ENH: autoLayerDriver: better layering information message
[OpenFOAM-2.0.x.git] / src / mesh / autoMesh / autoHexMesh / refinementFeatures / refinementFeatures.C
blob1c88348f99d2c1d3b49728af2afd1cd433f97328
1 /*---------------------------------------------------------------------------*\
2   =========                 |
3   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
4    \\    /   O peration     |
5     \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation
6      \\/     M anipulation  |
7 -------------------------------------------------------------------------------
8 License
9     This file is part of OpenFOAM.
11     OpenFOAM is free software: you can redistribute it and/or modify it
12     under the terms of the GNU General Public License as published by
13     the Free Software Foundation, either version 3 of the License, or
14     (at your option) any later version.
16     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19     for more details.
21     You should have received a copy of the GNU General Public License
22     along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.
24 \*---------------------------------------------------------------------------*/
26 #include "refinementFeatures.H"
27 #include "Time.H"
29 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
31 Foam::refinementFeatures::refinementFeatures
33     const objectRegistry& io,
34     const PtrList<dictionary>& featDicts
37     PtrList<featureEdgeMesh>(featDicts.size()),
38     levels_(featDicts.size()),
39     edgeTrees_(featDicts.size()),
40     pointTrees_(featDicts.size())
42     // Read features
44     forAll(featDicts, i)
45     {
46         const dictionary& dict = featDicts[i];
48         fileName featFileName(dict.lookup("file"));
50         set
51         (
52             i,
53             new featureEdgeMesh
54             (
55                 IOobject
56                 (
57                     featFileName,                       // name
58                     io.time().constant(),               // instance
59                     "triSurface",                       // local
60                     io.time(),                          // registry
61                     IOobject::MUST_READ,
62                     IOobject::NO_WRITE,
63                     false
64                 )
65             )
66         );
68         const featureEdgeMesh& eMesh = operator[](i);
70         //eMesh.mergePoints(meshRefiner_.mergeDistance());
71         levels_[i] = readLabel(dict.lookup("level"));
73         Info<< "Refinement level " << levels_[i]
74             << " for all cells crossed by feature " << featFileName
75             << " (" << eMesh.points().size() << " points, "
76             << eMesh.edges().size() << " edges)." << endl;
77     }
80     // Search engines
82     forAll(*this, i)
83     {
84         const featureEdgeMesh& eMesh = operator[](i);
85         const pointField& points = eMesh.points();
86         const edgeList& edges = eMesh.edges();
88         // Calculate bb of all points
89         treeBoundBox bb(points);
91         // Random number generator. Bit dodgy since not exactly random ;-)
92         Random rndGen(65431);
94         // Slightly extended bb. Slightly off-centred just so on symmetric
95         // geometry there are less face/edge aligned items.
96         bb = bb.extend(rndGen, 1E-4);
97         bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
98         bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
100         edgeTrees_.set
101         (
102             i,
103             new indexedOctree<treeDataEdge>
104             (
105                 treeDataEdge
106                 (
107                     false,                  // do not cache bb
108                     edges,
109                     points,
110                     identity(edges.size())
111                 ),
112                 bb,     // overall search domain
113                 8,      // maxLevel
114                 10,     // leafsize
115                 3.0     // duplicity
116             )
117         );
120         // Detect feature points from edges.
121         const labelListList& pointEdges = eMesh.pointEdges();
122         DynamicList<label> featurePoints;
123         forAll(pointEdges, pointI)
124         {
125             if (pointEdges[pointI].size() > 2)
126             {
127                 featurePoints.append(pointI);
128             }
129         }
131         Info<< "Detected " << featurePoints.size()
132             << " featurePoints out of " << points.size()
133             << " on feature " << eMesh.name() << endl;
135         pointTrees_.set
136         (
137             i,
138             new indexedOctree<treeDataPoint>
139             (
140                 treeDataPoint(points, featurePoints),
141                 bb,     // overall search domain
142                 8,      // maxLevel
143                 10,     // leafsize
144                 3.0     // duplicity
145             )
146         );
147     }
151 // * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
153 void Foam::refinementFeatures::findNearestEdge
155     const pointField& samples,
156     const scalarField& nearestDistSqr,
157     labelList& nearFeature,
158     List<pointIndexHit>& nearInfo
159 ) const
161     nearFeature.setSize(samples.size());
162     nearFeature = -1;
163     nearInfo.setSize(samples.size());
165     forAll(edgeTrees_, featI)
166     {
167         const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
169         if (tree.shapes().size() > 0)
170         {
171             forAll(samples, sampleI)
172             {
173                 const point& sample = samples[sampleI];
175                 scalar distSqr;
176                 if (nearInfo[sampleI].hit())
177                 {
178                     distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
179                 }
180                 else
181                 {
182                     distSqr = nearestDistSqr[sampleI];
183                 }
185                 pointIndexHit info = tree.findNearest(sample, distSqr);
187                 if (info.hit())
188                 {
189                     nearInfo[sampleI] = info;
190                     nearFeature[sampleI] = featI;
191                 }
192             }
193         }
194     }
198 void Foam::refinementFeatures::findNearestPoint
200     const pointField& samples,
201     const scalarField& nearestDistSqr,
202     labelList& nearFeature,
203     labelList& nearIndex
204 ) const
206     nearFeature.setSize(samples.size());
207     nearFeature = -1;
208     nearIndex.setSize(samples.size());
209     nearIndex = -1;
211     forAll(pointTrees_, featI)
212     {
213         const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
215         if (tree.shapes().pointLabels().size() > 0)
216         {
217             forAll(samples, sampleI)
218             {
219                 const point& sample = samples[sampleI];
221                 scalar distSqr;
222                 if (nearFeature[sampleI] != -1)
223                 {
224                     label nearFeatI = nearFeature[sampleI];
225                     const indexedOctree<treeDataPoint>& nearTree =
226                         pointTrees_[nearFeatI];
227                     label featPointI =
228                         nearTree.shapes().pointLabels()[nearIndex[sampleI]];
229                     const point& featPt =
230                         operator[](nearFeatI).points()[featPointI];
231                     distSqr = magSqr(featPt-sample);
232                 }
233                 else
234                 {
235                     distSqr = nearestDistSqr[sampleI];
236                 }
238                 pointIndexHit info = tree.findNearest(sample, distSqr);
240                 if (info.hit())
241                 {
242                     nearFeature[sampleI] = featI;
243                     nearIndex[sampleI] = info.index();
244                 }
245             }
246         }
247     }
251 // ************************************************************************* //