1 /*-------------------------------------------------------------------------
4 * routines supporting merge joins
6 * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
13 *-------------------------------------------------------------------------
17 * ExecMergeJoin mergejoin outer and inner relations.
18 * ExecInitMergeJoin creates and initializes run time states
19 * ExecEndMergeJoin cleans up the node.
23 * Merge-join is done by joining the inner and outer tuples satisfying
24 * join clauses of the form ((= outerKey innerKey) ...).
25 * The join clause list is provided by the query planner and may contain
26 * more than one (= outerKey innerKey) clause (for composite sort key).
28 * However, the query executor needs to know whether an outer
29 * tuple is "greater/smaller" than an inner tuple so that it can
30 * "synchronize" the two relations. For example, consider the following
33 * outer: (0 ^1 1 2 5 5 5 6 6 7) current tuple: 1
34 * inner: (1 ^3 5 5 5 5 6) current tuple: 3
36 * To continue the merge-join, the executor needs to scan both inner
37 * and outer relations till the matching tuples 5. It needs to know
38 * that currently inner tuple 3 is "greater" than outer tuple 1 and
39 * therefore it should scan the outer relation first to find a
40 * matching tuple and so on.
42 * Therefore, rather than directly executing the merge join clauses,
43 * we evaluate the left and right key expressions separately and then
44 * compare the columns one at a time (see MJCompare). The planner
45 * passes us enough information about the sort ordering of the inputs
46 * to allow us to determine how to make the comparison. We may use the
47 * appropriate btree comparison function, since Postgres' only notion
48 * of ordering is specified by btree opfamilies.
51 * Consider the above relations and suppose that the executor has
52 * just joined the first outer "5" with the last inner "5". The
53 * next step is of course to join the second outer "5" with all
54 * the inner "5's". This requires repositioning the inner "cursor"
55 * to point at the first inner "5". This is done by "marking" the
56 * first inner 5 so we can restore the "cursor" to it before joining
57 * with the second outer 5. The access method interface provides
58 * routines to mark and restore to a tuple.
61 * Essential operation of the merge join algorithm is as follows:
64 * get initial outer and inner tuples INITIALIZE
66 * while (outer != inner) { SKIP_TEST
68 * advance outer SKIPOUTER_ADVANCE
70 * advance inner SKIPINNER_ADVANCE
72 * mark inner position SKIP_TEST
74 * while (outer == inner) {
75 * join tuples JOINTUPLES
76 * advance inner position NEXTINNER
78 * advance outer position NEXTOUTER
79 * if (outer == mark) TESTOUTER
80 * restore inner position to mark TESTOUTER
82 * break // return to top of outer loop
87 * The merge join operation is coded in the fashion
88 * of a state machine. At each state, we do something and then
89 * proceed to another state. This state is stored in the node's
90 * execution state information and is preserved across calls to
91 * ExecMergeJoin. -cim 10/31/89
95 #include "access/nbtree.h"
96 #include "catalog/pg_amop.h"
97 #include "executor/execdebug.h"
98 #include "executor/execdefs.h"
99 #include "executor/nodeMergejoin.h"
100 #include "miscadmin.h"
101 #include "utils/acl.h"
102 #include "utils/lsyscache.h"
103 #include "utils/memutils.h"
104 #include "utils/syscache.h"
108 * Runtime data for each mergejoin clause
110 typedef struct MergeJoinClauseData
112 /* Executable expression trees */
113 ExprState
*lexpr
; /* left-hand (outer) input expression */
114 ExprState
*rexpr
; /* right-hand (inner) input expression */
117 * If we have a current left or right input tuple, the values of the
118 * expressions are loaded into these fields:
120 Datum ldatum
; /* current left-hand value */
121 Datum rdatum
; /* current right-hand value */
122 bool lisnull
; /* and their isnull flags */
126 * The comparison strategy in use, and the lookup info to let us call the
127 * btree comparison support function.
129 bool reverse
; /* if true, negate the cmpfn's output */
130 bool nulls_first
; /* if true, nulls sort low */
132 } MergeJoinClauseData
;
135 #define MarkInnerTuple(innerTupleSlot, mergestate) \
136 ExecCopySlot((mergestate)->mj_MarkedTupleSlot, (innerTupleSlot))
142 * This deconstructs the list of mergejoinable expressions, which is given
143 * to us by the planner in the form of a list of "leftexpr = rightexpr"
144 * expression trees in the order matching the sort columns of the inputs.
145 * We build an array of MergeJoinClause structs containing the information
146 * we will need at runtime. Each struct essentially tells us how to compare
147 * the two expressions from the original clause.
149 * In addition to the expressions themselves, the planner passes the btree
150 * opfamily OID, btree strategy number (BTLessStrategyNumber or
151 * BTGreaterStrategyNumber), and nulls-first flag that identify the intended
152 * sort ordering for each merge key. The mergejoinable operator is an
153 * equality operator in this opfamily, and the two inputs are guaranteed to be
154 * ordered in either increasing or decreasing (respectively) order according
155 * to this opfamily, with nulls at the indicated end of the range. This
156 * allows us to obtain the needed comparison function from the opfamily.
158 static MergeJoinClause
159 MJExamineQuals(List
*mergeclauses
,
161 int *mergestrategies
,
162 bool *mergenullsfirst
,
165 MergeJoinClause clauses
;
166 int nClauses
= list_length(mergeclauses
);
170 clauses
= (MergeJoinClause
) palloc0(nClauses
* sizeof(MergeJoinClauseData
));
173 foreach(cl
, mergeclauses
)
175 OpExpr
*qual
= (OpExpr
*) lfirst(cl
);
176 MergeJoinClause clause
= &clauses
[iClause
];
177 Oid opfamily
= mergefamilies
[iClause
];
178 StrategyNumber opstrategy
= mergestrategies
[iClause
];
179 bool nulls_first
= mergenullsfirst
[iClause
];
183 RegProcedure cmpproc
;
186 if (!IsA(qual
, OpExpr
))
187 elog(ERROR
, "mergejoin clause is not an OpExpr");
190 * Prepare the input expressions for execution.
