1 /*-------------------------------------------------------------------------
4 * Routines to find possible search paths for processing a query
6 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
13 *-------------------------------------------------------------------------
20 #include "nodes/nodeFuncs.h"
21 #ifdef OPTIMIZER_DEBUG
22 #include "nodes/print.h"
24 #include "optimizer/clauses.h"
25 #include "optimizer/cost.h"
26 #include "optimizer/geqo.h"
27 #include "optimizer/pathnode.h"
28 #include "optimizer/paths.h"
29 #include "optimizer/plancat.h"
30 #include "optimizer/planner.h"
31 #include "optimizer/prep.h"
32 #include "optimizer/restrictinfo.h"
33 #include "optimizer/var.h"
34 #include "parser/parse_clause.h"
35 #include "parser/parsetree.h"
36 #include "rewrite/rewriteManip.h"
39 /* These parameters are set by GUC */
40 bool enable_geqo
= false; /* just in case GUC doesn't set it */
43 /* Hook for plugins to replace standard_join_search() */
44 join_search_hook_type join_search_hook
= NULL
;
47 static void set_base_rel_pathlists(PlannerInfo
*root
);
48 static void set_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
49 Index rti
, RangeTblEntry
*rte
);
50 static void set_plain_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
52 static void set_append_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
53 Index rti
, RangeTblEntry
*rte
);
54 static void set_dummy_rel_pathlist(RelOptInfo
*rel
);
55 static void set_subquery_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
56 Index rti
, RangeTblEntry
*rte
);
57 static void set_function_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
59 static void set_values_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
61 static void set_cte_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
63 static void set_worktable_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
65 static RelOptInfo
*make_rel_from_joinlist(PlannerInfo
*root
, List
*joinlist
);
66 static bool subquery_is_pushdown_safe(Query
*subquery
, Query
*topquery
,
67 bool *differentTypes
);
68 static bool recurse_pushdown_safe(Node
*setOp
, Query
*topquery
,
69 bool *differentTypes
);
70 static void compare_tlist_datatypes(List
*tlist
, List
*colTypes
,
71 bool *differentTypes
);
72 static bool qual_is_pushdown_safe(Query
*subquery
, Index rti
, Node
*qual
,
73 bool *differentTypes
);
74 static void subquery_push_qual(Query
*subquery
,
75 RangeTblEntry
*rte
, Index rti
, Node
*qual
);
76 static void recurse_push_qual(Node
*setOp
, Query
*topquery
,
77 RangeTblEntry
*rte
, Index rti
, Node
*qual
);
82 * Finds all possible access paths for executing a query, returning a
83 * single rel that represents the join of all base rels in the query.
86 make_one_rel(PlannerInfo
*root
, List
*joinlist
)
91 * Generate access paths for the base rels.
93 set_base_rel_pathlists(root
);
96 * Generate access paths for the entire join tree.
98 rel
= make_rel_from_joinlist(root
, joinlist
);
101 * The result should join all and only the query's base rels.
103 #ifdef USE_ASSERT_CHECKING
105 int num_base_rels
= 0;
108 for (rti
= 1; rti
< root
->simple_rel_array_size
; rti
++)
110 RelOptInfo
*brel
= root
->simple_rel_array
[rti
];
115 Assert(brel
->relid
== rti
); /* sanity check on array */
117 /* ignore RTEs that are "other rels" */
118 if (brel
->reloptkind
!= RELOPT_BASEREL
)
121 Assert(bms_is_member(rti
, rel
->relids
));
125 Assert(bms_num_members(rel
->relids
) == num_base_rels
);
133 * set_base_rel_pathlists
134 * Finds all paths available for scanning each base-relation entry.
135 * Sequential scan and any available indices are considered.
136 * Each useful path is attached to its relation's 'pathlist' field.
139 set_base_rel_pathlists(PlannerInfo
*root
)
143 for (rti
= 1; rti
< root
->simple_rel_array_size
; rti
++)
145 RelOptInfo
*rel
= root
->simple_rel_array
[rti
];
147 /* there may be empty slots corresponding to non-baserel RTEs */
151 Assert(rel
->relid
== rti
); /* sanity check on array */
153 /* ignore RTEs that are "other rels" */
154 if (rel
->reloptkind
!= RELOPT_BASEREL
)
157 set_rel_pathlist(root
, rel
, rti
, root
->simple_rte_array
[rti
]);
163 * Build access paths for a base relation
166 set_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
167 Index rti
, RangeTblEntry
*rte
)
171 /* It's an "append relation", process accordingly */
172 set_append_rel_pathlist(root
, rel
, rti
, rte
);
174 else if (rel
->rtekind
== RTE_SUBQUERY
)
176 /* Subquery --- generate a separate plan for it */
177 set_subquery_pathlist(root
, rel
, rti
, rte
);
179 else if (rel
->rtekind
== RTE_FUNCTION
)
181 /* RangeFunction --- generate a suitable path for it */
182 set_function_pathlist(root
, rel
, rte
);
184 else if (rel
->rtekind
== RTE_VALUES
)
186 /* Values list --- generate a suitable path for it */
187 set_values_pathlist(root
, rel
, rte
);
189 else if (rel
->rtekind
== RTE_CTE
)
191 /* CTE reference --- generate a suitable path for it */
192 if (rte
->self_reference
)
193 set_worktable_pathlist(root
, rel
, rte
);
195 set_cte_pathlist(root
, rel
, rte
);
200 Assert(rel
->rtekind
== RTE_RELATION
);
201 set_plain_rel_pathlist(root
, rel
, rte
);
204 #ifdef OPTIMIZER_DEBUG
205 debug_print_rel(root
, rel
);
210 * set_plain_rel_pathlist
211 * Build access paths for a plain relation (no subquery, no inheritance)
214 set_plain_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
, RangeTblEntry
*rte
)
217 * If we can prove we don't need to scan the rel via constraint exclusion,
218 * set up a single dummy path for it. We only need to check for regular
219 * baserels; if it's an otherrel, CE was already checked in
220 * set_append_rel_pathlist().
