
= eRunning
;
3757 pxTaskStatus
->eCurrentState
= eState
;
3759 #if ( INCLUDE_vTaskSuspend == 1 )
3761 /* If the task is in the suspended list then there is a
3762 * chance it is actually just blocked indefinitely - so really
3763 * it should be reported as being in the Blocked state. */
3764 if( eState
== eSuspended
)
3768 if( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) != NULL
)
3770 pxTaskStatus
->eCurrentState
= eBlocked
;
3773 ( void ) xTaskResumeAll();
3776 #endif /* INCLUDE_vTaskSuspend */
3781 pxTaskStatus
->eCurrentState
= eTaskGetState( pxTCB
);
3784 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
3785 * parameter is provided to allow it to be skipped. */
3786 if( xGetFreeStackSpace
!= pdFALSE
)
3788 #if ( portSTACK_GROWTH > 0 )
3790 pxTaskStatus
->usStackHighWaterMark
= prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB
->pxEndOfStack
);
3794 pxTaskStatus
->usStackHighWaterMark
= prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB
->pxStack
);
3800 pxTaskStatus
->usStackHighWaterMark
= 0;
3804 #endif /* configUSE_TRACE_FACILITY */
3805 /*-----------------------------------------------------------*/
3807 #if ( configUSE_TRACE_FACILITY == 1 )
3809 static UBaseType_t
prvListTasksWithinSingleList( TaskStatus_t
* pxTaskStatusArray
,
3813 configLIST_VOLATILE TCB_t
* pxNextTCB
, * pxFirstTCB
;
3814 UBaseType_t uxTask
= 0;
3816 if( listCURRENT_LIST_LENGTH( pxList
) > ( UBaseType_t
) 0 )
3818 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB
, pxList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3820 /* Populate an TaskStatus_t structure within the
3821 * pxTaskStatusArray array for each task that is referenced from
3822 * pxList. See the definition of TaskStatus_t in task.h for the
3823 * meaning of each TaskStatus_t structure member. */
3826 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB
, pxList
); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
3827 vTaskGetInfo( ( TaskHandle_t
) pxNextTCB
, &( pxTaskStatusArray
[ uxTask
] ), pdTRUE
, eState
);
3829 } while( pxNextTCB
!= pxFirstTCB
);
3833 mtCOVERAGE_TEST_MARKER();
3839 #endif /* configUSE_TRACE_FACILITY */
3840 /*-----------------------------------------------------------*/
3842 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
3844 static configSTACK_DEPTH_TYPE
prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte
)
3846 uint32_t ulCount
= 0U;
3848 while( *pucStackByte
== ( uint8_t ) tskSTACK_FILL_BYTE
)
3850 pucStackByte
-= portSTACK_GROWTH
;
3854 ulCount
/= ( uint32_t ) sizeof( StackType_t
); /*lint !e961 Casting is not redundant on smaller architectures. */
3856 return ( configSTACK_DEPTH_TYPE
) ulCount
;
3859 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
3860 /*-----------------------------------------------------------*/
3862 #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
3864 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
3865 * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
3866 * user to determine the return type. It gets around the problem of the value
3867 * overflowing on 8-bit types without breaking backward compatibility for
3868 * applications that expect an 8-bit return type. */
3869 configSTACK_DEPTH_TYPE
uxTaskGetStackHighWaterMark2( TaskHandle_t xTask
)
3872 uint8_t * pucEndOfStack
;
3873 configSTACK_DEPTH_TYPE uxReturn
;
3875 /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
3876 * the same except for their return type. Using configSTACK_DEPTH_TYPE
3877 * allows the user to determine the return type. It gets around the
3878 * problem of the value overflowing on 8-bit types without breaking
3879 * backward compatibility for applications that expect an 8-bit return
3882 pxTCB
= prvGetTCBFromHandle( xTask
);
3884 #if portSTACK_GROWTH < 0
3886 pucEndOfStack
= ( uint8_t * ) pxTCB
->pxStack
;
3890 pucEndOfStack
= ( uint8_t * ) pxTCB
->pxEndOfStack
;
3894 uxReturn
= prvTaskCheckFreeStackSpace( pucEndOfStack
);
3899 #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
3900 /*-----------------------------------------------------------*/
3902 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
3904 UBaseType_t
uxTaskGetStackHighWaterMark( TaskHandle_t xTask
)
3907 uint8_t * pucEndOfStack
;
3908 UBaseType_t uxReturn
;
3910 pxTCB
= prvGetTCBFromHandle( xTask
);
3912 #if portSTACK_GROWTH < 0
3914 pucEndOfStack
= ( uint8_t * ) pxTCB
->pxStack
;
3918 pucEndOfStack
= ( uint8_t * ) pxTCB
->pxEndOfStack
;
3922 uxReturn
= ( UBaseType_t
) prvTaskCheckFreeStackSpace( pucEndOfStack
);
3927 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
3928 /*-----------------------------------------------------------*/
3930 #if ( INCLUDE_vTaskDelete == 1 )
3932 static void prvDeleteTCB( TCB_t
* pxTCB
)
3934 /* This call is required specifically for the TriCore port. It must be
3935 * above the vPortFree() calls. The call is also used by ports/demos that
3936 * want to allocate and clean RAM statically. */
3937 portCLEAN_UP_TCB( pxTCB
);
3939 /* Free up the memory allocated by the scheduler for the task. It is up
3940 * to the task to free any memory allocated at the application level.
