5 /* This is an independent implementation of the encryption algorithm: */
7 /* RIJNDAEL by Joan Daemen and Vincent Rijmen */
9 /* which is a candidate algorithm in the Advanced Encryption Standard */
10 /* programme of the US National Institute of Standards and Technology. */
12 /* Copyright in this implementation is held by Dr B R Gladman but I */
13 /* hereby give permission for its free direct or derivative use subject */
14 /* to acknowledgment of its origin and compliance with any conditions */
15 /* that the originators of the algorithm place on its exploitation. */
17 /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
19 /* Timing data for Rijndael (rijndael.c)
21 Algorithm: rijndael (rijndael.c)
24 Key Setup: 305/1389 cycles (encrypt/decrypt)
25 Encrypt: 374 cycles = 68.4 mbits/sec
26 Decrypt: 352 cycles = 72.7 mbits/sec
27 Mean: 363 cycles = 70.5 mbits/sec
30 Key Setup: 277/1595 cycles (encrypt/decrypt)
31 Encrypt: 439 cycles = 58.3 mbits/sec
32 Decrypt: 425 cycles = 60.2 mbits/sec
33 Mean: 432 cycles = 59.3 mbits/sec
36 Key Setup: 374/1960 cycles (encrypt/decrypt)
37 Encrypt: 502 cycles = 51.0 mbits/sec
38 Decrypt: 498 cycles = 51.4 mbits/sec
39 Mean: 500 cycles = 51.2 mbits/sec
45 #include <sys/param.h>
50 #define PRE_CALC_TABLES
53 static void gen_tabs(void);
55 /* 3. Basic macros for speeding up generic operations */
57 /* Circular rotate of 32 bit values */
59 #define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
60 #define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
62 /* Invert byte order in a 32 bit variable */
64 #define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
66 /* Extract byte from a 32 bit quantity (little endian notation) */
68 #define byte(x,n) ((u1byte)((x) >> (8 * (n))))
70 #ifdef WORDS_BIGENDIAN
71 #define io_swap(x) bswap(x)
73 #define io_swap(x) (x)
77 #undef PRE_CALC_TABLES
80 #ifdef PRE_CALC_TABLES
82 #include "rijndael.tbl"
84 #else /* !PRE_CALC_TABLES */
86 static u1byte pow_tab
[256];
87 static u1byte log_tab
[256];
88 static u1byte sbx_tab
[256];
89 static u1byte isb_tab
[256];
90 static u4byte rco_tab
[10];
91 static u4byte ft_tab
[4][256];
92 static u4byte it_tab
[4][256];
95 static u4byte fl_tab
[4][256];
96 static u4byte il_tab
[4][256];
99 static u4byte tab_gen
= 0;
100 #endif /* !PRE_CALC_TABLES */
102 #define ff_mult(a,b) ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
104 #define f_rn(bo, bi, n, k) \
105 (bo)[n] = ft_tab[0][byte((bi)[n],0)] ^ \
106 ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
107 ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
108 ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
110 #define i_rn(bo, bi, n, k) \
111 (bo)[n] = it_tab[0][byte((bi)[n],0)] ^ \
112 it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
113 it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
114 it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
119 ( fl_tab[0][byte(x, 0)] ^ \
120 fl_tab[1][byte(x, 1)] ^ \
121 fl_tab[2][byte(x, 2)] ^ \
122 fl_tab[3][byte(x, 3)] )
124 #define f_rl(bo, bi, n, k) \
125 (bo)[n] = fl_tab[0][byte((bi)[n],0)] ^ \
126 fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