222 if (rel
->reloptkind
== RELOPT_BASEREL
&&
223 relation_excluded_by_constraints(root
, rel
, rte
))
225 set_dummy_rel_pathlist(rel
);
230 * Test any partial indexes of rel for applicability. We must do this
231 * first since partial unique indexes can affect size estimates.
233 check_partial_indexes(root
, rel
);
235 /* Mark rel with estimated output rows, width, etc */
236 set_baserel_size_estimates(root
, rel
);
239 * Check to see if we can extract any restriction conditions from join
240 * quals that are OR-of-AND structures. If so, add them to the rel's
241 * restriction list, and redo the above steps.
243 if (create_or_index_quals(root
, rel
))
245 check_partial_indexes(root
, rel
);
246 set_baserel_size_estimates(root
, rel
);
250 * Generate paths and add them to the rel's pathlist.
252 * Note: add_path() will discard any paths that are dominated by another
253 * available path, keeping only those paths that are superior along at
254 * least one dimension of cost or sortedness.
257 /* Consider sequential scan */
258 add_path(rel
, create_seqscan_path(root
, rel
));
260 /* Consider index scans */
261 create_index_paths(root
, rel
);
263 /* Consider TID scans */
264 create_tidscan_paths(root
, rel
);
266 /* Now find the cheapest of the paths for this rel */
271 * set_append_rel_pathlist
272 * Build access paths for an "append relation"
274 * The passed-in rel and RTE represent the entire append relation. The
275 * relation's contents are computed by appending together the output of
276 * the individual member relations. Note that in the inheritance case,
277 * the first member relation is actually the same table as is mentioned in
278 * the parent RTE ... but it has a different RTE and RelOptInfo. This is
279 * a good thing because their outputs are not the same size.
282 set_append_rel_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
283 Index rti
, RangeTblEntry
*rte
)
285 int parentRTindex
= rti
;
286 List
*subpaths
= NIL
;
289 double *parent_attrsizes
;
294 * Initialize to compute size estimates for whole append relation.
296 * We handle width estimates by weighting the widths of different child
297 * rels proportionally to their number of rows. This is sensible because
298 * the use of width estimates is mainly to compute the total relation
299 * "footprint" if we have to sort or hash it. To do this, we sum the
300 * total equivalent size (in "double" arithmetic) and then divide by the
301 * total rowcount estimate. This is done separately for the total rel
302 * width and each attribute.
304 * Note: if you consider changing this logic, beware that child rels could
305 * have zero rows and/or width, if they were excluded by constraints.
309 nattrs
= rel
->max_attr
- rel
->min_attr
+ 1;
310 parent_attrsizes
= (double *) palloc0(nattrs
* sizeof(double));
313 * Generate access paths for each member relation, and pick the cheapest
316 foreach(l
, root
->append_rel_list
)
318 AppendRelInfo
*appinfo
= (AppendRelInfo
*) lfirst(l
);
320 RangeTblEntry
*childRTE
;
321 RelOptInfo
*childrel
;
325 ListCell
*parentvars
;
328 /* append_rel_list contains all append rels; ignore others */
329 if (appinfo
->parent_relid
!= parentRTindex
)
332 childRTindex
= appinfo
->child_relid
;
333 childRTE
= root
->simple_rte_array
[childRTindex
];
336 * The child rel's RelOptInfo was already created during
337 * add_base_rels_to_query.
339 childrel
= find_base_rel(root
, childRTindex
);
340 Assert(childrel
->reloptkind
== RELOPT_OTHER_MEMBER_REL
);
343 * We have to copy the parent's targetlist and quals to the child,
344 * with appropriate substitution of variables. However, only the
345 * baserestrictinfo quals are needed before we can check for
346 * constraint exclusion; so do that first and then check to see if we
347 * can disregard this child.
349 * As of 8.4, the child rel's targetlist might contain non-Var
350 * expressions, which means that substitution into the quals
351 * could produce opportunities for const-simplification, and perhaps
352 * even pseudoconstant quals. To deal with this, we strip the
353 * RestrictInfo nodes, do the substitution, do const-simplification,
354 * and then reconstitute the RestrictInfo layer.
356 childquals
= get_all_actual_clauses(rel
->baserestrictinfo
);
357 childquals
= (List
*) adjust_appendrel_attrs((Node
*) childquals
,
359 childqual
= eval_const_expressions(root
, (Node
*)
360 make_ands_explicit(childquals
));
361 if (childqual
&& IsA(childqual
, Const
) &&
362 (((Const
*) childqual
)->constisnull
||
363 !DatumGetBool(((Const
*) childqual
)->constvalue
)))
366 * Restriction reduces to constant FALSE or constant NULL after
367 * substitution, so this child need not be scanned.