192 clause
->lexpr
= ExecInitExpr((Expr
*) linitial(qual
->args
), parent
);
193 clause
->rexpr
= ExecInitExpr((Expr
*) lsecond(qual
->args
), parent
);
195 /* Extract the operator's declared left/right datatypes */
196 get_op_opfamily_properties(qual
->opno
, opfamily
,
200 if (op_strategy
!= BTEqualStrategyNumber
) /* should not happen */
201 elog(ERROR
, "cannot merge using non-equality operator %u",
204 /* And get the matching support procedure (comparison function) */
205 cmpproc
= get_opfamily_proc(opfamily
,
209 if (!RegProcedureIsValid(cmpproc
)) /* should not happen */
210 elog(ERROR
, "missing support function %d(%u,%u) in opfamily %u",
211 BTORDER_PROC
, op_lefttype
, op_righttype
, opfamily
);
213 /* Check permission to call cmp function */
214 aclresult
= pg_proc_aclcheck(cmpproc
, GetUserId(), ACL_EXECUTE
);
215 if (aclresult
!= ACLCHECK_OK
)
216 aclcheck_error(aclresult
, ACL_KIND_PROC
,
217 get_func_name(cmpproc
));
219 /* Set up the fmgr lookup information */
220 fmgr_info(cmpproc
, &(clause
->cmpfinfo
));
222 /* Fill the additional comparison-strategy flags */
223 if (opstrategy
== BTLessStrategyNumber
)
224 clause
->reverse
= false;
225 else if (opstrategy
== BTGreaterStrategyNumber
)
226 clause
->reverse
= true;
227 else /* planner screwed up */
228 elog(ERROR
, "unsupported mergejoin strategy %d", opstrategy
);
230 clause
->nulls_first
= nulls_first
;
241 * Compute the values of the mergejoined expressions for the current
242 * outer tuple. We also detect whether it's impossible for the current
243 * outer tuple to match anything --- this is true if it yields a NULL
244 * input, since we assume mergejoin operators are strict.
246 * We evaluate the values in OuterEContext, which can be reset each
247 * time we move to a new tuple.
250 MJEvalOuterValues(MergeJoinState
*mergestate
)
252 ExprContext
*econtext
= mergestate
->mj_OuterEContext
;
253 bool canmatch
= true;
255 MemoryContext oldContext
;
257 ResetExprContext(econtext
);
259 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
261 econtext
->ecxt_outertuple
= mergestate
->mj_OuterTupleSlot
;
263 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
265 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
267 clause
->ldatum
= ExecEvalExpr(clause
->lexpr
, econtext
,
268 &clause
->lisnull
, NULL
);
273 MemoryContextSwitchTo(oldContext
);
281 * Same as above, but for the inner tuple. Here, we have to be prepared
282 * to load data from either the true current inner, or the marked inner,
283 * so caller must tell us which slot to load from.
286 MJEvalInnerValues(MergeJoinState
*mergestate
, TupleTableSlot
*innerslot
)
288 ExprContext
*econtext
= mergestate
->mj_InnerEContext
;
289 bool canmatch
= true;
291 MemoryContext oldContext
;
293 ResetExprContext(econtext
);
295 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
297 econtext
->ecxt_innertuple
= innerslot
;
299 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
301 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
303 clause
->rdatum
= ExecEvalExpr(clause
->rexpr
, econtext
,
304 &clause
->risnull
, NULL
);
309 MemoryContextSwitchTo(oldContext
);
317 * Compare the mergejoinable values of the current two input tuples
318 * and return 0 if they are equal (ie, the mergejoin equalities all
319 * succeed), +1 if outer > inner, -1 if outer < inner.
321 * MJEvalOuterValues and MJEvalInnerValues must already have been called
322 * for the current outer and inner tuples, respectively.
325 MJCompare(MergeJoinState
*mergestate
)
328 bool nulleqnull
= false;
329 ExprContext
*econtext
= mergestate
->js
.ps
.ps_ExprContext
;
331 MemoryContext oldContext
;
332 FunctionCallInfoData fcinfo
;
335 * Call the comparison functions in short-lived context, in case they leak
338 ResetExprContext(econtext
);
340 oldContext
= MemoryContextSwitchTo(econtext
->ecxt_per_tuple_memory
);
342 for (i
= 0; i
< mergestate
->mj_NumClauses
; i
++)
344 MergeJoinClause clause
= &mergestate
->mj_Clauses
[i
];
348 * Deal with null inputs.
354 nulleqnull
= true; /* NULL "=" NULL */
357 if (clause
->nulls_first
)
358 result
= -1; /* NULL "<" NOT_NULL */
360 result
= 1; /* NULL ">" NOT_NULL */
365 if (clause
->nulls_first
)
366 result
= 1; /* NOT_NULL ">" NULL */
368 result
= -1; /* NOT_NULL "<" NULL */
373 * OK to call the comparison function.
375 InitFunctionCallInfoData(fcinfo
, &(clause
->cmpfinfo
), 2,
377 fcinfo
.arg
[0] = clause
->ldatum
;
378 fcinfo
.arg
[1] = clause
->rdatum
;
379 fcinfo
.argnull
[0] = false;
380 fcinfo
.argnull
[1] = false;
381 fresult
= FunctionCallInvoke(&fcinfo
);
384 nulleqnull
= true; /* treat like NULL = NULL */
387 result
= DatumGetInt32(fresult
);
397 * If we had any null comparison results or NULL-vs-NULL inputs, we do not
398 * want to report that the tuples are equal. Instead, if result is still
399 * 0, change it to +1. This will result in advancing the inner side of
402 if (nulleqnull
&& result
== 0)
405 MemoryContextSwitchTo(oldContext
);
412 * Generate a fake join tuple with nulls for the inner tuple,
413 * and return it if it passes the non-join quals.