3941 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
3942 * for additional information. */
3943 #if ( configUSE_NEWLIB_REENTRANT == 1 )
3945 _reclaim_reent( &( pxTCB
->xNewLib_reent
) );
3947 #endif /* configUSE_NEWLIB_REENTRANT */
3949 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
3951 /* The task can only have been allocated dynamically - free both
3952 * the stack and TCB. */
3953 vPortFree( pxTCB
->pxStack
);
3956 #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
3958 /* The task could have been allocated statically or dynamically, so
3959 * check what was statically allocated before trying to free the
3961 if( pxTCB
->ucStaticallyAllocated
== tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB
)
3963 /* Both the stack and TCB were allocated dynamically, so both
3965 vPortFree( pxTCB
->pxStack
);
3968 else if( pxTCB
->ucStaticallyAllocated
== tskSTATICALLY_ALLOCATED_STACK_ONLY
)
3970 /* Only the stack was statically allocated, so the TCB is the
3971 * only memory that must be freed. */
3976 /* Neither the stack nor the TCB were allocated dynamically, so
3977 * nothing needs to be freed. */
3978 configASSERT( pxTCB
->ucStaticallyAllocated
== tskSTATICALLY_ALLOCATED_STACK_AND_TCB
);
3979 mtCOVERAGE_TEST_MARKER();
3982 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
3985 #endif /* INCLUDE_vTaskDelete */
3986 /*-----------------------------------------------------------*/
3988 static void prvResetNextTaskUnblockTime( void )
3990 if( listLIST_IS_EMPTY( pxDelayedTaskList
) != pdFALSE
)
3992 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
3993 * the maximum possible value so it is extremely unlikely that the
3994 * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
3995 * there is an item in the delayed list. */
3996 xNextTaskUnblockTime
= portMAX_DELAY
;
4000 /* The new current delayed list is not empty, get the value of
4001 * the item at the head of the delayed list. This is the time at
4002 * which the task at the head of the delayed list should be removed
4003 * from the Blocked state. */
4004 xNextTaskUnblockTime
= listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList
);
4007 /*-----------------------------------------------------------*/
4009 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
4011 TaskHandle_t
xTaskGetCurrentTaskHandle( void )
4013 TaskHandle_t xReturn
;
4015 /* A critical section is not required as this is not called from
4016 * an interrupt and the current TCB will always be the same for any
4017 * individual execution thread. */
4018 xReturn
= pxCurrentTCB
;
4023 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
4024 /*-----------------------------------------------------------*/
4026 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
4028 BaseType_t
xTaskGetSchedulerState( void )
4032 if( xSchedulerRunning
== pdFALSE
)
4034 xReturn
= taskSCHEDULER_NOT_STARTED
;
4038 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
4040 xReturn
= taskSCHEDULER_RUNNING
;
4044 xReturn
= taskSCHEDULER_SUSPENDED
;
4051 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
4052 /*-----------------------------------------------------------*/
4054 #if ( configUSE_MUTEXES == 1 )
4056 BaseType_t
xTaskPriorityInherit( TaskHandle_t
const pxMutexHolder
)
4058 TCB_t
* const pxMutexHolderTCB
= pxMutexHolder
;
4059 BaseType_t xReturn
= pdFALSE
;
4061 /* If the mutex was given back by an interrupt while the queue was
4062 * locked then the mutex holder might now be NULL. _RB_ Is this still
4063 * needed as interrupts can no longer use mutexes? */
4064 if( pxMutexHolder
!= NULL
)
4066 /* If the holder of the mutex has a priority below the priority of
4067 * the task attempting to obtain the mutex then it will temporarily
4068 * inherit the priority of the task attempting to obtain the mutex. */
4069 if( pxMutexHolderTCB
->uxPriority
< pxCurrentTCB
->uxPriority
)
4071 /* Adjust the mutex holder state to account for its new
4072 * priority. Only reset the event list item value if the value is
4073 * not being used for anything else. */
4074 if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB
->xEventListItem
) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE
) == 0UL )
4076 listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB
->xEventListItem
), ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) pxCurrentTCB
->uxPriority
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
4080 mtCOVERAGE_TEST_MARKER();
4083 /* If the task being modified is in the ready state it will need
4084 * to be moved into a new list. */
4085 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists
[ pxMutexHolderTCB
->uxPriority
] ), &( pxMutexHolderTCB
->xStateListItem
) ) != pdFALSE
)
4087 if( uxListRemove( &( pxMutexHolderTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
4089 /* It is known that the task is in its ready list so
4090 * there is no need to check again and the port level
4091 * reset macro can be called directly. */
4092 portRESET_READY_PRIORITY( pxMutexHolderTCB
->uxPriority
, uxTopReadyPriority
);
4096 mtCOVERAGE_TEST_MARKER();
4099 /* Inherit the priority before being moved into the new list. */
4100 pxMutexHolderTCB
->uxPriority
= pxCurrentTCB
->uxPriority
;
4101 prvAddTaskToReadyList( pxMutexHolderTCB
);
4105 /* Just inherit the priority. */
4106 pxMutexHolderTCB
->uxPriority
= pxCurrentTCB
->uxPriority
;
4109 traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB
, pxCurrentTCB
->uxPriority
);
4111 /* Inheritance occurred. */
4116 if( pxMutexHolderTCB
->uxBasePriority
< pxCurrentTCB
->uxPriority
)
4118 /* The base priority of the mutex holder is lower than the
4119 * priority of the task attempting to take the mutex, but the
4120 * current priority of the mutex holder is not lower than the
4121 * priority of the task attempting to take the mutex.
4122 * Therefore the mutex holder must have already inherited a
4123 * priority, but inheritance would have occurred if that had
4124 * not been the case. */
4129 mtCOVERAGE_TEST_MARKER();
4135 mtCOVERAGE_TEST_MARKER();
4141 #endif /* configUSE_MUTEXES */
4142 /*-----------------------------------------------------------*/
4144 #if ( configUSE_MUTEXES == 1 )
4146 BaseType_t
xTaskPriorityDisinherit( TaskHandle_t
const pxMutexHolder
)
4148 TCB_t
* const pxTCB
= pxMutexHolder
;
4149 BaseType_t xReturn
= pdFALSE
;
4151 if( pxMutexHolder
!= NULL
)
4153 /* A task can only have an inherited priority if it holds the mutex.