369 set_dummy_rel_pathlist(childrel
);
372 childquals
= make_ands_implicit((Expr
*) childqual
);
373 childquals
= make_restrictinfos_from_actual_clauses(root
,
375 childrel
->baserestrictinfo
= childquals
;
377 if (relation_excluded_by_constraints(root
, childrel
, childRTE
))
380 * This child need not be scanned, so we can omit it from the
381 * appendrel. Mark it with a dummy cheapest-path though, in case
382 * best_appendrel_indexscan() looks at it later.
384 set_dummy_rel_pathlist(childrel
);
388 /* CE failed, so finish copying targetlist and join quals */
389 childrel
->joininfo
= (List
*)
390 adjust_appendrel_attrs((Node
*) rel
->joininfo
,
392 childrel
->reltargetlist
= (List
*)
393 adjust_appendrel_attrs((Node
*) rel
->reltargetlist
,
397 * We have to make child entries in the EquivalenceClass data
398 * structures as well.
400 if (rel
->has_eclass_joins
)
402 add_child_rel_equivalences(root
, appinfo
, rel
, childrel
);
403 childrel
->has_eclass_joins
= true;
407 * Note: we could compute appropriate attr_needed data for the child's
408 * variables, by transforming the parent's attr_needed through the
409 * translated_vars mapping. However, currently there's no need
410 * because attr_needed is only examined for base relations not
411 * otherrels. So we just leave the child's attr_needed empty.
415 * Compute the child's access paths, and add the cheapest one to the
416 * Append path we are constructing for the parent.
418 * It's possible that the child is itself an appendrel, in which case
419 * we can "cut out the middleman" and just add its child paths to our
420 * own list. (We don't try to do this earlier because we need to
421 * apply both levels of transformation to the quals.)
423 set_rel_pathlist(root
, childrel
, childRTindex
, childRTE
);
425 childpath
= childrel
->cheapest_total_path
;
426 if (IsA(childpath
, AppendPath
))
427 subpaths
= list_concat(subpaths
,
428 ((AppendPath
*) childpath
)->subpaths
);
430 subpaths
= lappend(subpaths
, childpath
);
433 * Accumulate size information from each child.
435 if (childrel
->rows
> 0)
437 parent_rows
+= childrel
->rows
;
438 parent_size
+= childrel
->width
* childrel
->rows
;
440 forboth(parentvars
, rel
->reltargetlist
,
441 childvars
, childrel
->reltargetlist
)
443 Var
*parentvar
= (Var
*) lfirst(parentvars
);
444 Var
*childvar
= (Var
*) lfirst(childvars
);
447 * Accumulate per-column estimates too. Whole-row Vars and
448 * PlaceHolderVars can be ignored here.
450 if (IsA(parentvar
, Var
) &&
453 int pndx
= parentvar
->varattno
- rel
->min_attr
;
454 int cndx
= childvar
->varattno
- childrel
->min_attr
;
456 parent_attrsizes
[pndx
] += childrel
->attr_widths
[cndx
] * childrel
->rows
;
463 * Save the finished size estimates.
465 rel
->rows
= parent_rows
;
470 rel
->width
= rint(parent_size
/ parent_rows
);
471 for (i
= 0; i
< nattrs
; i
++)
472 rel
->attr_widths
[i
] = rint(parent_attrsizes
[i
] / parent_rows
);
475 rel
->width
= 0; /* attr_widths should be zero already */
478 * Set "raw tuples" count equal to "rows" for the appendrel; needed
479 * because some places assume rel->tuples is valid for any baserel.
481 rel
->tuples
= parent_rows
;
483 pfree(parent_attrsizes
);
486 * Finally, build Append path and install it as the only access path for
487 * the parent rel. (Note: this is correct even if we have zero or one
488 * live subpath due to constraint exclusion.)
490 add_path(rel
, (Path
*) create_append_path(rel
, subpaths
));
492 /* Select cheapest path (pretty easy in this case...) */
497 * set_dummy_rel_pathlist
498 * Build a dummy path for a relation that's been excluded by constraints
500 * Rather than inventing a special "dummy" path type, we represent this as an
501 * AppendPath with no members (see also IS_DUMMY_PATH macro).
504 set_dummy_rel_pathlist(RelOptInfo
*rel
)
506 /* Set dummy size estimates --- we leave attr_widths[] as zeroes */
510 add_path(rel
, (Path
*) create_append_path(rel
, NIL
));
512 /* Select cheapest path (pretty easy in this case...) */
516 /* quick-and-dirty test to see if any joining is needed */
518 has_multiple_baserels(PlannerInfo
*root
)
520 int num_base_rels
= 0;
523 for (rti
= 1; rti
< root
->simple_rel_array_size
; rti
++)
525 RelOptInfo
*brel
= root
->simple_rel_array
[rti
];
530 /* ignore RTEs that are "other rels" */
531 if (brel
->reloptkind
== RELOPT_BASEREL
)
532 if (++num_base_rels
> 1)
539 * set_subquery_pathlist
540 * Build the (single) access path for a subquery RTE
543 set_subquery_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
,
544 Index rti
, RangeTblEntry
*rte
)
546 Query
*parse
= root
->parse
;
547 Query
*subquery
= rte
->subquery
;
548 bool *differentTypes
;
549 double tuple_fraction
;
550 PlannerInfo
*subroot
;
554 * Must copy the Query so that planning doesn't mess up the RTE contents
555 * (really really need to fix the planner to not scribble on its input,
558 subquery
= copyObject(subquery
);
560 /* We need a workspace for keeping track of set-op type coercions */
561 differentTypes
= (bool *)
562 palloc0((list_length(subquery
->targetList
) + 1) * sizeof(bool));
565 * If there are any restriction clauses that have been attached to the
566 * subquery relation, consider pushing them down to become WHERE or HAVING
567 * quals of the subquery itself. This transformation is useful because it
568 * may allow us to generate a better plan for the subquery than evaluating
569 * all the subquery output rows and then filtering them.