415 static TupleTableSlot
*
416 MJFillOuter(MergeJoinState
*node
)
418 ExprContext
*econtext
= node
->js
.ps
.ps_ExprContext
;
419 List
*otherqual
= node
->js
.ps
.qual
;
421 ResetExprContext(econtext
);
423 econtext
->ecxt_outertuple
= node
->mj_OuterTupleSlot
;
424 econtext
->ecxt_innertuple
= node
->mj_NullInnerTupleSlot
;
426 if (ExecQual(otherqual
, econtext
, false))
429 * qualification succeeded. now form the desired projection tuple and
430 * return the slot containing it.
432 TupleTableSlot
*result
;
435 MJ_printf("ExecMergeJoin: returning outer fill tuple\n");
437 result
= ExecProject(node
->js
.ps
.ps_ProjInfo
, &isDone
);
439 if (isDone
!= ExprEndResult
)
441 node
->js
.ps
.ps_TupFromTlist
=
442 (isDone
== ExprMultipleResult
);
451 * Generate a fake join tuple with nulls for the outer tuple,
452 * and return it if it passes the non-join quals.
454 static TupleTableSlot
*
455 MJFillInner(MergeJoinState
*node
)
457 ExprContext
*econtext
= node
->js
.ps
.ps_ExprContext
;
458 List
*otherqual
= node
->js
.ps
.qual
;
460 ResetExprContext(econtext
);
462 econtext
->ecxt_outertuple
= node
->mj_NullOuterTupleSlot
;
463 econtext
->ecxt_innertuple
= node
->mj_InnerTupleSlot
;
465 if (ExecQual(otherqual
, econtext
, false))
468 * qualification succeeded. now form the desired projection tuple and
469 * return the slot containing it.
471 TupleTableSlot
*result
;
474 MJ_printf("ExecMergeJoin: returning inner fill tuple\n");
476 result
= ExecProject(node
->js
.ps
.ps_ProjInfo
, &isDone
);
478 if (isDone
!= ExprEndResult
)
480 node
->js
.ps
.ps_TupFromTlist
=
481 (isDone
== ExprMultipleResult
);
490 /* ----------------------------------------------------------------
493 * This function is called through the MJ_dump() macro
494 * when EXEC_MERGEJOINDEBUG is defined
495 * ----------------------------------------------------------------
497 #ifdef EXEC_MERGEJOINDEBUG
500 ExecMergeTupleDumpOuter(MergeJoinState
*mergestate
)
502 TupleTableSlot
*outerSlot
= mergestate
->mj_OuterTupleSlot
;
504 printf("==== outer tuple ====\n");
505 if (TupIsNull(outerSlot
))
508 MJ_debugtup(outerSlot
);
512 ExecMergeTupleDumpInner(MergeJoinState
*mergestate
)
514 TupleTableSlot
*innerSlot
= mergestate
->mj_InnerTupleSlot
;
516 printf("==== inner tuple ====\n");
517 if (TupIsNull(innerSlot
))
520 MJ_debugtup(innerSlot
);
524 ExecMergeTupleDumpMarked(MergeJoinState
*mergestate
)
526 TupleTableSlot
*markedSlot
= mergestate
->mj_MarkedTupleSlot
;
528 printf("==== marked tuple ====\n");
529 if (TupIsNull(markedSlot
))
532 MJ_debugtup(markedSlot
);
536 ExecMergeTupleDump(MergeJoinState
*mergestate
)
538 printf("******** ExecMergeTupleDump ********\n");
540 ExecMergeTupleDumpOuter(mergestate
);
541 ExecMergeTupleDumpInner(mergestate
);
542 ExecMergeTupleDumpMarked(mergestate
);
544 printf("******** \n");
548 /* ----------------------------------------------------------------
550 * ----------------------------------------------------------------
553 ExecMergeJoin(MergeJoinState
*node
)
560 PlanState
*innerPlan
;
561 TupleTableSlot
*innerTupleSlot
;
562 PlanState
*outerPlan
;
563 TupleTableSlot
*outerTupleSlot
;
564 ExprContext
*econtext
;
569 * get information from node
571 estate
= node
->js
.ps
.state
;
572 innerPlan
= innerPlanState(node
);
573 outerPlan
= outerPlanState(node
);
574 econtext
= node
->js
.ps
.ps_ExprContext
;
575 joinqual
= node
->js
.joinqual
;
576 otherqual
= node
->js
.ps
.qual
;
577 doFillOuter
= node
->mj_FillOuter
;
578 doFillInner
= node
->mj_FillInner
;
581 * Check to see if we're still projecting out tuples from a previous join
582 * tuple (because there is a function-returning-set in the projection
583 * expressions). If so, try to project another one.
585 if (node
->js
.ps
.ps_TupFromTlist
)
587 TupleTableSlot
*result
;
590 result
= ExecProject(node
->js
.ps
.ps_ProjInfo
, &isDone
);
591 if (isDone
== ExprMultipleResult
)
593 /* Done with that source tuple... */
594 node
->js
.ps
.ps_TupFromTlist
= false;
598 * Reset per-tuple memory context to free any expression evaluation
599 * storage allocated in the previous tuple cycle. Note this can't happen
600 * until we're done projecting out tuples from a join tuple.
602 ResetExprContext(econtext
);
605 * ok, everything is setup.. let's go to work
612 * get the current state of the join and do things accordingly.