4154 * If the mutex is held by a task then it cannot be given from an
4155 * interrupt, and if a mutex is given by the holding task then it must
4156 * be the running state task. */
4157 configASSERT( pxTCB
== pxCurrentTCB
);
4158 configASSERT( pxTCB
->uxMutexesHeld
);
4159 ( pxTCB
->uxMutexesHeld
)--;
4161 /* Has the holder of the mutex inherited the priority of another
4163 if( pxTCB
->uxPriority
!= pxTCB
->uxBasePriority
)
4165 /* Only disinherit if no other mutexes are held. */
4166 if( pxTCB
->uxMutexesHeld
== ( UBaseType_t
) 0 )
4168 /* A task can only have an inherited priority if it holds
4169 * the mutex. If the mutex is held by a task then it cannot be
4170 * given from an interrupt, and if a mutex is given by the
4171 * holding task then it must be the running state task. Remove
4172 * the holding task from the ready list. */
4173 if( uxListRemove( &( pxTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
4175 portRESET_READY_PRIORITY( pxTCB
->uxPriority
, uxTopReadyPriority
);
4179 mtCOVERAGE_TEST_MARKER();
4182 /* Disinherit the priority before adding the task into the
4183 * new ready list. */
4184 traceTASK_PRIORITY_DISINHERIT( pxTCB
, pxTCB
->uxBasePriority
);
4185 pxTCB
->uxPriority
= pxTCB
->uxBasePriority
;
4187 /* Reset the event list item value. It cannot be in use for
4188 * any other purpose if this task is running, and it must be
4189 * running to give back the mutex. */
4190 listSET_LIST_ITEM_VALUE( &( pxTCB
->xEventListItem
), ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) pxTCB
->uxPriority
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
4191 prvAddTaskToReadyList( pxTCB
);
4193 /* Return true to indicate that a context switch is required.
4194 * This is only actually required in the corner case whereby
4195 * multiple mutexes were held and the mutexes were given back
4196 * in an order different to that in which they were taken.
4197 * If a context switch did not occur when the first mutex was
4198 * returned, even if a task was waiting on it, then a context
4199 * switch should occur when the last mutex is returned whether
4200 * a task is waiting on it or not. */
4205 mtCOVERAGE_TEST_MARKER();
4210 mtCOVERAGE_TEST_MARKER();
4215 mtCOVERAGE_TEST_MARKER();
4221 #endif /* configUSE_MUTEXES */
4222 /*-----------------------------------------------------------*/
4224 #if ( configUSE_MUTEXES == 1 )
4226 void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t
const pxMutexHolder
,
4227 UBaseType_t uxHighestPriorityWaitingTask
)
4229 TCB_t
* const pxTCB
= pxMutexHolder
;
4230 UBaseType_t uxPriorityUsedOnEntry
, uxPriorityToUse
;
4231 const UBaseType_t uxOnlyOneMutexHeld
= ( UBaseType_t
) 1;
4233 if( pxMutexHolder
!= NULL
)
4235 /* If pxMutexHolder is not NULL then the holder must hold at least
4237 configASSERT( pxTCB
->uxMutexesHeld
);
4239 /* Determine the priority to which the priority of the task that
4240 * holds the mutex should be set. This will be the greater of the
4241 * holding task's base priority and the priority of the highest
4242 * priority task that is waiting to obtain the mutex. */
4243 if( pxTCB
->uxBasePriority
< uxHighestPriorityWaitingTask
)
4245 uxPriorityToUse
= uxHighestPriorityWaitingTask
;
4249 uxPriorityToUse
= pxTCB
->uxBasePriority
;
4252 /* Does the priority need to change? */
4253 if( pxTCB
->uxPriority
!= uxPriorityToUse
)
4255 /* Only disinherit if no other mutexes are held. This is a
4256 * simplification in the priority inheritance implementation. If
4257 * the task that holds the mutex is also holding other mutexes then
4258 * the other mutexes may have caused the priority inheritance. */
4259 if( pxTCB
->uxMutexesHeld
== uxOnlyOneMutexHeld
)
4261 /* If a task has timed out because it already holds the
4262 * mutex it was trying to obtain then it cannot of inherited
4263 * its own priority. */
4264 configASSERT( pxTCB
!= pxCurrentTCB
);
4266 /* Disinherit the priority, remembering the previous
4267 * priority to facilitate determining the subject task's
4269 traceTASK_PRIORITY_DISINHERIT( pxTCB
, uxPriorityToUse
);
4270 uxPriorityUsedOnEntry
= pxTCB
->uxPriority
;
4271 pxTCB
->uxPriority
= uxPriorityToUse
;
4273 /* Only reset the event list item value if the value is not
4274 * being used for anything else. */
4275 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB
->xEventListItem
) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE
) == 0UL )
4277 listSET_LIST_ITEM_VALUE( &( pxTCB
->xEventListItem
), ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) uxPriorityToUse
); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
4281 mtCOVERAGE_TEST_MARKER();
4284 /* If the running task is not the task that holds the mutex
4285 * then the task that holds the mutex could be in either the
4286 * Ready, Blocked or Suspended states. Only remove the task
4287 * from its current state list if it is in the Ready state as
4288 * the task's priority is going to change and there is one
4289 * Ready list per priority. */
4290 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists
[ uxPriorityUsedOnEntry
] ), &( pxTCB
->xStateListItem
) ) != pdFALSE
)
4292 if( uxListRemove( &( pxTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
4294 /* It is known that the task is in its ready list so
4295 * there is no need to check again and the port level
4296 * reset macro can be called directly. */
4297 portRESET_READY_PRIORITY( pxTCB
->uxPriority
, uxTopReadyPriority
);
4301 mtCOVERAGE_TEST_MARKER();
4304 prvAddTaskToReadyList( pxTCB
);
4308 mtCOVERAGE_TEST_MARKER();
4313 mtCOVERAGE_TEST_MARKER();
4318 mtCOVERAGE_TEST_MARKER();
4323 mtCOVERAGE_TEST_MARKER();
4327 #endif /* configUSE_MUTEXES */
4328 /*-----------------------------------------------------------*/
4330 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
4332 void vTaskEnterCritical( void )
4334 portDISABLE_INTERRUPTS();
4336 if( xSchedulerRunning
!= pdFALSE
)
4338 ( pxCurrentTCB
->uxCriticalNesting
)++;
4340 /* This is not the interrupt safe version of the enter critical
4341 * function so assert() if it is being called from an interrupt
4342 * context. Only API functions that end in "FromISR" can be used in an
4343 * interrupt. Only assert if the critical nesting count is 1 to