571 * There are several cases where we cannot push down clauses. Restrictions
572 * involving the subquery are checked by subquery_is_pushdown_safe().
573 * Restrictions on individual clauses are checked by
574 * qual_is_pushdown_safe(). Also, we don't want to push down
575 * pseudoconstant clauses; better to have the gating node above the
578 * Non-pushed-down clauses will get evaluated as qpquals of the
581 * XXX Are there any cases where we want to make a policy decision not to
582 * push down a pushable qual, because it'd result in a worse plan?
584 if (rel
->baserestrictinfo
!= NIL
&&
585 subquery_is_pushdown_safe(subquery
, subquery
, differentTypes
))
587 /* OK to consider pushing down individual quals */
588 List
*upperrestrictlist
= NIL
;
591 foreach(l
, rel
->baserestrictinfo
)
593 RestrictInfo
*rinfo
= (RestrictInfo
*) lfirst(l
);
594 Node
*clause
= (Node
*) rinfo
->clause
;
596 if (!rinfo
->pseudoconstant
&&
597 qual_is_pushdown_safe(subquery
, rti
, clause
, differentTypes
))
600 subquery_push_qual(subquery
, rte
, rti
, clause
);
604 /* Keep it in the upper query */
605 upperrestrictlist
= lappend(upperrestrictlist
, rinfo
);
608 rel
->baserestrictinfo
= upperrestrictlist
;
611 pfree(differentTypes
);
614 * We can safely pass the outer tuple_fraction down to the subquery if the
615 * outer level has no joining, aggregation, or sorting to do. Otherwise
616 * we'd better tell the subquery to plan for full retrieval. (XXX This
617 * could probably be made more intelligent ...)
619 if (parse
->hasAggs
||
620 parse
->groupClause
||
622 parse
->distinctClause
||
624 has_multiple_baserels(root
))
625 tuple_fraction
= 0.0; /* default case */
627 tuple_fraction
= root
->tuple_fraction
;
629 /* Generate the plan for the subquery */
630 rel
->subplan
= subquery_planner(root
->glob
, subquery
,
632 false, tuple_fraction
,
634 rel
->subrtable
= subroot
->parse
->rtable
;
636 /* Copy number of output rows from subplan */
637 rel
->tuples
= rel
->subplan
->plan_rows
;
639 /* Mark rel with estimated output rows, width, etc */
640 set_baserel_size_estimates(root
, rel
);
642 /* Convert subquery pathkeys to outer representation */
643 pathkeys
= convert_subquery_pathkeys(root
, rel
, subroot
->query_pathkeys
);
645 /* Generate appropriate path */
646 add_path(rel
, create_subqueryscan_path(rel
, pathkeys
));
648 /* Select cheapest path (pretty easy in this case...) */
653 * set_function_pathlist
654 * Build the (single) access path for a function RTE
657 set_function_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
, RangeTblEntry
*rte
)
659 /* Mark rel with estimated output rows, width, etc */
660 set_function_size_estimates(root
, rel
);
662 /* Generate appropriate path */
663 add_path(rel
, create_functionscan_path(root
, rel
));
665 /* Select cheapest path (pretty easy in this case...) */
670 * set_values_pathlist
671 * Build the (single) access path for a VALUES RTE
674 set_values_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
, RangeTblEntry
*rte
)
676 /* Mark rel with estimated output rows, width, etc */
677 set_values_size_estimates(root
, rel
);
679 /* Generate appropriate path */
680 add_path(rel
, create_valuesscan_path(root
, rel
));
682 /* Select cheapest path (pretty easy in this case...) */
688 * Build the (single) access path for a non-self-reference CTE RTE
691 set_cte_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
, RangeTblEntry
*rte
)
694 PlannerInfo
*cteroot
;
701 * Find the referenced CTE, and locate the plan previously made for it.
703 levelsup
= rte
->ctelevelsup
;
705 while (levelsup
-- > 0)
707 cteroot
= cteroot
->parent_root
;
708 if (!cteroot
) /* shouldn't happen */
709 elog(ERROR
, "bad levelsup for CTE \"%s\"", rte
->ctename
);
713 * Note: cte_plan_ids can be shorter than cteList, if we are still working
714 * on planning the CTEs (ie, this is a side-reference from another CTE).
715 * So we mustn't use forboth here.