614 switch (node
->mj_JoinState
)
617 * EXEC_MJ_INITIALIZE_OUTER means that this is the first time
618 * ExecMergeJoin() has been called and so we have to fetch the
619 * first matchable tuple for both outer and inner subplans. We
620 * do the outer side in INITIALIZE_OUTER state, then advance
621 * to INITIALIZE_INNER state for the inner subplan.
623 case EXEC_MJ_INITIALIZE_OUTER
:
624 MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_OUTER\n");
626 outerTupleSlot
= ExecProcNode(outerPlan
);
627 node
->mj_OuterTupleSlot
= outerTupleSlot
;
628 if (TupIsNull(outerTupleSlot
))
630 MJ_printf("ExecMergeJoin: nothing in outer subplan\n");
634 * Need to emit right-join tuples for remaining inner
635 * tuples. We set MatchedInner = true to force the
636 * ENDOUTER state to advance inner.
638 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
639 node
->mj_MatchedInner
= true;
642 /* Otherwise we're done. */
646 /* Compute join values and check for unmatchability */
647 if (MJEvalOuterValues(node
))
649 /* OK to go get the first inner tuple */
650 node
->mj_JoinState
= EXEC_MJ_INITIALIZE_INNER
;
654 /* Stay in same state to fetch next outer tuple */
658 * Generate a fake join tuple with nulls for the inner
659 * tuple, and return it if it passes the non-join
662 TupleTableSlot
*result
;
664 result
= MJFillOuter(node
);
671 case EXEC_MJ_INITIALIZE_INNER
:
672 MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_INNER\n");
674 innerTupleSlot
= ExecProcNode(innerPlan
);
675 node
->mj_InnerTupleSlot
= innerTupleSlot
;
676 if (TupIsNull(innerTupleSlot
))
678 MJ_printf("ExecMergeJoin: nothing in inner subplan\n");
682 * Need to emit left-join tuples for all outer tuples,
683 * including the one we just fetched. We set
684 * MatchedOuter = false to force the ENDINNER state to
685 * emit first tuple before advancing outer.
687 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
688 node
->mj_MatchedOuter
= false;
691 /* Otherwise we're done. */
695 /* Compute join values and check for unmatchability */
696 if (MJEvalInnerValues(node
, innerTupleSlot
))
699 * OK, we have the initial tuples. Begin by skipping
700 * non-matching tuples.
702 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
706 /* Mark before advancing, if wanted */
707 if (node
->mj_ExtraMarks
)
708 ExecMarkPos(innerPlan
);
709 /* Stay in same state to fetch next inner tuple */
713 * Generate a fake join tuple with nulls for the outer
714 * tuple, and return it if it passes the non-join
717 TupleTableSlot
*result
;
719 result
= MJFillInner(node
);
727 * EXEC_MJ_JOINTUPLES means we have two tuples which satisfied
728 * the merge clause so we join them and then proceed to get
729 * the next inner tuple (EXEC_MJ_NEXTINNER).
731 case EXEC_MJ_JOINTUPLES
:
732 MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTUPLES\n");
735 * Set the next state machine state. The right things will
736 * happen whether we return this join tuple or just fall
737 * through to continue the state machine execution.
739 node
->mj_JoinState
= EXEC_MJ_NEXTINNER
;
742 * Check the extra qual conditions to see if we actually want
743 * to return this join tuple. If not, can proceed with merge.
744 * We must distinguish the additional joinquals (which must
745 * pass to consider the tuples "matched" for outer-join logic)
746 * from the otherquals (which must pass before we actually
749 * We don't bother with a ResetExprContext here, on the
750 * assumption that we just did one while checking the merge
751 * qual. One per tuple should be sufficient. We do have to
752 * set up the econtext links to the tuples for ExecQual to
755 outerTupleSlot
= node
->mj_OuterTupleSlot
;
756 econtext
->ecxt_outertuple
= outerTupleSlot
;
757 innerTupleSlot
= node
->mj_InnerTupleSlot
;
758 econtext
->ecxt_innertuple
= innerTupleSlot
;
760 qualResult
= (joinqual
== NIL
||
761 ExecQual(joinqual
, econtext
, false));
762 MJ_DEBUG_QUAL(joinqual
, qualResult
);
766 node
->mj_MatchedOuter
= true;
767 node
->mj_MatchedInner
= true;
769 /* In an antijoin, we never return a matched tuple */
770 if (node
->js
.jointype
== JOIN_ANTI
)
772 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
777 * In a semijoin, we'll consider returning the first match,
778 * but after that we're done with this outer tuple.
780 if (node
->js
.jointype
== JOIN_SEMI
)
781 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
783 qualResult
= (otherqual
== NIL
||
784 ExecQual(otherqual
, econtext
, false));
785 MJ_DEBUG_QUAL(otherqual
, qualResult
);
790 * qualification succeeded. now form the desired
791 * projection tuple and return the slot containing it.
793 TupleTableSlot
*result
;
796 MJ_printf("ExecMergeJoin: returning tuple\n");
798 result
= ExecProject(node
->js
.ps
.ps_ProjInfo
,
801 if (isDone
!= ExprEndResult
)
803 node
->js
.ps
.ps_TupFromTlist
=
804 (isDone
== ExprMultipleResult
);
812 * EXEC_MJ_NEXTINNER means advance the inner scan to the next
813 * tuple. If the tuple is not nil, we then proceed to test it
814 * against the join qualification.
816 * Before advancing, we check to see if we must emit an
817 * outer-join fill tuple for this inner tuple.
819 case EXEC_MJ_NEXTINNER
:
820 MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTINNER\n");
822 if (doFillInner
&& !node
->mj_MatchedInner
)
825 * Generate a fake join tuple with nulls for the outer
826 * tuple, and return it if it passes the non-join quals.