4344 * protect against recursive calls if the assert function also uses a
4345 * critical section. */
4346 if( pxCurrentTCB
->uxCriticalNesting
== 1 )
4348 portASSERT_IF_IN_ISR();
4353 mtCOVERAGE_TEST_MARKER();
4357 #endif /* portCRITICAL_NESTING_IN_TCB */
4358 /*-----------------------------------------------------------*/
4360 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
4362 void vTaskExitCritical( void )
4364 if( xSchedulerRunning
!= pdFALSE
)
4366 if( pxCurrentTCB
->uxCriticalNesting
> 0U )
4368 ( pxCurrentTCB
->uxCriticalNesting
)--;
4370 if( pxCurrentTCB
->uxCriticalNesting
== 0U )
4372 portENABLE_INTERRUPTS();
4376 mtCOVERAGE_TEST_MARKER();
4381 mtCOVERAGE_TEST_MARKER();
4386 mtCOVERAGE_TEST_MARKER();
4390 #endif /* portCRITICAL_NESTING_IN_TCB */
4391 /*-----------------------------------------------------------*/
4393 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
4395 static char * prvWriteNameToBuffer( char * pcBuffer
,
4396 const char * pcTaskName
)
4400 /* Start by copying the entire string. */
4401 strcpy( pcBuffer
, pcTaskName
);
4403 /* Pad the end of the string with spaces to ensure columns line up when
4405 for( x
= strlen( pcBuffer
); x
< ( size_t ) ( configMAX_TASK_NAME_LEN
- 1 ); x
++ )
4407 pcBuffer
[ x
] = ' ';
4411 pcBuffer
[ x
] = ( char ) 0x00;
4413 /* Return the new end of string. */
4414 return &( pcBuffer
[ x
] );
4417 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
4418 /*-----------------------------------------------------------*/
4420 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
4422 void vTaskList( char * pcWriteBuffer
)
4424 TaskStatus_t
* pxTaskStatusArray
;
4425 UBaseType_t uxArraySize
, x
;
4431 * This function is provided for convenience only, and is used by many
4432 * of the demo applications. Do not consider it to be part of the
4435 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
4436 * uxTaskGetSystemState() output into a human readable table that
4437 * displays task names, states and stack usage.
4439 * vTaskList() has a dependency on the sprintf() C library function that
4440 * might bloat the code size, use a lot of stack, and provide different
4441 * results on different platforms. An alternative, tiny, third party,
4442 * and limited functionality implementation of sprintf() is provided in
4443 * many of the FreeRTOS/Demo sub-directories in a file called
4444 * printf-stdarg.c (note printf-stdarg.c does not provide a full
4445 * snprintf() implementation!).
4447 * It is recommended that production systems call uxTaskGetSystemState()
4448 * directly to get access to raw stats data, rather than indirectly
4449 * through a call to vTaskList().
4453 /* Make sure the write buffer does not contain a string. */
4454 *pcWriteBuffer
= ( char ) 0x00;
4456 /* Take a snapshot of the number of tasks in case it changes while this
4457 * function is executing. */
4458 uxArraySize
= uxCurrentNumberOfTasks
;
4460 /* Allocate an array index for each task. NOTE! if
4461 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
4462 * equate to NULL. */
4463 pxTaskStatusArray
= pvPortMalloc( uxCurrentNumberOfTasks
* sizeof( TaskStatus_t
) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
4465 if( pxTaskStatusArray
!= NULL
)
4467 /* Generate the (binary) data. */
4468 uxArraySize
= uxTaskGetSystemState( pxTaskStatusArray
, uxArraySize
, NULL
);
4470 /* Create a human readable table from the binary data. */
4471 for( x
= 0; x
< uxArraySize
; x
++ )
4473 switch( pxTaskStatusArray
[ x
].eCurrentState
)
4476 cStatus
= tskRUNNING_CHAR
;
4480 cStatus
= tskREADY_CHAR
;
4484 cStatus
= tskBLOCKED_CHAR
;
4488 cStatus
= tskSUSPENDED_CHAR
;
4492 cStatus
= tskDELETED_CHAR
;
4495 case eInvalid
: /* Fall through. */
4496 default: /* Should not get here, but it is included
4497 * to prevent static checking errors. */
4498 cStatus
= ( char ) 0x00;
4502 /* Write the task name to the string, padding with spaces so it
4503 * can be printed in tabular form more easily. */
4504 pcWriteBuffer
= prvWriteNameToBuffer( pcWriteBuffer
, pxTaskStatusArray
[ x
].pcTaskName
);
4506 /* Write the rest of the string. */
4507 sprintf( pcWriteBuffer
, "\t%c\t%u\t%u\t%u\r\n", cStatus
, ( unsigned int ) pxTaskStatusArray
[ x
].uxCurrentPriority
, ( unsigned int ) pxTaskStatusArray
[ x
].usStackHighWaterMark
, ( unsigned int ) pxTaskStatusArray
[ x
].xTaskNumber
); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
4508 pcWriteBuffer
+= strlen( pcWriteBuffer
); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
4511 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
4512 * is 0 then vPortFree() will be #defined to nothing. */
4513 vPortFree( pxTaskStatusArray
);
4517 mtCOVERAGE_TEST_MARKER();
4521 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
4522 /*----------------------------------------------------------*/
4524 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
4526 void vTaskGetRunTimeStats( char * pcWriteBuffer
)
4528 TaskStatus_t
* pxTaskStatusArray
;
4529 UBaseType_t uxArraySize
, x
;
4530 uint32_t ulTotalTime
, ulStatsAsPercentage
;
4532 #if ( configUSE_TRACE_FACILITY != 1 )
4534 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
4541 * This function is provided for convenience only, and is used by many
4542 * of the demo applications. Do not consider it to be part of the
4545 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
4546 * of the uxTaskGetSystemState() output into a human readable table that
4547 * displays the amount of time each task has spent in the Running state
4548 * in both absolute and percentage terms.
4550 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
4551 * function that might bloat the code size, use a lot of stack, and
4552 * provide different results on different platforms. An alternative,
4553 * tiny, third party, and limited functionality implementation of
4554 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
4555 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
4556 * a full snprintf() implementation!).
4558 * It is recommended that production systems call uxTaskGetSystemState()
4559 * directly to get access to raw stats data, rather than indirectly
4560 * through a call to vTaskGetRunTimeStats().