718 foreach(lc
, cteroot
->parse
->cteList
)
720 CommonTableExpr
*cte
= (CommonTableExpr
*) lfirst(lc
);
722 if (strcmp(cte
->ctename
, rte
->ctename
) == 0)
726 if (lc
== NULL
) /* shouldn't happen */
727 elog(ERROR
, "could not find CTE \"%s\"", rte
->ctename
);
728 if (ndx
>= list_length(cteroot
->cte_plan_ids
))
729 elog(ERROR
, "could not find plan for CTE \"%s\"", rte
->ctename
);
730 plan_id
= list_nth_int(cteroot
->cte_plan_ids
, ndx
);
732 cteplan
= (Plan
*) list_nth(root
->glob
->subplans
, plan_id
- 1);
734 /* Mark rel with estimated output rows, width, etc */
735 set_cte_size_estimates(root
, rel
, cteplan
);
737 /* Generate appropriate path */
738 add_path(rel
, create_ctescan_path(root
, rel
));
740 /* Select cheapest path (pretty easy in this case...) */
745 * set_worktable_pathlist
746 * Build the (single) access path for a self-reference CTE RTE
749 set_worktable_pathlist(PlannerInfo
*root
, RelOptInfo
*rel
, RangeTblEntry
*rte
)
752 PlannerInfo
*cteroot
;
756 * We need to find the non-recursive term's plan, which is in the plan
757 * level that's processing the recursive UNION, which is one level *below*
758 * where the CTE comes from.
760 levelsup
= rte
->ctelevelsup
;
761 if (levelsup
== 0) /* shouldn't happen */
762 elog(ERROR
, "bad levelsup for CTE \"%s\"", rte
->ctename
);
765 while (levelsup
-- > 0)
767 cteroot
= cteroot
->parent_root
;
768 if (!cteroot
) /* shouldn't happen */
769 elog(ERROR
, "bad levelsup for CTE \"%s\"", rte
->ctename
);
771 cteplan
= cteroot
->non_recursive_plan
;
772 if (!cteplan
) /* shouldn't happen */
773 elog(ERROR
, "could not find plan for CTE \"%s\"", rte
->ctename
);
775 /* Mark rel with estimated output rows, width, etc */
776 set_cte_size_estimates(root
, rel
, cteplan
);
778 /* Generate appropriate path */
779 add_path(rel
, create_worktablescan_path(root
, rel
));
781 /* Select cheapest path (pretty easy in this case...) */
786 * make_rel_from_joinlist
787 * Build access paths using a "joinlist" to guide the join path search.
789 * See comments for deconstruct_jointree() for definition of the joinlist
793 make_rel_from_joinlist(PlannerInfo
*root
, List
*joinlist
)
800 * Count the number of child joinlist nodes. This is the depth of the
801 * dynamic-programming algorithm we must employ to consider all ways of
802 * joining the child nodes.
804 levels_needed
= list_length(joinlist
);
806 if (levels_needed
<= 0)
807 return NULL
; /* nothing to do? */
810 * Construct a list of rels corresponding to the child joinlist nodes.
811 * This may contain both base rels and rels constructed according to
815 foreach(jl
, joinlist
)
817 Node
*jlnode
= (Node
*) lfirst(jl
);
820 if (IsA(jlnode
, RangeTblRef
))
822 int varno
= ((RangeTblRef
*) jlnode
)->rtindex
;
824 thisrel
= find_base_rel(root
, varno
);
826 else if (IsA(jlnode
, List
))
828 /* Recurse to handle subproblem */
829 thisrel
= make_rel_from_joinlist(root
, (List
*) jlnode
);
833 elog(ERROR
, "unrecognized joinlist node type: %d",
834 (int) nodeTag(jlnode
));
835 thisrel
= NULL
; /* keep compiler quiet */
838 initial_rels
= lappend(initial_rels
, thisrel
);
841 if (levels_needed
== 1)
844 * Single joinlist node, so we're done.
846 return (RelOptInfo
*) linitial(initial_rels
);
851 * Consider the different orders in which we could join the rels,
852 * using a plugin, GEQO, or the regular join search code.
854 * We put the initial_rels list into a PlannerInfo field because
855 * has_legal_joinclause() needs to look at it (ugly :-().
857 root
->initial_rels
= initial_rels
;
859 if (join_search_hook
)
860 return (*join_search_hook
) (root
, levels_needed
, initial_rels
);
861 else if (enable_geqo
&& levels_needed
>= geqo_threshold
)
862 return geqo(root
, levels_needed
, initial_rels
);
864 return standard_join_search(root
, levels_needed
, initial_rels
);
869 * standard_join_search
870 * Find possible joinpaths for a query by successively finding ways
871 * to join component relations into join relations.
873 * 'levels_needed' is the number of iterations needed, ie, the number of
874 * independent jointree items in the query. This is > 1.
876 * 'initial_rels' is a list of RelOptInfo nodes for each independent
877 * jointree item. These are the components to be joined together.
878 * Note that levels_needed == list_length(initial_rels).
880 * Returns the final level of join relations, i.e., the relation that is
881 * the result of joining all the original relations together.
882 * At least one implementation path must be provided for this relation and
883 * all required sub-relations.
885 * To support loadable plugins that modify planner behavior by changing the
886 * join searching algorithm, we provide a hook variable that lets a plugin
887 * replace or supplement this function. Any such hook must return the same
888 * final join relation as the standard code would, but it might have a
889 * different set of implementation paths attached, and only the sub-joinrels
890 * needed for these paths need have been instantiated.