828 TupleTableSlot
*result
;
830 node
->mj_MatchedInner
= true; /* do it only once */
832 result
= MJFillInner(node
);
838 * now we get the next inner tuple, if any. If there's none,
839 * advance to next outer tuple (which may be able to join to
840 * previously marked tuples).
842 * NB: must NOT do "extraMarks" here, since we may need to
843 * return to previously marked tuples.
845 innerTupleSlot
= ExecProcNode(innerPlan
);
846 node
->mj_InnerTupleSlot
= innerTupleSlot
;
847 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
848 node
->mj_MatchedInner
= false;
850 if (TupIsNull(innerTupleSlot
))
852 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
857 * Load up the new inner tuple's comparison values. If we see
858 * that it contains a NULL and hence can't match any outer
859 * tuple, we can skip the comparison and assume the new tuple
860 * is greater than current outer.
862 if (!MJEvalInnerValues(node
, innerTupleSlot
))
864 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
869 * Test the new inner tuple to see if it matches outer.
871 * If they do match, then we join them and move on to the next
872 * inner tuple (EXEC_MJ_JOINTUPLES).
874 * If they do not match then advance to next outer tuple.
876 compareResult
= MJCompare(node
);
877 MJ_DEBUG_COMPARE(compareResult
);
879 if (compareResult
== 0)
880 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
883 Assert(compareResult
< 0);
884 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
888 /*-------------------------------------------
889 * EXEC_MJ_NEXTOUTER means
892 * outer tuple - 5 5 - marked tuple
897 * we know we just bumped into the
898 * first inner tuple > current outer tuple (or possibly
899 * the end of the inner stream)
900 * so get a new outer tuple and then
901 * proceed to test it against the marked tuple
902 * (EXEC_MJ_TESTOUTER)
904 * Before advancing, we check to see if we must emit an
905 * outer-join fill tuple for this outer tuple.
906 *------------------------------------------------
908 case EXEC_MJ_NEXTOUTER
:
909 MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTOUTER\n");
911 if (doFillOuter
&& !node
->mj_MatchedOuter
)
914 * Generate a fake join tuple with nulls for the inner
915 * tuple, and return it if it passes the non-join quals.
917 TupleTableSlot
*result
;
919 node
->mj_MatchedOuter
= true; /* do it only once */
921 result
= MJFillOuter(node
);
927 * now we get the next outer tuple, if any
929 outerTupleSlot
= ExecProcNode(outerPlan
);
930 node
->mj_OuterTupleSlot
= outerTupleSlot
;
931 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
932 node
->mj_MatchedOuter
= false;
935 * if the outer tuple is null then we are done with the join,
936 * unless we have inner tuples we need to null-fill.
938 if (TupIsNull(outerTupleSlot
))
940 MJ_printf("ExecMergeJoin: end of outer subplan\n");
941 innerTupleSlot
= node
->mj_InnerTupleSlot
;
942 if (doFillInner
&& !TupIsNull(innerTupleSlot
))
945 * Need to emit right-join tuples for remaining inner
948 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
951 /* Otherwise we're done. */
955 /* Compute join values and check for unmatchability */
956 if (MJEvalOuterValues(node
))
958 /* Go test the new tuple against the marked tuple */
959 node
->mj_JoinState
= EXEC_MJ_TESTOUTER
;
963 /* Can't match, so fetch next outer tuple */
964 node
->mj_JoinState
= EXEC_MJ_NEXTOUTER
;
968 /*--------------------------------------------------------
969 * EXEC_MJ_TESTOUTER If the new outer tuple and the marked
970 * tuple satisfy the merge clause then we know we have
971 * duplicates in the outer scan so we have to restore the
972 * inner scan to the marked tuple and proceed to join the
973 * new outer tuple with the inner tuples.
975 * This is the case when
979 * new outer tuple - 5 5
983 * new outer tuple == marked tuple
985 * If the outer tuple fails the test, then we are done
986 * with the marked tuples, and we have to look for a
987 * match to the current inner tuple. So we will
988 * proceed to skip outer tuples until outer >= inner
989 * (EXEC_MJ_SKIP_TEST).
991 * This is the case when
996 * new outer tuple - 6 8 - inner tuple
999 * new outer tuple > marked tuple
1001 *---------------------------------------------------------
1003 case EXEC_MJ_TESTOUTER
:
1004 MJ_printf("ExecMergeJoin: EXEC_MJ_TESTOUTER\n");
1007 * Here we must compare the outer tuple with the marked inner
1008 * tuple. (We can ignore the result of MJEvalInnerValues,
1009 * since the marked inner tuple is certainly matchable.)
1011 innerTupleSlot
= node
->mj_MarkedTupleSlot
;
1012 (void) MJEvalInnerValues(node
, innerTupleSlot
);
1014 compareResult
= MJCompare(node
);
1015 MJ_DEBUG_COMPARE(compareResult
);
1017 if (compareResult
== 0)
1020 * the merge clause matched so now we restore the inner
1021 * scan position to the first mark, and go join that tuple
1022 * (and any following ones) to the new outer.
1024 * NOTE: we do not need to worry about the MatchedInner
1025 * state for the rescanned inner tuples. We know all of
1026 * them will match this new outer tuple and therefore
1027 * won't be emitted as fill tuples. This works *only*
1028 * because we require the extra joinquals to be nil when
1029 * doing a right or full join --- otherwise some of the
1030 * rescanned tuples might fail the extra joinquals.
1032 ExecRestrPos(innerPlan
);
1035 * ExecRestrPos probably should give us back a new Slot,
1036 * but since it doesn't, use the marked slot. (The
1037 * previously returned mj_InnerTupleSlot cannot be assumed
1038 * to hold the required tuple.)