4563 /* Make sure the write buffer does not contain a string. */
4564 *pcWriteBuffer
= ( char ) 0x00;
4566 /* Take a snapshot of the number of tasks in case it changes while this
4567 * function is executing. */
4568 uxArraySize
= uxCurrentNumberOfTasks
;
4570 /* Allocate an array index for each task. NOTE! If
4571 * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
4572 * equate to NULL. */
4573 pxTaskStatusArray
= pvPortMalloc( uxCurrentNumberOfTasks
* sizeof( TaskStatus_t
) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
4575 if( pxTaskStatusArray
!= NULL
)
4577 /* Generate the (binary) data. */
4578 uxArraySize
= uxTaskGetSystemState( pxTaskStatusArray
, uxArraySize
, &ulTotalTime
);
4580 /* For percentage calculations. */
4581 ulTotalTime
/= 100UL;
4583 /* Avoid divide by zero errors. */
4584 if( ulTotalTime
> 0UL )
4586 /* Create a human readable table from the binary data. */
4587 for( x
= 0; x
< uxArraySize
; x
++ )
4589 /* What percentage of the total run time has the task used?
4590 * This will always be rounded down to the nearest integer.
4591 * ulTotalRunTimeDiv100 has already been divided by 100. */
4592 ulStatsAsPercentage
= pxTaskStatusArray
[ x
].ulRunTimeCounter
/ ulTotalTime
;
4594 /* Write the task name to the string, padding with
4595 * spaces so it can be printed in tabular form more
4597 pcWriteBuffer
= prvWriteNameToBuffer( pcWriteBuffer
, pxTaskStatusArray
[ x
].pcTaskName
);
4599 if( ulStatsAsPercentage
> 0UL )
4601 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
4603 sprintf( pcWriteBuffer
, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray
[ x
].ulRunTimeCounter
, ulStatsAsPercentage
);
4607 /* sizeof( int ) == sizeof( long ) so a smaller
4608 * printf() library can be used. */
4609 sprintf( pcWriteBuffer
, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray
[ x
].ulRunTimeCounter
, ( unsigned int ) ulStatsAsPercentage
); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
4615 /* If the percentage is zero here then the task has
4616 * consumed less than 1% of the total run time. */
4617 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
4619 sprintf( pcWriteBuffer
, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray
[ x
].ulRunTimeCounter
);
4623 /* sizeof( int ) == sizeof( long ) so a smaller
4624 * printf() library can be used. */
4625 sprintf( pcWriteBuffer
, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray
[ x
].ulRunTimeCounter
); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
4630 pcWriteBuffer
+= strlen( pcWriteBuffer
); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
4635 mtCOVERAGE_TEST_MARKER();
4638 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
4639 * is 0 then vPortFree() will be #defined to nothing. */
4640 vPortFree( pxTaskStatusArray
);
4644 mtCOVERAGE_TEST_MARKER();
4648 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
4649 /*-----------------------------------------------------------*/
4651 TickType_t
uxTaskResetEventItemValue( void )
4653 TickType_t uxReturn
;
4655 uxReturn
= listGET_LIST_ITEM_VALUE( &( pxCurrentTCB
->xEventListItem
) );
4657 /* Reset the event list item to its normal value - so it can be used with
4658 * queues and semaphores. */
4659 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB
->xEventListItem
), ( ( TickType_t
) configMAX_PRIORITIES
- ( TickType_t
) pxCurrentTCB
->uxPriority
) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
4663 /*-----------------------------------------------------------*/
4665 #if ( configUSE_MUTEXES == 1 )
4667 TaskHandle_t
pvTaskIncrementMutexHeldCount( void )
4669 /* If xSemaphoreCreateMutex() is called before any tasks have been created
4670 * then pxCurrentTCB will be NULL. */
4671 if( pxCurrentTCB
!= NULL
)
4673 ( pxCurrentTCB
->uxMutexesHeld
)++;
4676 return pxCurrentTCB
;
4679 #endif /* configUSE_MUTEXES */
4680 /*-----------------------------------------------------------*/
4682 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
4684 uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait
,
4685 BaseType_t xClearCountOnExit
,
4686 TickType_t xTicksToWait
)
4690 configASSERT( uxIndexToWait
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
4692 taskENTER_CRITICAL();
4694 /* Only block if the notification count is not already non-zero. */
4695 if( pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
] == 0UL )
4697 /* Mark this task as waiting for a notification. */
4698 pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] = taskWAITING_NOTIFICATION
;
4700 if( xTicksToWait
> ( TickType_t
) 0 )
4702 prvAddCurrentTaskToDelayedList( xTicksToWait
, pdTRUE
);
4703 traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait
);
4705 /* All ports are written to allow a yield in a critical
4706 * section (some will yield immediately, others wait until the
4707 * critical section exits) - but it is not something that
4708 * application code should ever do. */
4709 portYIELD_WITHIN_API();
4713 mtCOVERAGE_TEST_MARKER();
4718 mtCOVERAGE_TEST_MARKER();
4721 taskEXIT_CRITICAL();
4723 taskENTER_CRITICAL();
4725 traceTASK_NOTIFY_TAKE( uxIndexToWait
);
4726 ulReturn
= pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
];
4728 if( ulReturn
!= 0UL )
4730 if( xClearCountOnExit
!= pdFALSE
)
4732 pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
] = 0UL;
4736 pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
] = ulReturn
- ( uint32_t ) 1;
4741 mtCOVERAGE_TEST_MARKER();
4744 pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] = taskNOT_WAITING_NOTIFICATION
;
4746 taskEXIT_CRITICAL();
4751 #endif /* configUSE_TASK_NOTIFICATIONS */
4752 /*-----------------------------------------------------------*/
4754 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
4756 BaseType_t
xTaskGenericNotifyWait( UBaseType_t uxIndexToWait
,
4757 uint32_t ulBitsToClearOnEntry
,
4758 uint32_t ulBitsToClearOnExit
,
4759 uint32_t * pulNotificationValue
,
4760 TickType_t xTicksToWait
)
4764 configASSERT( uxIndexToWait
