set distr as Bionic.
[MACS.git] / test / test_Prob.py
blob1d0684564f03960aa1ec54f16fb22f0553d1f1d1
1 #!/usr/bin/env python
2 # Time-stamp: <2019-09-25 11:35:54 taoliu>
4 """Module Description: Test functions to calculate probabilities.
6 This code is free software; you can redistribute it and/or modify it
7 under the terms of the BSD License (see the file LICENSE included with
8 the distribution).
9 """
11 import unittest
13 from math import log10
14 from MACS2.Prob import *
16 # ------------------------------------
17 # Main function
18 # ------------------------------------
20 class Test_factorial(unittest.TestCase):
22 def setUp(self):
23 self.n1 = 100
24 self.n2 = 10
25 self.n3 = 1
27 def test_factorial_big_n1(self):
28 expect = 9.332622e+157
29 result = factorial(self.n1)
30 self.assertTrue( abs(result - expect) < 1e-5*result)
32 def test_factorial_median_n2(self):
33 expect = 3628800
34 result = factorial(self.n2)
35 self.assertEqual(result, expect)
37 def test_factorial_small_n3(self):
38 expect = 1
39 result = factorial(self.n3)
40 self.assertEqual(result, expect)
42 class Test_poisson_cdf(unittest.TestCase):
44 def setUp(self):
45 # n, lam
46 self.n1 = (80,100)
47 self.n2 = (200,100)
48 self.n3 = (100,1000)
49 self.n4 = (1500,1000)
51 def test_poisson_cdf_n1(self):
52 expect = (round(0.9773508,5),round(0.02264918,5))
53 result = (round(poisson_cdf(self.n1[0],self.n1[1],False),5),
54 round(poisson_cdf(self.n1[0],self.n1[1],True),5))
55 self.assertEqual( result, expect )
57 def test_poisson_cdf_n2(self):
58 expect = (round(log10(4.626179e-19),4),
59 round(log10(1),4))
60 result = (round(log10(poisson_cdf(self.n2[0],self.n2[1],False)),4),
61 round(log10(poisson_cdf(self.n2[0],self.n2[1],True)),4))
62 self.assertEqual( result, expect )
64 def test_poisson_cdf_n3(self):
65 expect = (round(log10(1),2),
66 round(log10(6.042525e-293),2))
67 result = (round(poisson_cdf(self.n3[0],self.n3[1],False,True),2),
68 round(poisson_cdf(self.n3[0],self.n3[1],True,True),2))
69 self.assertEqual( result, expect )
71 def test_poisson_cdf_n4(self):
72 expect = (round(log10(2.097225e-49),4),
73 round(log10(1),4))
74 result = (round(log10(poisson_cdf(self.n4[0],self.n4[1],False)),4),
75 round(log10(poisson_cdf(self.n4[0],self.n4[1],True)),4))
76 self.assertEqual( result, expect )
78 class Test_chisq_p_e(unittest.TestCase):
79 """Test chisq pvalue calculation -- assuming df is an even number. We
80 only implemented even number pchisq for upper tail. Because this
81 is the function we need to combine p-values using fisher's method
83 """
84 def setUp(self):
85 # x, k, p(upper), -log p upper, -log10 p upper
86 self.c = ((10, 2, 0.006737947, 5, 2.171472),
87 (100, 2, 1.92875e-22, 50, 21.71472),
88 (1000, 22, 1.956374e-197, 452.9382, 196.7085),
89 (10, 4, 0.04042768, 3.208241, 1.393321),
90 (100, 8, 4.269159e-18, 39.99511, 17.36966),
91 (1000, 80, 6.889598e-159, 364.181, 158.1618),
92 (54, 6, 7.377151e-10, 21.02746, 9.132111),
93 (565, 10, 5.518772e-115, 263.0891, 114.2582 ),
94 (7765, 12, 0, 3845.965, 1670.2814),
97 def test_chisq_p(self):
98 expect = [round(x[2],4) for x in self.c]
99 result = [round(chisq_pvalue_e(x[0],x[1]),4) for x in self.c]
100 self.assertEqual( result, expect )
102 def test_chisq_logp(self):
103 expect = [round(x[3],4) for x in self.c]
104 result = [round(chisq_logp_e(x[0],x[1]),4) for x in self.c]
105 self.assertEqual( result, expect )
107 def test_chisq_log10p(self):
108 expect = [round(x[4],4) for x in self.c]
109 result = [round(chisq_logp_e(x[0],x[1],log10=True),4) for x in self.c]
110 self.assertEqual( result, expect )
112 class Test_binomial_cdf(unittest.TestCase):
114 def setUp(self):
115 # x, a, b
116 self.n1 = (20,1000,0.01)
117 self.n2 = (200,1000,0.01)
119 def test_binomial_cdf_n1(self):
120 expect = (round(0.001496482,5),round(0.9985035,5))
121 result = (round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],False),5),
122 round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],True),5))
123 self.assertEqual( result, expect )
125 def test_binomial_cdf_n2(self):
126 expect = (round(log10(8.928717e-190),4),
127 round(log10(1),4))
128 result = (round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],False)),4),
129 round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],True)),4))
130 self.assertEqual( result, expect )
132 class Test_binomial_cdf_inv(unittest.TestCase):
134 def setUp(self):
135 # x, a, b
136 self.n1 = (0.1,1000,0.01)
137 self.n2 = (0.01,1000,0.01)
139 def test_binomial_cdf_inv_n1(self):
140 expect = 6
141 result = binomial_cdf_inv(self.n1[0],self.n1[1],self.n1[2])
142 self.assertEqual( result, expect )
144 def test_poisson_cdf_inv_n2(self):
145 expect = 3
146 result = binomial_cdf_inv(self.n2[0],self.n2[1],self.n2[2])
147 self.assertEqual( result, expect )
149 class Test_binomial_pdf(unittest.TestCase):
151 def setUp(self):
152 # x, a, b
153 self.n1 = (20,1000,0.01)
154 self.n2 = (200,1000,0.01)
156 def test_binomial_cdf_inv_n1(self):
157 expect = round(0.001791878,5)
158 result = round(binomial_pdf(self.n1[0],self.n1[1],self.n1[2]),5)
159 self.assertEqual( result, expect )
161 def test_poisson_cdf_inv_n2(self):
162 expect = round(log10(2.132196e-188),4)
163 result = binomial_pdf(self.n2[0],self.n2[1],self.n2[2])
164 result = round(log10(result),4)
165 self.assertEqual( result, expect )