127 fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
128 fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
130 #define i_rl(bo, bi, n, k) \
131 (bo)[n] = il_tab[0][byte((bi)[n],0)] ^ \
132 il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
133 il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
134 il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
138 ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
139 ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
140 ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
141 ((u4byte)sbx_tab[byte(x, 3)] << 24)
143 #define f_rl(bo, bi, n, k) \
144 (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^ \
145 rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]), 8) ^ \
146 rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
147 rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
149 #define i_rl(bo, bi, n, k) \
150 (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^ \
151 rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]), 8) ^ \
152 rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
153 rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
159 #ifndef PRE_CALC_TABLES
165 /* log and power tables for GF(2**8) finite field with */
166 /* 0x11b as modular polynomial - the simplest prmitive */
167 /* root is 0x11, used here to generate the tables */
169 for (i
= 0, p
= 1; i
< 256; ++i
)
171 pow_tab
[i
] = (u1byte
) p
;
172 log_tab
[p
] = (u1byte
) i
;
174 p
= p
^ (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
180 for (i
= 0; i
< 10; ++i
)
184 p
= (p
<< 1) ^ (p
& 0x80 ? 0x1b : 0);
187 /* note that the affine byte transformation matrix in */
188 /* rijndael specification is in big endian format with */
189 /* bit 0 as the most significant bit. In the remainder */
190 /* of the specification the bits are numbered from the */
191 /* least significant end of a byte. */
193 for (i
= 0; i
< 256; ++i
)
195 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
197 q
= (q
>> 7) | (q
<< 1);
199 q
= (q
>> 7) | (q
<< 1);
201 q
= (q
>> 7) | (q
<< 1);
203 q
= (q
>> 7) | (q
<< 1);
205 sbx_tab
[i
] = (u1byte
) p
;
206 isb_tab
[p
] = (u1byte
) i
;
209 for (i
= 0; i
< 256; ++i
)
217 fl_tab
[1][i
] = rotl(t
, 8);
218 fl_tab
[2][i
] = rotl(t
, 16);
219 fl_tab
[3][i
] = rotl(t
, 24);
221 t
= ((u4byte
) ff_mult(2, p
)) |
224 ((u4byte
) ff_mult(3, p
) << 24);
227 ft_tab
[1][i
] = rotl(t
, 8);
228 ft_tab
[2][i
] = rotl(t
, 16);
229 ft_tab
[3][i
] = rotl(t
, 24);
237 il_tab
[1][i
] = rotl(t
, 8);
238 il_tab
[2][i
] = rotl(t
, 16);
239 il_tab
[3][i
] = rotl(t
, 24);
241 t
= ((u4byte
) ff_mult(14, p
)) |
242 ((u4byte
) ff_mult(9, p
) << 8) |
243 ((u4byte
) ff_mult(13, p
) << 16) |
244 ((u4byte
) ff_mult(11, p
) << 24);
247 it_tab
[1][i
] = rotl(t
, 8);
248 it_tab
[2][i
] = rotl(t
, 16);
249 it_tab
[3][i
] = rotl(t
, 24);
253 #endif /* !PRE_CALC_TABLES */
257 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
259 #define imix_col(y,x) \
266 (y) ^= rotr(u ^ t, 8) ^ \
271 /* initialise the key schedule from the user supplied key */
274 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
275 t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