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
4766 taskENTER_CRITICAL();
4768 /* Only block if a notification is not already pending. */
4769 if( pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] != taskNOTIFICATION_RECEIVED
)
4771 /* Clear bits in the task's notification value as bits may get
4772 * set by the notifying task or interrupt. This can be used to
4773 * clear the value to zero. */
4774 pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
] &= ~ulBitsToClearOnEntry
;
4776 /* Mark this task as waiting for a notification. */
4777 pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] = taskWAITING_NOTIFICATION
;
4779 if( xTicksToWait
> ( TickType_t
) 0 )
4781 prvAddCurrentTaskToDelayedList( xTicksToWait
, pdTRUE
);
4782 traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait
);
4784 /* All ports are written to allow a yield in a critical
4785 * section (some will yield immediately, others wait until the
4786 * critical section exits) - but it is not something that
4787 * application code should ever do. */
4788 portYIELD_WITHIN_API();
4792 mtCOVERAGE_TEST_MARKER();
4797 mtCOVERAGE_TEST_MARKER();
4800 taskEXIT_CRITICAL();
4802 taskENTER_CRITICAL();
4804 traceTASK_NOTIFY_WAIT( uxIndexToWait
);
4806 if( pulNotificationValue
!= NULL
)
4808 /* Output the current notification value, which may or may not
4810 *pulNotificationValue
= pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
];
4813 /* If ucNotifyValue is set then either the task never entered the
4814 * blocked state (because a notification was already pending) or the
4815 * task unblocked because of a notification. Otherwise the task
4816 * unblocked because of a timeout. */
4817 if( pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] != taskNOTIFICATION_RECEIVED
)
4819 /* A notification was not received. */
4824 /* A notification was already pending or a notification was
4825 * received while the task was waiting. */
4826 pxCurrentTCB
->ulNotifiedValue
[ uxIndexToWait
] &= ~ulBitsToClearOnExit
;
4830 pxCurrentTCB
->ucNotifyState
[ uxIndexToWait
] = taskNOT_WAITING_NOTIFICATION
;
4832 taskEXIT_CRITICAL();
4837 #endif /* configUSE_TASK_NOTIFICATIONS */
4838 /*-----------------------------------------------------------*/
4840 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
4842 BaseType_t
xTaskGenericNotify( TaskHandle_t xTaskToNotify
,
4843 UBaseType_t uxIndexToNotify
,
4845 eNotifyAction eAction
,
4846 uint32_t * pulPreviousNotificationValue
)
4849 BaseType_t xReturn
= pdPASS
;
4850 uint8_t ucOriginalNotifyState
;
4852 configASSERT( uxIndexToNotify
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
4853 configASSERT( xTaskToNotify
);
4854 pxTCB
= xTaskToNotify
;
4856 taskENTER_CRITICAL();
4858 if( pulPreviousNotificationValue
!= NULL
)
4860 *pulPreviousNotificationValue
= pxTCB
->ulNotifiedValue
[ uxIndexToNotify
];
4863 ucOriginalNotifyState
= pxTCB
->ucNotifyState
[ uxIndexToNotify
];
4865 pxTCB
->ucNotifyState
[ uxIndexToNotify
] = taskNOTIFICATION_RECEIVED
;
4870 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] |= ulValue
;
4874 ( pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] )++;
4877 case eSetValueWithOverwrite
:
4878 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] = ulValue
;
4881 case eSetValueWithoutOverwrite
:
4883 if( ucOriginalNotifyState
!= taskNOTIFICATION_RECEIVED
)
4885 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] = ulValue
;
4889 /* The value could not be written to the task. */
4897 /* The task is being notified without its notify value being
4903 /* Should not get here if all enums are handled.
4904 * Artificially force an assert by testing a value the
4905 * compiler can't assume is const. */
4906 configASSERT( xTickCount
== ( TickType_t
) 0 );
4911 traceTASK_NOTIFY( uxIndexToNotify
);
4913 /* If the task is in the blocked state specifically to wait for a
4914 * notification then unblock it now. */
4915 if( ucOriginalNotifyState
== taskWAITING_NOTIFICATION
)
4917 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
4918 prvAddTaskToReadyList( pxTCB
);
4920 /* The task should not have been on an event list. */
4921 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) == NULL
);
4923 #if ( configUSE_TICKLESS_IDLE != 0 )
4925 /* If a task is blocked waiting for a notification then
4926 * xNextTaskUnblockTime might be set to the blocked task's time
4927 * out time. If the task is unblocked for a reason other than
4928 * a timeout xNextTaskUnblockTime is normally left unchanged,
4929 * because it will automatically get reset to a new value when
4930 * the tick count equals xNextTaskUnblockTime. However if
4931 * tickless idling is used it might be more important to enter
4932 * sleep mode at the earliest possible time - so reset
4933 * xNextTaskUnblockTime here to ensure it is updated at the
4934 * earliest possible time. */
4935 prvResetNextTaskUnblockTime();
4939 if( pxTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
4941 /* The notified task has a priority above the currently
4942 * executing task so a yield is required. */
4943 taskYIELD_IF_USING_PREEMPTION();
4947 mtCOVERAGE_TEST_MARKER();
4952 mtCOVERAGE_TEST_MARKER();
4955 taskEXIT_CRITICAL();
4960 #endif /* configUSE_TASK_NOTIFICATIONS */
4961 /*-----------------------------------------------------------*/
4963 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
4965 BaseType_t
xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify
,
4966 UBaseType_t uxIndexToNotify
,
4968 eNotifyAction eAction
,
4969 uint32_t * pulPreviousNotificationValue
,
4970 BaseType_t
* pxHigherPriorityTaskWoken
)
4973 uint8_t ucOriginalNotifyState
;
4974 BaseType_t xReturn
= pdPASS
;
4975 UBaseType_t uxSavedInterruptStatus
;
4977 configASSERT( xTaskToNotify
);
4978 configASSERT( uxIndexToNotify
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
4980 /* RTOS ports that support interrupt nesting have the concept of a
4981 * maximum system call (or maximum API call) interrupt priority.