1040 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1041 /* we need not do MJEvalInnerValues again */
1043 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
1048 * if the new outer tuple didn't match the marked inner
1049 * tuple then we have a case like:
1052 * 4 4 - marked tuple
1057 * which means that all subsequent outer tuples will be
1058 * larger than our marked inner tuples. So we need not
1059 * revisit any of the marked tuples but can proceed to
1060 * look for a match to the current inner. If there's
1061 * no more inners, we are done.
1064 Assert(compareResult
> 0);
1065 innerTupleSlot
= node
->mj_InnerTupleSlot
;
1066 if (TupIsNull(innerTupleSlot
))
1071 * Need to emit left-join tuples for remaining
1074 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
1077 /* Otherwise we're done. */
1081 /* reload comparison data for current inner */
1082 if (MJEvalInnerValues(node
, innerTupleSlot
))
1084 /* proceed to compare it to the current outer */
1085 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1090 * current inner can't possibly match any outer;
1091 * better to advance the inner scan than the outer.
1093 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1098 /*----------------------------------------------------------
1099 * EXEC_MJ_SKIP means compare tuples and if they do not
1100 * match, skip whichever is lesser.
1107 * outer tuple - 6 8 - inner tuple
1111 * we have to advance the outer scan
1112 * until we find the outer 8.
1114 * On the other hand:
1119 * outer tuple - 12 8 - inner tuple
1123 * we have to advance the inner scan
1124 * until we find the inner 12.
1125 *----------------------------------------------------------
1127 case EXEC_MJ_SKIP_TEST
:
1128 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIP_TEST\n");
1131 * before we advance, make sure the current tuples do not
1132 * satisfy the mergeclauses. If they do, then we update the
1133 * marked tuple position and go join them.
1135 compareResult
= MJCompare(node
);
1136 MJ_DEBUG_COMPARE(compareResult
);
1138 if (compareResult
== 0)
1140 ExecMarkPos(innerPlan
);
1142 MarkInnerTuple(node
->mj_InnerTupleSlot
, node
);
1144 node
->mj_JoinState
= EXEC_MJ_JOINTUPLES
;
1146 else if (compareResult
< 0)
1147 node
->mj_JoinState
= EXEC_MJ_SKIPOUTER_ADVANCE
;
1149 /* compareResult > 0 */
1150 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1154 * SKIPOUTER_ADVANCE: advance over an outer tuple that is
1155 * known not to join to any inner tuple.
1157 * Before advancing, we check to see if we must emit an
1158 * outer-join fill tuple for this outer tuple.
1160 case EXEC_MJ_SKIPOUTER_ADVANCE
:
1161 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPOUTER_ADVANCE\n");
1163 if (doFillOuter
&& !node
->mj_MatchedOuter
)
1166 * Generate a fake join tuple with nulls for the inner
1167 * tuple, and return it if it passes the non-join quals.
1169 TupleTableSlot
*result
;
1171 node
->mj_MatchedOuter
= true; /* do it only once */
1173 result
= MJFillOuter(node
);
1179 * now we get the next outer tuple, if any
1181 outerTupleSlot
= ExecProcNode(outerPlan
);
1182 node
->mj_OuterTupleSlot
= outerTupleSlot
;
1183 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
1184 node
->mj_MatchedOuter
= false;
1187 * if the outer tuple is null then we are done with the join,
1188 * unless we have inner tuples we need to null-fill.
1190 if (TupIsNull(outerTupleSlot
))
1192 MJ_printf("ExecMergeJoin: end of outer subplan\n");
1193 innerTupleSlot
= node
->mj_InnerTupleSlot
;
1194 if (doFillInner
&& !TupIsNull(innerTupleSlot
))
1197 * Need to emit right-join tuples for remaining inner
1200 node
->mj_JoinState
= EXEC_MJ_ENDOUTER
;
1203 /* Otherwise we're done. */
1207 /* Compute join values and check for unmatchability */
1208 if (MJEvalOuterValues(node
))
1210 /* Go test the new tuple against the current inner */
1211 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1215 /* Can't match, so fetch next outer tuple */
1216 node
->mj_JoinState
= EXEC_MJ_SKIPOUTER_ADVANCE
;
1221 * SKIPINNER_ADVANCE: advance over an inner tuple that is
1222 * known not to join to any outer tuple.
1224 * Before advancing, we check to see if we must emit an
1225 * outer-join fill tuple for this inner tuple.
1227 case EXEC_MJ_SKIPINNER_ADVANCE
:
1228 MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPINNER_ADVANCE\n");
1230 if (doFillInner
&& !node
->mj_MatchedInner
)
1233 * Generate a fake join tuple with nulls for the outer
1234 * tuple, and return it if it passes the non-join quals.
1236 TupleTableSlot
*result
;
1238 node
->mj_MatchedInner
= true; /* do it only once */
1240 result
= MJFillInner(node
);
1245 /* Mark before advancing, if wanted */
1246 if (node
->mj_ExtraMarks
)
1247 ExecMarkPos(innerPlan
);
1250 * now we get the next inner tuple, if any
1252 innerTupleSlot
= ExecProcNode(innerPlan
);
1253 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1254 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
1255 node
->mj_MatchedInner
= false;
1258 * if the inner tuple is null then we are done with the join,
1259 * unless we have outer tuples we need to null-fill.
1261 if (TupIsNull(innerTupleSlot
))
1263 MJ_printf("ExecMergeJoin: end of inner subplan\n");
1264 outerTupleSlot
= node
->mj_OuterTupleSlot
;
1265 if (doFillOuter
&& !TupIsNull(outerTupleSlot
))
1268 * Need to emit left-join tuples for remaining outer
1271 node
->mj_JoinState
= EXEC_MJ_ENDINNER
;
1274 /* Otherwise we're done. */
1278 /* Compute join values and check for unmatchability */
1279 if (MJEvalInnerValues(node
, innerTupleSlot
))
1281 /* proceed to compare it to the current outer */
1282 node
->mj_JoinState
= EXEC_MJ_SKIP_TEST
;
1287 * current inner can't possibly match any outer; better to
1288 * advance the inner scan than the outer.
1290 node
->mj_JoinState
= EXEC_MJ_SKIPINNER_ADVANCE
;
1295 * EXEC_MJ_ENDOUTER means we have run out of outer tuples, but
1296 * are doing a right/full join and therefore must null-fill
1297 * any remaing unmatched inner tuples.
1299 case EXEC_MJ_ENDOUTER
:
1300 MJ_printf("ExecMergeJoin: EXEC_MJ_ENDOUTER\n");
1302 Assert(doFillInner
);
1304 if (!node
->mj_MatchedInner
)
1307 * Generate a fake join tuple with nulls for the outer
1308 * tuple, and return it if it passes the non-join quals.
1310 TupleTableSlot
*result
;
1312 node
->mj_MatchedInner
= true; /* do it only once */
1314 result
= MJFillInner(node
);
1319 /* Mark before advancing, if wanted */
1320 if (node
->mj_ExtraMarks
)
1321 ExecMarkPos(innerPlan
);
1324 * now we get the next inner tuple, if any
1326 innerTupleSlot
= ExecProcNode(innerPlan
);
1327 node
->mj_InnerTupleSlot
= innerTupleSlot
;
1328 MJ_DEBUG_PROC_NODE(innerTupleSlot
);
1329 node
->mj_MatchedInner
= false;
1331 if (TupIsNull(innerTupleSlot
))
1333 MJ_printf("ExecMergeJoin: end of inner subplan\n");
1337 /* Else remain in ENDOUTER state and process next tuple. */
1341 * EXEC_MJ_ENDINNER means we have run out of inner tuples, but
1342 * are doing a left/full join and therefore must null- fill
1343 * any remaing unmatched outer tuples.
1345 case EXEC_MJ_ENDINNER
:
1346 MJ_printf("ExecMergeJoin: EXEC_MJ_ENDINNER\n");
1348 Assert(doFillOuter
);
1350 if (!node
->mj_MatchedOuter
)
1353 * Generate a fake join tuple with nulls for the inner
1354 * tuple, and return it if it passes the non-join quals.
1356 TupleTableSlot
*result
;
1358 node
->mj_MatchedOuter
= true; /* do it only once */
1360 result
= MJFillOuter(node
);
1366 * now we get the next outer tuple, if any
1368 outerTupleSlot
= ExecProcNode(outerPlan
);
1369 node
->mj_OuterTupleSlot
= outerTupleSlot
;
1370 MJ_DEBUG_PROC_NODE(outerTupleSlot
);
1371 node
->mj_MatchedOuter
= false;
1373 if (TupIsNull(outerTupleSlot
))
1375 MJ_printf("ExecMergeJoin: end of outer subplan\n");
1379 /* Else remain in ENDINNER state and process next tuple. */
1383 * broken state value?
1386 elog(ERROR
, "unrecognized mergejoin state: %d",
1387 (int) node
->mj_JoinState
);
1392 /* ----------------------------------------------------------------
1394 * ----------------------------------------------------------------
1397 ExecInitMergeJoin(MergeJoin
*node
, EState
*estate
, int eflags
)
1399 MergeJoinState
*mergestate
;
1401 /* check for unsupported flags */
1402 Assert(!(eflags
& (EXEC_FLAG_BACKWARD
| EXEC_FLAG_MARK
)));
1404 MJ1_printf("ExecInitMergeJoin: %s\n",
1405 "initializing node");
1408 * create state structure
1410 mergestate
= makeNode(MergeJoinState
);
1411 mergestate
->js
.ps
.plan
= (Plan
*) node
;
1412 mergestate
->js
.ps
.state
= estate
;
1415 * Miscellaneous initialization
1417 * create expression context for node
1419 ExecAssignExprContext(estate
, &mergestate
->js
.ps
);
1422 * we need two additional econtexts in which we can compute the join
1423 * expressions from the left and right input tuples. The node's regular
1424 * econtext won't do because it gets reset too often.
1426 mergestate
->mj_OuterEContext
= CreateExprContext(estate
);
1427 mergestate
->mj_InnerEContext
= CreateExprContext(estate
);
1430 * initialize child expressions
1432 mergestate
->js
.ps
.targetlist
= (List
*)
1433 ExecInitExpr((Expr
*) node
->join
.plan
.targetlist
,
1434 (PlanState
*) mergestate
);
1435 mergestate
->js
.ps
.qual
= (List
*)
1436 ExecInitExpr((Expr
*) node
->join
.plan
.qual
,
1437 (PlanState
*) mergestate
);
1438 mergestate
->js
.jointype
= node
->join
.jointype
;
1439 mergestate
->js
.joinqual
= (List
*)
1440 ExecInitExpr((Expr
*) node
->join
.joinqual
,
1441 (PlanState
*) mergestate
);
1442 /* mergeclauses are handled below */
1445 * initialize child nodes
1447 * inner child must support MARK/RESTORE.
1449 outerPlanState(mergestate
) = ExecInitNode(outerPlan(node
), estate
, eflags
);
1450 innerPlanState(mergestate
) = ExecInitNode(innerPlan(node
), estate
,
1451 eflags
| EXEC_FLAG_MARK
);
1454 * For certain types of inner child nodes, it is advantageous to issue
1455 * MARK every time we advance past an inner tuple we will never return to.
1456 * For other types, MARK on a tuple we cannot return to is a waste of
1457 * cycles. Detect which case applies and set mj_ExtraMarks if we want to
1458 * issue "unnecessary" MARK calls.
1460 * Currently, only Material wants the extra MARKs, and it will be helpful
1461 * only if eflags doesn't specify REWIND.
1463 if (IsA(innerPlan(node
), Material
) &&
1464 (eflags
& EXEC_FLAG_REWIND
) == 0)
1465 mergestate
->mj_ExtraMarks
= true;
1467 mergestate
->mj_ExtraMarks
= false;
1469 #define MERGEJOIN_NSLOTS 4
1472 * tuple table initialization
1474 ExecInitResultTupleSlot(estate
, &mergestate
->js
.ps
);
1476 mergestate
->mj_MarkedTupleSlot
= ExecInitExtraTupleSlot(estate
);
1477 ExecSetSlotDescriptor(mergestate
->mj_MarkedTupleSlot
,
1478 ExecGetResultType(innerPlanState(mergestate
)));
1480 switch (node
->join
.jointype
)
1484 mergestate
->mj_FillOuter
= false;
1485 mergestate
->mj_FillInner
= false;
1489 mergestate
->mj_FillOuter
= true;
1490 mergestate
->mj_FillInner
= false;
1491 mergestate
->mj_NullInnerTupleSlot
=
1492 ExecInitNullTupleSlot(estate
,
1493 ExecGetResultType(innerPlanState(mergestate
)));
1496 mergestate
->mj_FillOuter
= false;
1497 mergestate
->mj_FillInner
= true;
1498 mergestate
->mj_NullOuterTupleSlot
=
1499 ExecInitNullTupleSlot(estate
,
1500 ExecGetResultType(outerPlanState(mergestate
)));
1503 * Can't handle right or full join with non-nil extra joinclauses.
1504 * This should have been caught by planner.
1506 if (node
->join
.joinqual
!= NIL
)
1508 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1509 errmsg("RIGHT JOIN is only supported with merge-joinable join conditions")));
1512 mergestate
->mj_FillOuter
= true;
1513 mergestate
->mj_FillInner
= true;
1514 mergestate
->mj_NullOuterTupleSlot
=
1515 ExecInitNullTupleSlot(estate
,
1516 ExecGetResultType(outerPlanState(mergestate
)));
1517 mergestate
->mj_NullInnerTupleSlot
=
1518 ExecInitNullTupleSlot(estate
,
1519 ExecGetResultType(innerPlanState(mergestate
)));
1522 * Can't handle right or full join with non-nil extra joinclauses.
1524 if (node
->join
.joinqual
!= NIL
)
1526 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1527 errmsg("FULL JOIN is only supported with merge-joinable join conditions")));
1530 elog(ERROR
, "unrecognized join type: %d",
1531 (int) node
->join
.jointype
);
1535 * initialize tuple type and projection info
1537 ExecAssignResultTypeFromTL(&mergestate
->js
.ps
);
1538 ExecAssignProjectionInfo(&mergestate
->js
.ps
, NULL
);
1541 * preprocess the merge clauses
1543 mergestate
->mj_NumClauses
= list_length(node
->mergeclauses
);
1544 mergestate
->mj_Clauses
= MJExamineQuals(node
->mergeclauses
,
1545 node
->mergeFamilies
,
1546 node
->mergeStrategies
,
1547 node
->mergeNullsFirst
,
1548 (PlanState
*) mergestate
);
1551 * initialize join state
1553 mergestate
->mj_JoinState
= EXEC_MJ_INITIALIZE_OUTER
;
1554 mergestate
->js
.ps
.ps_TupFromTlist
= false;
1555 mergestate
->mj_MatchedOuter
= false;
1556 mergestate
->mj_MatchedInner
= false;
1557 mergestate
->mj_OuterTupleSlot
= NULL
;
1558 mergestate
->mj_InnerTupleSlot
= NULL
;
1561 * initialization successful
1563 MJ1_printf("ExecInitMergeJoin: %s\n",
1564 "node initialized");
1570 ExecCountSlotsMergeJoin(MergeJoin
*node
)
1572 return ExecCountSlotsNode(outerPlan((Plan
*) node
)) +
1573 ExecCountSlotsNode(innerPlan((Plan
*) node
)) +
1577 /* ----------------------------------------------------------------
1581 * frees storage allocated through C routines.
1582 * ----------------------------------------------------------------
1585 ExecEndMergeJoin(MergeJoinState
*node
)
1587 MJ1_printf("ExecEndMergeJoin: %s\n",
1588 "ending node processing");
1591 * Free the exprcontext
1593 ExecFreeExprContext(&node
->js
.ps
);
1596 * clean out the tuple table
1598 ExecClearTuple(node
->js
.ps
.ps_ResultTupleSlot
);
1599 ExecClearTuple(node
->mj_MarkedTupleSlot
);
1602 * shut down the subplans
1604 ExecEndNode(innerPlanState(node
));
1605 ExecEndNode(outerPlanState(node
));
1607 MJ1_printf("ExecEndMergeJoin: %s\n",
1608 "node processing ended");
1612 ExecReScanMergeJoin(MergeJoinState
*node
, ExprContext
*exprCtxt
)
1614 ExecClearTuple(node
->mj_MarkedTupleSlot
);
1616 node
->mj_JoinState
= EXEC_MJ_INITIALIZE_OUTER
;
1617 node
->js
.ps
.ps_TupFromTlist
= false;
1618 node
->mj_MatchedOuter
= false;
1619 node
->mj_MatchedInner
= false;
1620 node
->mj_OuterTupleSlot
= NULL
;
1621 node
->mj_InnerTupleSlot
= NULL
;
1624 * if chgParam of subnodes is not null then plans will be re-scanned by
1625 * first ExecProcNode.
1627 if (((PlanState
*) node
)->lefttree
->chgParam
== NULL
)
1628 ExecReScan(((PlanState
*) node
)->lefttree
, exprCtxt
);
1629 if (((PlanState
*) node
)->righttree
->chgParam
== NULL
)
1630 ExecReScan(((PlanState
*) node
)->righttree
, exprCtxt
);