892 * Note to plugin authors: the functions invoked during standard_join_search()
893 * modify root->join_rel_list and root->join_rel_hash. If you want to do more
894 * than one join-order search, you'll probably need to save and restore the
895 * original states of those data structures. See geqo_eval() for an example.
898 standard_join_search(PlannerInfo
*root
, int levels_needed
, List
*initial_rels
)
905 * We employ a simple "dynamic programming" algorithm: we first find all
906 * ways to build joins of two jointree items, then all ways to build joins
907 * of three items (from two-item joins and single items), then four-item
908 * joins, and so on until we have considered all ways to join all the
909 * items into one rel.
911 * joinitems[j] is a list of all the j-item rels. Initially we set
912 * joinitems[1] to represent all the single-jointree-item relations.
914 joinitems
= (List
**) palloc0((levels_needed
+ 1) * sizeof(List
*));
916 joinitems
[1] = initial_rels
;
918 for (lev
= 2; lev
<= levels_needed
; lev
++)
923 * Determine all possible pairs of relations to be joined at this
924 * level, and build paths for making each one from every available
925 * pair of lower-level relations.
927 joinitems
[lev
] = join_search_one_level(root
, lev
, joinitems
);
930 * Do cleanup work on each just-processed rel.
932 foreach(x
, joinitems
[lev
])
934 rel
= (RelOptInfo
*) lfirst(x
);
936 /* Find and save the cheapest paths for this rel */
939 #ifdef OPTIMIZER_DEBUG
940 debug_print_rel(root
, rel
);
946 * We should have a single rel at the final level.
948 if (joinitems
[levels_needed
] == NIL
)
949 elog(ERROR
, "failed to build any %d-way joins", levels_needed
);
950 Assert(list_length(joinitems
[levels_needed
]) == 1);
952 rel
= (RelOptInfo
*) linitial(joinitems
[levels_needed
]);
957 /*****************************************************************************
958 * PUSHING QUALS DOWN INTO SUBQUERIES
959 *****************************************************************************/
962 * subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
964 * subquery is the particular component query being checked. topquery
965 * is the top component of a set-operations tree (the same Query if no
966 * set-op is involved).
968 * Conditions checked here:
970 * 1. If the subquery has a LIMIT clause, we must not push down any quals,
971 * since that could change the set of rows returned.
973 * 2. If the subquery contains any window functions, we can't push quals
974 * into it, because that would change the results.
976 * 3. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
977 * quals into it, because that would change the results.
979 * 4. For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
980 * push quals into each component query, but the quals can only reference
981 * subquery columns that suffer no type coercions in the set operation.
982 * Otherwise there are possible semantic gotchas. So, we check the
983 * component queries to see if any of them have different output types;
984 * differentTypes[k] is set true if column k has different type in any
988 subquery_is_pushdown_safe(Query
*subquery
, Query
*topquery
,
989 bool *differentTypes
)
991 SetOperationStmt
*topop
;
994 if (subquery
->limitOffset
!= NULL
|| subquery
->limitCount
!= NULL
)
998 if (subquery
->hasWindowFuncs
)
1001 /* Are we at top level, or looking at a setop component? */
1002 if (subquery
== topquery
)
1004 /* Top level, so check any component queries */
1005 if (subquery
->setOperations
!= NULL
)
1006 if (!recurse_pushdown_safe(subquery
->setOperations
, topquery
,
1012 /* Setop component must not have more components (too weird) */
1013 if (subquery
->setOperations
!= NULL
)
1015 /* Check whether setop component output types match top level */
1016 topop
= (SetOperationStmt
*) topquery
->setOperations
;
1017 Assert(topop
&& IsA(topop
, SetOperationStmt
));
1018 compare_tlist_datatypes(subquery
->targetList
,
1026 * Helper routine to recurse through setOperations tree
1029 recurse_pushdown_safe(Node
*setOp
, Query
*topquery
,
1030 bool *differentTypes
)
1032 if (IsA(setOp
, RangeTblRef
))
1034 RangeTblRef
*rtr
= (RangeTblRef
*) setOp
;
1035 RangeTblEntry
*rte
= rt_fetch(rtr
->rtindex
, topquery
->rtable
);
1036 Query
*subquery
= rte
->subquery
;
1038 Assert(subquery
!= NULL
);
1039 return subquery_is_pushdown_safe(subquery
, topquery
, differentTypes
);
1041 else if (IsA(setOp
, SetOperationStmt
))
1043 SetOperationStmt
*op
= (SetOperationStmt
*) setOp
;
1045 /* EXCEPT is no good */
1046 if (op
->op
== SETOP_EXCEPT
)
1049 if (!recurse_pushdown_safe(op
->larg
, topquery
, differentTypes
))
1051 if (!recurse_pushdown_safe(op
->rarg
, topquery
, differentTypes
))
1056 elog(ERROR
, "unrecognized node type: %d",
1057 (int) nodeTag(setOp
));
1063 * Compare tlist's datatypes against the list of set-operation result types.
1064 * For any items that are different, mark the appropriate element of
1065 * differentTypes[] to show that this column will have type conversions.
1067 * We don't have to care about typmods here: the only allowed difference
1068 * between set-op input and output typmods is input is a specific typmod
1069 * and output is -1, and that does not require a coercion.
1072 compare_tlist_datatypes(List
*tlist
, List
*colTypes
,
1073 bool *differentTypes
)
1076 ListCell
*colType
= list_head(colTypes
);
1080 TargetEntry
*tle
= (TargetEntry
*) lfirst(l
);
1083 continue; /* ignore resjunk columns */
1084 if (colType
== NULL
)
1085 elog(ERROR
, "wrong number of tlist entries");
1086 if (exprType((Node
*) tle
->expr
) != lfirst_oid(colType
))
1087 differentTypes
[tle
->resno
] = true;
1088 colType
= lnext(colType
);
1090 if (colType
!= NULL
)
1091 elog(ERROR
, "wrong number of tlist entries");
1095 * qual_is_pushdown_safe - is a particular qual safe to push down?
1097 * qual is a restriction clause applying to the given subquery (whose RTE
1098 * has index rti in the parent query).
1100 * Conditions checked here:
1102 * 1. The qual must not contain any subselects (mainly because I'm not sure
1103 * it will work correctly: sublinks will already have been transformed into
1104 * subplans in the qual, but not in the subquery).
1106 * 2. The qual must not refer to the whole-row output of the subquery
1107 * (since there is no easy way to name that within the subquery itself).
1109 * 3. The qual must not refer to any subquery output columns that were
1110 * found to have inconsistent types across a set operation tree by
1111 * subquery_is_pushdown_safe().
1113 * 4. If the subquery uses DISTINCT ON, we must not push down any quals that
1114 * refer to non-DISTINCT output columns, because that could change the set
1115 * of rows returned. (This condition is vacuous for DISTINCT, because then
1116 * there are no non-DISTINCT output columns, so we needn't check. But note
1117 * we are assuming that the qual can't distinguish values that the DISTINCT
1118 * operator sees as equal. This is a bit shaky but we have no way to test
1119 * for the case, and it's unlikely enough that we shouldn't refuse the
1120 * optimization just because it could theoretically happen.)
1122 * 5. We must not push down any quals that refer to subselect outputs that
1123 * return sets, else we'd introduce functions-returning-sets into the
1124 * subquery's WHERE/HAVING quals.
1126 * 6. We must not push down any quals that refer to subselect outputs that
1127 * contain volatile functions, for fear of introducing strange results due
1128 * to multiple evaluation of a volatile function.
1131 qual_is_pushdown_safe(Query
*subquery
, Index rti
, Node
*qual
,
1132 bool *differentTypes
)
1137 Bitmapset
*tested
= NULL
;
1139 /* Refuse subselects (point 1) */
1140 if (contain_subplans(qual
))
1144 * It would be unsafe to push down window function calls, but at least for
1145 * the moment we could never see any in a qual anyhow.
1147 Assert(!contain_window_function(qual
));
1150 * Examine all Vars used in clause; since it's a restriction clause, all
1151 * such Vars must refer to subselect output columns.
1153 vars
= pull_var_clause(qual
, PVC_INCLUDE_PLACEHOLDERS
);
1156 Var
*var
= (Var
*) lfirst(vl
);
1160 * XXX Punt if we find any PlaceHolderVars in the restriction clause.
1161 * It's not clear whether a PHV could safely be pushed down, and even
1162 * less clear whether such a situation could arise in any cases of
1163 * practical interest anyway. So for the moment, just refuse to push
1172 Assert(var
->varno
== rti
);
1175 if (var
->varattno
== 0)
1182 * We use a bitmapset to avoid testing the same attno more than once.
1183 * (NB: this only works because subquery outputs can't have negative
1186 if (bms_is_member(var
->varattno
, tested
))
1188 tested
= bms_add_member(tested
, var
->varattno
);
1191 if (differentTypes
[var
->varattno
])
1197 /* Must find the tlist element referenced by the Var */
1198 tle
= get_tle_by_resno(subquery
->targetList
, var
->varattno
);
1199 Assert(tle
!= NULL
);
1200 Assert(!tle
->resjunk
);
1202 /* If subquery uses DISTINCT ON, check point 4 */
1203 if (subquery
->hasDistinctOn
&&
1204 !targetIsInSortList(tle
, InvalidOid
, subquery
->distinctClause
))
1206 /* non-DISTINCT column, so fail */
1211 /* Refuse functions returning sets (point 5) */
1212 if (expression_returns_set((Node
*) tle
->expr
))
1218 /* Refuse volatile functions (point 6) */
1219 if (contain_volatile_functions((Node
*) tle
->expr
))
1233 * subquery_push_qual - push down a qual that we have determined is safe
1236 subquery_push_qual(Query
*subquery
, RangeTblEntry
*rte
, Index rti
, Node
*qual
)
1238 if (subquery
->setOperations
!= NULL
)
1240 /* Recurse to push it separately to each component query */
1241 recurse_push_qual(subquery
->setOperations
, subquery
,
1247 * We need to replace Vars in the qual (which must refer to outputs of
1248 * the subquery) with copies of the subquery's targetlist expressions.
1249 * Note that at this point, any uplevel Vars in the qual should have
1250 * been replaced with Params, so they need no work.
1252 * This step also ensures that when we are pushing into a setop tree,
1253 * each component query gets its own copy of the qual.
1255 qual
= ResolveNew(qual
, rti
, 0, rte
,
1256 subquery
->targetList
,
1260 * Now attach the qual to the proper place: normally WHERE, but if the
1261 * subquery uses grouping or aggregation, put it in HAVING (since the
1262 * qual really refers to the group-result rows).
1264 if (subquery
->hasAggs
|| subquery
->groupClause
|| subquery
->havingQual
)
1265 subquery
->havingQual
= make_and_qual(subquery
->havingQual
, qual
);
1267 subquery
->jointree
->quals
=
1268 make_and_qual(subquery
->jointree
->quals
, qual
);
1271 * We need not change the subquery's hasAggs or hasSublinks flags,
1272 * since we can't be pushing down any aggregates that weren't there
1273 * before, and we don't push down subselects at all.
1279 * Helper routine to recurse through setOperations tree
1282 recurse_push_qual(Node
*setOp
, Query
*topquery
,
1283 RangeTblEntry
*rte
, Index rti
, Node
*qual
)
1285 if (IsA(setOp
, RangeTblRef
))
1287 RangeTblRef
*rtr
= (RangeTblRef
*) setOp
;
1288 RangeTblEntry
*subrte
= rt_fetch(rtr
->rtindex
, topquery
->rtable
);
1289 Query
*subquery
= subrte
->subquery
;
1291 Assert(subquery
!= NULL
);
1292 subquery_push_qual(subquery
, rte
, rti
, qual
);
1294 else if (IsA(setOp
, SetOperationStmt
))
1296 SetOperationStmt
*op
= (SetOperationStmt
*) setOp
;
1298 recurse_push_qual(op
->larg
, topquery
, rte
, rti
, qual
);
1299 recurse_push_qual(op
->rarg
, topquery
, rte
, rti
, qual
);
1303 elog(ERROR
, "unrecognized node type: %d",
1304 (int) nodeTag(setOp
));
1308 /*****************************************************************************
1310 *****************************************************************************/
1312 #ifdef OPTIMIZER_DEBUG
1315 print_relids(Relids relids
)
1321 tmprelids
= bms_copy(relids
);
1322 while ((x
= bms_first_member(tmprelids
)) >= 0)
1329 bms_free(tmprelids
);
1333 print_restrictclauses(PlannerInfo
*root
, List
*clauses
)
1339 RestrictInfo
*c
= lfirst(l
);
1341 print_expr((Node
*) c
->clause
, root
->parse
->rtable
);
1348 print_path(PlannerInfo
*root
, Path
*path
, int indent
)
1352 Path
*subpath
= NULL
;
1355 switch (nodeTag(path
))
1363 case T_BitmapHeapPath
:
1364 ptype
= "BitmapHeapScan";
1366 case T_BitmapAndPath
:
1367 ptype
= "BitmapAndPath";
1369 case T_BitmapOrPath
:
1370 ptype
= "BitmapOrPath";
1381 case T_MaterialPath
:
1383 subpath
= ((MaterialPath
*) path
)->subpath
;
1387 subpath
= ((UniquePath
*) path
)->subpath
;
1394 ptype
= "MergeJoin";
1406 for (i
= 0; i
< indent
; i
++)
1408 printf("%s", ptype
);
1413 print_relids(path
->parent
->relids
);
1414 printf(") rows=%.0f", path
->parent
->rows
);
1416 printf(" cost=%.2f..%.2f\n", path
->startup_cost
, path
->total_cost
);
1420 for (i
= 0; i
< indent
; i
++)
1422 printf(" pathkeys: ");
1423 print_pathkeys(path
->pathkeys
, root
->parse
->rtable
);
1428 JoinPath
*jp
= (JoinPath
*) path
;
1430 for (i
= 0; i
< indent
; i
++)
1432 printf(" clauses: ");
1433 print_restrictclauses(root
, jp
->joinrestrictinfo
);
1436 if (IsA(path
, MergePath
))
1438 MergePath
*mp
= (MergePath
*) path
;
1440 if (mp
->outersortkeys
|| mp
->innersortkeys
)
1442 for (i
= 0; i
< indent
; i
++)
1444 printf(" sortouter=%d sortinner=%d\n",
1445 ((mp
->outersortkeys
) ? 1 : 0),
1446 ((mp
->innersortkeys
) ? 1 : 0));
1450 print_path(root
, jp
->outerjoinpath
, indent
+ 1);
1451 print_path(root
, jp
->innerjoinpath
, indent
+ 1);
1455 print_path(root
, subpath
, indent
+ 1);
1459 debug_print_rel(PlannerInfo
*root
, RelOptInfo
*rel
)
1463 printf("RELOPTINFO (");
1464 print_relids(rel
->relids
);
1465 printf("): rows=%.0f width=%d\n", rel
->rows
, rel
->width
);
1467 if (rel
->baserestrictinfo
)
1469 printf("\tbaserestrictinfo: ");
1470 print_restrictclauses(root
, rel
->baserestrictinfo
);
1476 printf("\tjoininfo: ");
1477 print_restrictclauses(root
, rel
->joininfo
);
1481 printf("\tpath list:\n");
1482 foreach(l
, rel
->pathlist
)
1483 print_path(root
, lfirst(l
), 1);
1484 printf("\n\tcheapest startup path:\n");
1485 print_path(root
, rel
->cheapest_startup_path
, 1);
1486 printf("\n\tcheapest total path:\n");
1487 print_path(root
, rel
->cheapest_total_path
, 1);
1492 #endif /* OPTIMIZER_DEBUG */