4982 * Interrupts that are above the maximum system call priority are keep
4983 * permanently enabled, even when the RTOS kernel is in a critical section,
4984 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
4985 * is defined in FreeRTOSConfig.h then
4986 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
4987 * failure if a FreeRTOS API function is called from an interrupt that has
4988 * been assigned a priority above the configured maximum system call
4989 * priority. Only FreeRTOS functions that end in FromISR can be called
4990 * from interrupts that have been assigned a priority at or (logically)
4991 * below the maximum system call interrupt priority. FreeRTOS maintains a
4992 * separate interrupt safe API to ensure interrupt entry is as fast and as
4993 * simple as possible. More information (albeit Cortex-M specific) is
4994 * provided on the following link:
4995 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
4996 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
4998 pxTCB
= xTaskToNotify
;
5000 uxSavedInterruptStatus
= portSET_INTERRUPT_MASK_FROM_ISR();
5002 if( pulPreviousNotificationValue
!= NULL
)
5004 *pulPreviousNotificationValue
= pxTCB
->ulNotifiedValue
[ uxIndexToNotify
];
5007 ucOriginalNotifyState
= pxTCB
->ucNotifyState
[ uxIndexToNotify
];
5008 pxTCB
->ucNotifyState
[ uxIndexToNotify
] = taskNOTIFICATION_RECEIVED
;
5013 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] |= ulValue
;
5017 ( pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] )++;
5020 case eSetValueWithOverwrite
:
5021 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] = ulValue
;
5024 case eSetValueWithoutOverwrite
:
5026 if( ucOriginalNotifyState
!= taskNOTIFICATION_RECEIVED
)
5028 pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] = ulValue
;
5032 /* The value could not be written to the task. */
5040 /* The task is being notified without its notify value being
5046 /* Should not get here if all enums are handled.
5047 * Artificially force an assert by testing a value the
5048 * compiler can't assume is const. */
5049 configASSERT( xTickCount
== ( TickType_t
) 0 );
5053 traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify
);
5055 /* If the task is in the blocked state specifically to wait for a
5056 * notification then unblock it now. */
5057 if( ucOriginalNotifyState
== taskWAITING_NOTIFICATION
)
5059 /* The task should not have been on an event list. */
5060 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) == NULL
);
5062 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
5064 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
5065 prvAddTaskToReadyList( pxTCB
);
5069 /* The delayed and ready lists cannot be accessed, so hold
5070 * this task pending until the scheduler is resumed. */
5071 vListInsertEnd( &( xPendingReadyList
), &( pxTCB
->xEventListItem
) );
5074 if( pxTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
5076 /* The notified task has a priority above the currently
5077 * executing task so a yield is required. */
5078 if( pxHigherPriorityTaskWoken
!= NULL
)
5080 *pxHigherPriorityTaskWoken
= pdTRUE
;
5083 /* Mark that a yield is pending in case the user is not
5084 * using the "xHigherPriorityTaskWoken" parameter to an ISR
5085 * safe FreeRTOS function. */
5086 xYieldPending
= pdTRUE
;
5090 mtCOVERAGE_TEST_MARKER();
5094 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus
);
5099 #endif /* configUSE_TASK_NOTIFICATIONS */
5100 /*-----------------------------------------------------------*/
5102 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
5104 void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify
,
5105 UBaseType_t uxIndexToNotify
,
5106 BaseType_t
* pxHigherPriorityTaskWoken
)
5109 uint8_t ucOriginalNotifyState
;
5110 UBaseType_t uxSavedInterruptStatus
;
5112 configASSERT( xTaskToNotify
);
5113 configASSERT( uxIndexToNotify
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
5115 /* RTOS ports that support interrupt nesting have the concept of a
5116 * maximum system call (or maximum API call) interrupt priority.
5117 * Interrupts that are above the maximum system call priority are keep
5118 * permanently enabled, even when the RTOS kernel is in a critical section,
5119 * but cannot make any calls to FreeRTOS API functions. If configASSERT()
5120 * is defined in FreeRTOSConfig.h then
5121 * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
5122 * failure if a FreeRTOS API function is called from an interrupt that has
5123 * been assigned a priority above the configured maximum system call
5124 * priority. Only FreeRTOS functions that end in FromISR can be called
5125 * from interrupts that have been assigned a priority at or (logically)
5126 * below the maximum system call interrupt priority. FreeRTOS maintains a
5127 * separate interrupt safe API to ensure interrupt entry is as fast and as
5128 * simple as possible. More information (albeit Cortex-M specific) is
5129 * provided on the following link:
5130 * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
5131 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
5133 pxTCB
= xTaskToNotify
;
5135 uxSavedInterruptStatus
= portSET_INTERRUPT_MASK_FROM_ISR();
5137 ucOriginalNotifyState
= pxTCB
->ucNotifyState
[ uxIndexToNotify
];
5138 pxTCB
->ucNotifyState
[ uxIndexToNotify
] = taskNOTIFICATION_RECEIVED
;
5140 /* 'Giving' is equivalent to incrementing a count in a counting
5142 ( pxTCB
->ulNotifiedValue
[ uxIndexToNotify
] )++;
5144 traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify
);
5146 /* If the task is in the blocked state specifically to wait for a
5147 * notification then unblock it now. */
5148 if( ucOriginalNotifyState
== taskWAITING_NOTIFICATION
)
5150 /* The task should not have been on an event list. */
5151 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB
->xEventListItem
) ) == NULL
);
5153 if( uxSchedulerSuspended
== ( UBaseType_t
) pdFALSE
)
5155 ( void ) uxListRemove( &( pxTCB
->xStateListItem
) );
5156 prvAddTaskToReadyList( pxTCB
);
5160 /* The delayed and ready lists cannot be accessed, so hold
5161 * this task pending until the scheduler is resumed. */
5162 vListInsertEnd( &( xPendingReadyList
), &( pxTCB
->xEventListItem
) );
5165 if( pxTCB
->uxPriority
> pxCurrentTCB
->uxPriority
)
5167 /* The notified task has a priority above the currently
5168 * executing task so a yield is required. */