276 t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
277 t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
278 t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
282 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
283 t ^= e_key[6 * (i)]; e_key[6 * (i) + 6] = t; \
284 t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t; \
285 t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t; \
286 t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t; \
287 t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t; \
288 t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t; \
292 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
293 t ^= e_key[8 * (i)]; e_key[8 * (i) + 8] = t; \
294 t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t; \
295 t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t; \
296 t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t; \
297 t = e_key[8 * (i) + 4] ^ ls_box(t); \
298 e_key[8 * (i) + 12] = t; \
299 t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t; \
300 t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t; \
301 t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t; \
305 rijndael_set_key(rijndael_ctx
* ctx
, const u4byte
* in_key
, const u4byte key_len
,
313 u4byte
*e_key
= ctx
->e_key
;
314 u4byte
*d_key
= ctx
->d_key
;
316 ctx
->decrypt
= !encrypt
;
321 ctx
->k_len
= (key_len
+ 31) / 32;
323 e_key
[0] = io_swap(in_key
[0]);
324 e_key
[1] = io_swap(in_key
[1]);
325 e_key
[2] = io_swap(in_key
[2]);
326 e_key
[3] = io_swap(in_key
[3]);
332 for (i
= 0; i
< 10; ++i
)
337 e_key
[4] = io_swap(in_key
[4]);
338 t
= e_key
[5] = io_swap(in_key
[5]);
339 for (i
= 0; i
< 8; ++i
)
344 e_key
[4] = io_swap(in_key
[4]);
345 e_key
[5] = io_swap(in_key
[5]);
346 e_key
[6] = io_swap(in_key
[6]);
347 t
= e_key
[7] = io_swap(in_key
[7]);
348 for (i
= 0; i
< 7; ++i
)
360 for (i
= 4; i
< 4 * ctx
->k_len
+ 24; ++i
)
361 imix_col(d_key
[i
], e_key
[i
]);
367 /* encrypt a block of text */
369 #define f_nround(bo, bi, k) \
371 f_rn(bo, bi, 0, k); \
372 f_rn(bo, bi, 1, k); \
373 f_rn(bo, bi, 2, k); \
374 f_rn(bo, bi, 3, k); \
378 #define f_lround(bo, bi, k) \
380 f_rl(bo, bi, 0, k); \
381 f_rl(bo, bi, 1, k); \
382 f_rl(bo, bi, 2, k); \
383 f_rl(bo, bi, 3, k); \
387 rijndael_encrypt(rijndael_ctx
* ctx
, const u4byte
* in_blk
, u4byte
* out_blk
)
389 u4byte k_len
= ctx
->k_len
;
390 u4byte
*e_key
= ctx
->e_key
;
395 b0
[0] = io_swap(in_blk
[0]) ^ e_key
[0];
396 b0
[1] = io_swap(in_blk
[1]) ^ e_key
[1];
397 b0
[2] = io_swap(in_blk
[2]) ^ e_key
[2];
398 b0
[3] = io_swap(in_blk
[3]) ^ e_key
[3];
404 f_nround(b1
, b0
, kp
);
405 f_nround(b0
, b1
, kp
);
410 f_nround(b1
, b0
, kp
);
411 f_nround(b0
, b1
, kp
);
414 f_nround(b1
, b0
, kp
);
415 f_nround(b0
, b1
, kp
);
416 f_nround(b1
, b0
, kp
);
417 f_nround(b0
, b1
, kp
);
418 f_nround(b1
, b0
, kp
);
419 f_nround(b0
, b1
, kp
);
420 f_nround(b1
, b0
, kp
);
421 f_nround(b0
, b1
, kp
);
422 f_nround(b1
, b0
, kp
);
423 f_lround(b0
, b1
, kp
);
425 out_blk
[0] = io_swap(b0
[0]);
426 out_blk
[1] = io_swap(b0
[1]);
427 out_blk
[2] = io_swap(b0
[2]);
428 out_blk
[3] = io_swap(b0
[3]);
431 /* decrypt a block of text */
433 #define i_nround(bo, bi, k) \
435 i_rn(bo, bi, 0, k); \
436 i_rn(bo, bi, 1, k); \
437 i_rn(bo, bi, 2, k); \
438 i_rn(bo, bi, 3, k); \
442 #define i_lround(bo, bi, k) \
444 i_rl(bo, bi, 0, k); \
445 i_rl(bo, bi, 1, k); \
446 i_rl(bo, bi, 2, k); \
447 i_rl(bo, bi, 3, k); \
451 rijndael_decrypt(rijndael_ctx
* ctx
, const u4byte
* in_blk
, u4byte
* out_blk
)
456 u4byte k_len
= ctx
->k_len
;
457 u4byte
*e_key
= ctx
->e_key
;
458 u4byte
*d_key
= ctx
->d_key
;
460 b0
[0] = io_swap(in_blk
[0]) ^ e_key
[4 * k_len
+ 24];
461 b0
[1] = io_swap(in_blk
[1]) ^ e_key
[4 * k_len
+ 25];
462 b0
[2] = io_swap(in_blk
[2]) ^ e_key
[4 * k_len
+ 26];
463 b0
[3] = io_swap(in_blk
[3]) ^ e_key
[4 * k_len
+ 27];
465 kp
= d_key
+ 4 * (k_len
+ 5);
469 i_nround(b1
, b0
, kp
);
470 i_nround(b0
, b1
, kp
);
475 i_nround(b1
, b0
, kp
);
476 i_nround(b0
, b1
, kp
);
479 i_nround(b1
, b0
, kp
);
480 i_nround(b0
, b1
, kp
);
481 i_nround(b1
, b0
, kp
);
482 i_nround(b0
, b1
, kp
);
483 i_nround(b1
, b0
, kp
);
484 i_nround(b0
, b1
, kp
);
485 i_nround(b1
, b0
, kp
);
486 i_nround(b0
, b1
, kp
);
487 i_nround(b1
, b0
, kp
);
488 i_lround(b0
, b1
, kp
);
490 out_blk
[0] = io_swap(b0
[0]);
491 out_blk
[1] = io_swap(b0
[1]);
492 out_blk
[2] = io_swap(b0
[2]);
493 out_blk
[3] = io_swap(b0
[3]);
497 * conventional interface
499 * ATM it hopes all data is 4-byte aligned - which
500 * should be true for PX. -marko
504 aes_set_key(rijndael_ctx
* ctx
, const uint8
*key
, unsigned keybits
, int enc
)
509 rijndael_set_key(ctx
, k
, keybits
, enc
);
513 aes_ecb_encrypt(rijndael_ctx
* ctx
, uint8
*data
, unsigned len
)
521 rijndael_encrypt(ctx
, d
, d
);
529 aes_ecb_decrypt(rijndael_ctx
* ctx
, uint8
*data
, unsigned len
)
537 rijndael_decrypt(ctx
, d
, d
);
545 aes_cbc_encrypt(rijndael_ctx
* ctx
, uint8
*iva
, uint8
*data
, unsigned len
)
547 uint32
*iv
= (uint32
*) iva
;
548 uint32
*d
= (uint32
*) data
;
558 rijndael_encrypt(ctx
, d
, d
);
567 aes_cbc_decrypt(rijndael_ctx
* ctx
, uint8
*iva
, uint8
*data
, unsigned len
)
569 uint32
*d
= (uint32
*) data
;
582 rijndael_decrypt(ctx
, buf
, d
);
599 * pre-calculate tables.
601 * On i386 lifts 17k from .bss to .rodata
602 * and avoids 1k code and setup time.
608 show256u8(char *name
, uint8
*data
)
612 printf("static const u1byte %s[256] = {\n ", name
);
613 for (i
= 0; i
< 256;)
615 printf("%u", pow_tab
[i
++]);
617 printf(i
% 16 ? ", " : ",\n ");
624 show4x256u32(char *name
, uint32 data
[4][256])
629 printf("static const u4byte %s[4][256] = {\n{\n ", name
);
630 for (i
= 0; i
< 4; i
++)
632 for (j
= 0; j
< 256;)
634 printf("0x%08x", data
[i
][j
]);
637 printf(j
% 4 ? ", " : ",\n ");
639 printf(i
< 3 ? "\n}, {\n " : "\n}\n");
648 char *hdr
= "/* Generated by rijndael.c */\n\n";
653 show256u8("pow_tab", pow_tab
);
654 show256u8("log_tab", log_tab
);
655 show256u8("sbx_tab", sbx_tab
);
656 show256u8("isb_tab", isb_tab
);
658 show4x256u32("ft_tab", ft_tab
);
659 show4x256u32("it_tab", it_tab
);
661 show4x256u32("fl_tab", fl_tab
);
662 show4x256u32("il_tab", il_tab
);
664 printf("static const u4byte rco_tab[10] = {\n ");
665 for (i
= 0; i
< 10; i
++)
667 printf("0x%08x", rco_tab
[i
]);