5169 if( pxHigherPriorityTaskWoken
!= NULL
)
5171 *pxHigherPriorityTaskWoken
= pdTRUE
;
5174 /* Mark that a yield is pending in case the user is not
5175 * using the "xHigherPriorityTaskWoken" parameter in an ISR
5176 * safe FreeRTOS function. */
5177 xYieldPending
= pdTRUE
;
5181 mtCOVERAGE_TEST_MARKER();
5185 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus
);
5188 #endif /* configUSE_TASK_NOTIFICATIONS */
5189 /*-----------------------------------------------------------*/
5191 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
5193 BaseType_t
xTaskGenericNotifyStateClear( TaskHandle_t xTask
,
5194 UBaseType_t uxIndexToClear
)
5199 configASSERT( uxIndexToClear
< configTASK_NOTIFICATION_ARRAY_ENTRIES
);
5201 /* If null is passed in here then it is the calling task that is having
5202 * its notification state cleared. */
5203 pxTCB
= prvGetTCBFromHandle( xTask
);
5205 taskENTER_CRITICAL();
5207 if( pxTCB
->ucNotifyState
[ uxIndexToClear
] == taskNOTIFICATION_RECEIVED
)
5209 pxTCB
->ucNotifyState
[ uxIndexToClear
] = taskNOT_WAITING_NOTIFICATION
;
5217 taskEXIT_CRITICAL();
5222 #endif /* configUSE_TASK_NOTIFICATIONS */
5223 /*-----------------------------------------------------------*/
5225 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
5227 uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask
,
5228 UBaseType_t uxIndexToClear
,
5229 uint32_t ulBitsToClear
)
5234 /* If null is passed in here then it is the calling task that is having
5235 * its notification state cleared. */
5236 pxTCB
= prvGetTCBFromHandle( xTask
);
5238 taskENTER_CRITICAL();
5240 /* Return the notification as it was before the bits were cleared,
5241 * then clear the bit mask. */
5242 ulReturn
= pxTCB
->ulNotifiedValue
[ uxIndexToClear
];
5243 pxTCB
->ulNotifiedValue
[ uxIndexToClear
] &= ~ulBitsToClear
;
5245 taskEXIT_CRITICAL();
5250 #endif /* configUSE_TASK_NOTIFICATIONS */
5251 /*-----------------------------------------------------------*/
5253 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
5255 uint32_t ulTaskGetIdleRunTimeCounter( void )
5257 return xIdleTaskHandle
->ulRunTimeCounter
;
5261 /*-----------------------------------------------------------*/
5263 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait
,
5264 const BaseType_t xCanBlockIndefinitely
)
5266 TickType_t xTimeToWake
;
5267 const TickType_t xConstTickCount
= xTickCount
;
5269 #if ( INCLUDE_xTaskAbortDelay == 1 )
5271 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
5272 * reset to pdFALSE so it can be detected as having been set to pdTRUE
5273 * when the task leaves the Blocked state. */
5274 pxCurrentTCB
->ucDelayAborted
= pdFALSE
;
5278 /* Remove the task from the ready list before adding it to the blocked list
5279 * as the same list item is used for both lists. */
5280 if( uxListRemove( &( pxCurrentTCB
->xStateListItem
) ) == ( UBaseType_t
) 0 )
5282 /* The current task must be in a ready list, so there is no need to
5283 * check, and the port reset macro can be called directly. */
5284 portRESET_READY_PRIORITY( pxCurrentTCB
->uxPriority
, uxTopReadyPriority
); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
5288 mtCOVERAGE_TEST_MARKER();
5291 #if ( INCLUDE_vTaskSuspend == 1 )
5293 if( ( xTicksToWait
== portMAX_DELAY
) && ( xCanBlockIndefinitely
!= pdFALSE
) )
5295 /* Add the task to the suspended task list instead of a delayed task
5296 * list to ensure it is not woken by a timing event. It will block
5298 vListInsertEnd( &xSuspendedTaskList
, &( pxCurrentTCB
->xStateListItem
) );
5302 /* Calculate the time at which the task should be woken if the event
5303 * does not occur. This may overflow but this doesn't matter, the
5304 * kernel will manage it correctly. */
5305 xTimeToWake
= xConstTickCount
+ xTicksToWait
;
5307 /* The list item will be inserted in wake time order. */
5308 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB
->xStateListItem
), xTimeToWake
);
5310 if( xTimeToWake
< xConstTickCount
)
5312 /* Wake time has overflowed. Place this item in the overflow
5314 vListInsert( pxOverflowDelayedTaskList
, &( pxCurrentTCB
->xStateListItem
) );
5318 /* The wake time has not overflowed, so the current block list
5320 vListInsert( pxDelayedTaskList
, &( pxCurrentTCB
->xStateListItem
) );
5322 /* If the task entering the blocked state was placed at the
5323 * head of the list of blocked tasks then xNextTaskUnblockTime
5324 * needs to be updated too. */
5325 if( xTimeToWake
< xNextTaskUnblockTime
)
5327 xNextTaskUnblockTime
= xTimeToWake
;
5331 mtCOVERAGE_TEST_MARKER();
5336 #else /* INCLUDE_vTaskSuspend */
5338 /* Calculate the time at which the task should be woken if the event
5339 * does not occur. This may overflow but this doesn't matter, the kernel
5340 * will manage it correctly. */
5341 xTimeToWake
= xConstTickCount
+ xTicksToWait
;
5343 /* The list item will be inserted in wake time order. */
5344 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB
->xStateListItem
), xTimeToWake
);
5346 if( xTimeToWake
< xConstTickCount
)
5348 /* Wake time has overflowed. Place this item in the overflow list. */
5349 vListInsert( pxOverflowDelayedTaskList
, &( pxCurrentTCB
->xStateListItem
) );
5353 /* The wake time has not overflowed, so the current block list is used. */
5354 vListInsert( pxDelayedTaskList
, &( pxCurrentTCB
->xStateListItem
) );
5356 /* If the task entering the blocked state was placed at the head of the
5357 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
5359 if( xTimeToWake
< xNextTaskUnblockTime
)
5361 xNextTaskUnblockTime
= xTimeToWake
;
5365 mtCOVERAGE_TEST_MARKER();
5369 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
5370 ( void ) xCanBlockIndefinitely
;
5372 #endif /* INCLUDE_vTaskSuspend */
5375 /* Code below here allows additional code to be inserted into this source file,
5376 * especially where access to file scope functions and data is needed (for example
5377 * when performing module tests). */
5379 #ifdef FREERTOS_MODULE_TEST
5380 #include "tasks_test_access_functions.h"
5384 #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
5386 #include "freertos_tasks_c_additions.h"
5388 #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
5389 static void freertos_tasks_c_additions_init( void )
5391 FREERTOS_TASKS_C_ADDITIONS_INIT();
5395 #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */