Fix xslt_process() to ensure that it inserts a NULL terminator after the
[PostgreSQL.git] / doc / src / sgml / gist.sgml
blob0129175ca406578f421c6a407e8ccb8c6187c105
1 <!-- $PostgreSQL$ -->
3 <chapter id="GiST">
4 <title>GiST Indexes</title>
6 <indexterm>
7 <primary>index</primary>
8 <secondary>GiST</secondary>
9 </indexterm>
11 <sect1 id="gist-intro">
12 <title>Introduction</title>
14 <para>
15 <acronym>GiST</acronym> stands for Generalized Search Tree. It is a
16 balanced, tree-structured access method, that acts as a base template in
17 which to implement arbitrary indexing schemes. B-trees, R-trees and many
18 other indexing schemes can be implemented in <acronym>GiST</acronym>.
19 </para>
21 <para>
22 One advantage of <acronym>GiST</acronym> is that it allows the development
23 of custom data types with the appropriate access methods, by
24 an expert in the domain of the data type, rather than a database expert.
25 </para>
27 <para>
28 Some of the information here is derived from the University of California
29 at Berkeley's GiST Indexing Project
30 <ulink url="http://gist.cs.berkeley.edu/">web site</ulink> and
31 Marcel Kornacker's thesis,
32 <ulink url="http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz">
33 Access Methods for Next-Generation Database Systems</ulink>.
34 The <acronym>GiST</acronym>
35 implementation in <productname>PostgreSQL</productname> is primarily
36 maintained by Teodor Sigaev and Oleg Bartunov, and there is more
37 information on their
38 <ulink url="http://www.sai.msu.su/~megera/postgres/gist/">web site</ulink>.
39 </para>
41 </sect1>
43 <sect1 id="gist-extensibility">
44 <title>Extensibility</title>
46 <para>
47 Traditionally, implementing a new index access method meant a lot of
48 difficult work. It was necessary to understand the inner workings of the
49 database, such as the lock manager and Write-Ahead Log. The
50 <acronym>GiST</acronym> interface has a high level of abstraction,
51 requiring the access method implementer only to implement the semantics of
52 the data type being accessed. The <acronym>GiST</acronym> layer itself
53 takes care of concurrency, logging and searching the tree structure.
54 </para>
56 <para>
57 This extensibility should not be confused with the extensibility of the
58 other standard search trees in terms of the data they can handle. For
59 example, <productname>PostgreSQL</productname> supports extensible B-trees
60 and hash indexes. That means that you can use
61 <productname>PostgreSQL</productname> to build a B-tree or hash over any
62 data type you want. But B-trees only support range predicates
63 (<literal>&lt;</literal>, <literal>=</literal>, <literal>&gt;</literal>),
64 and hash indexes only support equality queries.
65 </para>
67 <para>
68 So if you index, say, an image collection with a
69 <productname>PostgreSQL</productname> B-tree, you can only issue queries
70 such as <quote>is imagex equal to imagey</quote>, <quote>is imagex less
71 than imagey</quote> and <quote>is imagex greater than imagey</quote>.
72 Depending on how you define <quote>equals</quote>, <quote>less than</quote>
73 and <quote>greater than</quote> in this context, this could be useful.
74 However, by using a <acronym>GiST</acronym> based index, you could create
75 ways to ask domain-specific questions, perhaps <quote>find all images of
76 horses</quote> or <quote>find all over-exposed images</quote>.
77 </para>
79 <para>
80 All it takes to get a <acronym>GiST</acronym> access method up and running
81 is to implement seven user-defined methods, which define the behavior of
82 keys in the tree. Of course these methods have to be pretty fancy to
83 support fancy queries, but for all the standard queries (B-trees,
84 R-trees, etc.) they're relatively straightforward. In short,
85 <acronym>GiST</acronym> combines extensibility along with generality, code
86 reuse, and a clean interface.
87 </para>
89 </sect1>
91 <sect1 id="gist-implementation">
92 <title>Implementation</title>
94 <para>
95 There are seven methods that an index operator class for
96 <acronym>GiST</acronym> must provide. Correctness of the index is ensured
97 by proper implementation of the <function>same</>, <function>consistent</>
98 and <function>union</> methods, while efficiency (size and speed) of the
99 index will depend on the <function>penalty</> and <function>picksplit</>
100 methods.
101 The remaining two methods are <function>compress</> and
102 <function>decompress</>, which allow an index to have internal tree data of
103 a different type than the data it indexes. The leaves are to be of the
104 indexed data type, while the other tree nodes can be of any C struct (but
105 you still have to follow <productname>PostgreSQL</> datatype rules here,
106 see about <literal>varlena</> for variable sized data). If the tree's
107 internal data type exists at the SQL level, the <literal>STORAGE</> option
108 of the <command>CREATE OPERATOR CLASS</> command can be used.
109 </para>
111 <variablelist>
112 <varlistentry>
113 <term><function>consistent</></term>
114 <listitem>
115 <para>
116 Given an index entry <literal>p</> and a query value <literal>q</>,
117 this function determines whether the index entry is
118 <quote>consistent</> with the query; that is, could the predicate
119 <quote><replaceable>indexed_column</>
120 <replaceable>indexable_operator</> <literal>q</></quote> be true for
121 any row represented by the index entry? For a leaf index entry this is
122 equivalent to testing the indexable condition, while for an internal
123 tree node this determines whether it is necessary to scan the subtree
124 of the index represented by the tree node. When the result is
125 <literal>true</>, a <literal>recheck</> flag must also be returned.
126 This indicates whether the predicate is certainly true or only possibly
127 true. If <literal>recheck</> = <literal>false</> then the index has
128 tested the predicate condition exactly, whereas if <literal>recheck</>
129 = <literal>true</> the row is only a candidate match. In that case the
130 system will automatically evaluate the
131 <replaceable>indexable_operator</> against the actual row value to see
132 if it is really a match. This convention allows
133 <acronym>GiST</acronym> to support both lossless and lossy index
134 structures.
135 </para>
137 <para>
138 The <acronym>SQL</> declaration of the function must look like this:
140 <programlisting>
141 CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
142 RETURNS bool
143 AS 'MODULE_PATHNAME'
144 LANGUAGE C STRICT;
145 </programlisting>
147 And the matching code in the C module could then follow this skeleton:
149 <programlisting>
150 Datum my_consistent(PG_FUNCTION_ARGS);
151 PG_FUNCTION_INFO_V1(my_consistent);
153 Datum
154 my_consistent(PG_FUNCTION_ARGS)
156 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
157 data_type *query = PG_GETARG_DATA_TYPE_P(1);
158 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
159 /* Oid subtype = PG_GETARG_OID(3); */
160 bool *recheck = (bool *) PG_GETARG_POINTER(4);
161 data_type *key = DatumGetDataType(entry-&gt;key);
162 bool retval;
165 * determine return value as a function of strategy, key and query.
167 * Use GIST_LEAF(entry) to know where you're called in the index tree,
168 * which comes handy when supporting the = operator for example (you could
169 * check for non empty union() in non-leaf nodes and equality in leaf
170 * nodes).
173 *recheck = true; /* or false if check is exact */
175 PG_RETURN_BOOL(retval);
177 </programlisting>
179 Here, <varname>key</> is an element in the index and <varname>query</>
180 the value being looked up in the index. The <literal>StrategyNumber</>
181 parameter indicates which operator of your operator class is being
182 applied &mdash; it matches one of the operator numbers in the
183 <command>CREATE OPERATOR CLASS</> command. Depending on what operators
184 you have included in the class, the data type of <varname>query</> could
185 vary with the operator, but the above skeleton assumes it doesn't.
186 </para>
188 </listitem>
189 </varlistentry>
191 <varlistentry>
192 <term><function>union</></term>
193 <listitem>
194 <para>
195 This method consolidates information in the tree. Given a set of
196 entries, this function generates a new index entry that represents
197 all the given entries.
198 </para>
200 <para>
201 The <acronym>SQL</> declaration of the function must look like this:
203 <programlisting>
204 CREATE OR REPLACE FUNCTION my_union(internal, internal)
205 RETURNS internal
206 AS 'MODULE_PATHNAME'
207 LANGUAGE C STRICT;
208 </programlisting>
210 And the matching code in the C module could then follow this skeleton:
212 <programlisting>
213 Datum my_union(PG_FUNCTION_ARGS);
214 PG_FUNCTION_INFO_V1(my_union);
216 Datum
217 my_union(PG_FUNCTION_ARGS)
219 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
220 GISTENTRY *ent = entryvec-&gt;vector;
221 data_type *out,
222 *tmp,
223 *old;
224 int numranges,
225 i = 0;
227 numranges = entryvec-&gt;n;
228 tmp = DatumGetDataType(ent[0].key);
229 out = tmp;
231 if (numranges == 1)
233 out = data_type_deep_copy(tmp);
235 PG_RETURN_DATA_TYPE_P(out);
238 for (i = 1; i &lt; numranges; i++)
240 old = out;
241 tmp = DatumGetDataType(ent[i].key);
242 out = my_union_implementation(out, tmp);
245 PG_RETURN_DATA_TYPE_P(out);
247 </programlisting>
248 </para>
250 <para>
251 As you can see, in this skeleton we're dealing with a data type
252 where <literal>union(X, Y, Z) = union(union(X, Y), Z)</>. It's easy
253 enough to support data types where this is not the case, by
254 implementing the proper union algorithm in this
255 <acronym>GiST</> support method.
256 </para>
258 <para>
259 The <function>union</> implementation function should return a
260 pointer to newly <function>palloc()</>ed memory. You can't just
261 return whatever the input is.
262 </para>
263 </listitem>
264 </varlistentry>
266 <varlistentry>
267 <term><function>compress</></term>
268 <listitem>
269 <para>
270 Converts the data item into a format suitable for physical storage in
271 an index page.
272 </para>
274 <para>
275 The <acronym>SQL</> declaration of the function must look like this:
277 <programlisting>
278 CREATE OR REPLACE FUNCTION my_compress(internal)
279 RETURNS internal
280 AS 'MODULE_PATHNAME'
281 LANGUAGE C STRICT;
282 </programlisting>
284 And the matching code in the C module could then follow this skeleton:
286 <programlisting>
287 Datum my_compress(PG_FUNCTION_ARGS);
288 PG_FUNCTION_INFO_V1(my_compress);
290 Datum
291 my_compress(PG_FUNCTION_ARGS)
293 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
294 GISTENTRY *retval;
296 if (entry-&gt;leafkey)
298 /* replace entry-&gt;key with a compressed version */
299 compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));
301 /* fill *compressed_data from entry-&gt;key ... */
303 retval = palloc(sizeof(GISTENTRY));
304 gistentryinit(*retval, PointerGetDatum(compressed_data),
305 entry-&gt;rel, entry-&gt;page, entry-&gt;offset, FALSE);
307 else
309 /* typically we needn't do anything with non-leaf entries */
310 retval = entry;
313 PG_RETURN_POINTER(retval);
315 </programlisting>
316 </para>
318 <para>
319 You have to adapt <replaceable>compressed_data_type</> to the specific
320 type you're converting to in order to compress your leaf nodes, of
321 course.
322 </para>
324 <para>
325 Depending on your needs, you could also need to care about
326 compressing <literal>NULL</> values in there, storing for example
327 <literal>(Datum) 0</> like <literal>gist_circle_compress</> does.
328 </para>
329 </listitem>
330 </varlistentry>
332 <varlistentry>
333 <term><function>decompress</></term>
334 <listitem>
335 <para>
336 The reverse of the <function>compress</function> method. Converts the
337 index representation of the data item into a format that can be
338 manipulated by the database.
339 </para>
341 <para>
342 The <acronym>SQL</> declaration of the function must look like this:
344 <programlisting>
345 CREATE OR REPLACE FUNCTION my_decompress(internal)
346 RETURNS internal
347 AS 'MODULE_PATHNAME'
348 LANGUAGE C STRICT;
349 </programlisting>
351 And the matching code in the C module could then follow this skeleton:
353 <programlisting>
354 Datum my_decompress(PG_FUNCTION_ARGS);
355 PG_FUNCTION_INFO_V1(my_decompress);
357 Datum
358 my_decompress(PG_FUNCTION_ARGS)
360 PG_RETURN_POINTER(PG_GETARG_POINTER(0));
362 </programlisting>
364 The above skeleton is suitable for the case where no decompression
365 is needed.
366 </para>
367 </listitem>
368 </varlistentry>
370 <varlistentry>
371 <term><function>penalty</></term>
372 <listitem>
373 <para>
374 Returns a value indicating the <quote>cost</quote> of inserting the new
375 entry into a particular branch of the tree. Items will be inserted
376 down the path of least <function>penalty</function> in the tree.
377 </para>
379 <para>
380 The <acronym>SQL</> declaration of the function must look like this:
382 <programlisting>
383 CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
384 RETURNS internal
385 AS 'MODULE_PATHNAME'
386 LANGUAGE C STRICT; -- in some cases penalty functions need not be strict
387 </programlisting>
389 And the matching code in the C module could then follow this skeleton:
391 <programlisting>
392 Datum my_penalty(PG_FUNCTION_ARGS);
393 PG_FUNCTION_INFO_V1(my_penalty);
395 Datum
396 my_penalty(PG_FUNCTION_ARGS)
398 GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
399 GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
400 float *penalty = (float *) PG_GETARG_POINTER(2);
401 data_type *orig = DatumGetDataType(origentry-&gt;key);
402 data_type *new = DatumGetDataType(newentry-&gt;key);
404 *penalty = my_penalty_implementation(orig, new);
405 PG_RETURN_POINTER(penalty);
407 </programlisting>
408 </para>
410 <para>
411 The <function>penalty</> function is crucial to good performance of
412 the index. It'll get used at insertion time to determine which branch
413 to follow when choosing where to add the new entry in the tree. At
414 query time, the more balanced the index, the quicker the lookup.
415 </para>
416 </listitem>
417 </varlistentry>
419 <varlistentry>
420 <term><function>picksplit</></term>
421 <listitem>
422 <para>
423 When an index page split is necessary, this function decides which
424 entries on the page are to stay on the old page, and which are to move
425 to the new page.
426 </para>
428 <para>
429 The <acronym>SQL</> declaration of the function must look like this:
431 <programlisting>
432 CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
433 RETURNS internal
434 AS 'MODULE_PATHNAME'
435 LANGUAGE C STRICT;
436 </programlisting>
438 And the matching code in the C module could then follow this skeleton:
440 <programlisting>
441 Datum my_picksplit(PG_FUNCTION_ARGS);
442 PG_FUNCTION_INFO_V1(my_picksplit);
444 Datum
445 my_picksplit(PG_FUNCTION_ARGS)
447 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
448 OffsetNumber maxoff = entryvec-&gt;n - 1;
449 GISTENTRY *ent = entryvec-&gt;vector;
450 GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
451 int i,
452 nbytes;
453 OffsetNumber *left,
454 *right;
455 data_type *tmp_union;
456 data_type *unionL;
457 data_type *unionR;
458 GISTENTRY **raw_entryvec;
460 maxoff = entryvec-&gt;n - 1;
461 nbytes = (maxoff + 1) * sizeof(OffsetNumber);
463 v-&gt;spl_left = (OffsetNumber *) palloc(nbytes);
464 left = v-&gt;spl_left;
465 v-&gt;spl_nleft = 0;
467 v-&gt;spl_right = (OffsetNumber *) palloc(nbytes);
468 right = v-&gt;spl_right;
469 v-&gt;spl_nright = 0;
471 unionL = NULL;
472 unionR = NULL;
474 /* Initialize the raw entry vector. */
475 raw_entryvec = (GISTENTRY **) malloc(entryvec-&gt;n * sizeof(void *));
476 for (i = FirstOffsetNumber; i &lt;= maxoff; i = OffsetNumberNext(i))
477 raw_entryvec[i] = &amp;(entryvec-&gt;vector[i]);
479 for (i = FirstOffsetNumber; i &lt;= maxoff; i = OffsetNumberNext(i))
481 int real_index = raw_entryvec[i] - entryvec-&gt;vector;
483 tmp_union = DatumGetDataType(entryvec-&gt;vector[real_index].key);
484 Assert(tmp_union != NULL);
487 * Choose where to put the index entries and update unionL and unionR
488 * accordingly. Append the entries to either v_spl_left or
489 * v_spl_right, and care about the counters.
492 if (my_choice_is_left(unionL, curl, unionR, curr))
494 if (unionL == NULL)
495 unionL = tmp_union;
496 else
497 unionL = my_union_implementation(unionL, tmp_union);
499 *left = real_index;
500 ++left;
501 ++(v-&gt;spl_nleft);
503 else
506 * Same on the right
511 v-&gt;spl_ldatum = DataTypeGetDatum(unionL);
512 v-&gt;spl_rdatum = DataTypeGetDatum(unionR);
513 PG_RETURN_POINTER(v);
515 </programlisting>
516 </para>
518 <para>
519 Like <function>penalty</>, the <function>picksplit</> function
520 is crucial to good performance of the index. Designing suitable
521 <function>penalty</> and <function>picksplit</> implementations
522 is where the challenge of implementing well-performing
523 <acronym>GiST</> indexes lies.
524 </para>
525 </listitem>
526 </varlistentry>
528 <varlistentry>
529 <term><function>same</></term>
530 <listitem>
531 <para>
532 Returns true if two index entries are identical, false otherwise.
533 </para>
535 <para>
536 The <acronym>SQL</> declaration of the function must look like this:
538 <programlisting>
539 CREATE OR REPLACE FUNCTION my_same(internal, internal, internal)
540 RETURNS internal
541 AS 'MODULE_PATHNAME'
542 LANGUAGE C STRICT;
543 </programlisting>
545 And the matching code in the C module could then follow this skeleton:
547 <programlisting>
548 Datum my_same(PG_FUNCTION_ARGS);
549 PG_FUNCTION_INFO_V1(my_same);
551 Datum
552 my_same(PG_FUNCTION_ARGS)
554 prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
555 prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
556 bool *result = (bool *) PG_GETARG_POINTER(2);
558 *result = my_eq(v1, v2);
559 PG_RETURN_POINTER(result);
561 </programlisting>
563 For historical reasons, the <function>same</> function doesn't
564 just return a boolean result; instead it has to store the flag
565 at the location indicated by the third argument.
566 </para>
567 </listitem>
568 </varlistentry>
570 </variablelist>
572 </sect1>
574 <sect1 id="gist-examples">
575 <title>Examples</title>
577 <para>
578 The <productname>PostgreSQL</productname> source distribution includes
579 several examples of index methods implemented using
580 <acronym>GiST</acronym>. The core system currently provides text search
581 support (indexing for <type>tsvector</> and <type>tsquery</>) as well as
582 R-Tree equivalent functionality for some of the built-in geometric data types
583 (see <filename>src/backend/access/gist/gistproc.c</>). The following
584 <filename>contrib</> modules also contain <acronym>GiST</acronym>
585 operator classes:
586 </para>
588 <variablelist>
589 <varlistentry>
590 <term>btree_gist</term>
591 <listitem>
592 <para>B-Tree equivalent functionality for several data types</para>
593 </listitem>
594 </varlistentry>
596 <varlistentry>
597 <term>cube</term>
598 <listitem>
599 <para>Indexing for multidimensional cubes</para>
600 </listitem>
601 </varlistentry>
603 <varlistentry>
604 <term>hstore</term>
605 <listitem>
606 <para>Module for storing (key, value) pairs</para>
607 </listitem>
608 </varlistentry>
610 <varlistentry>
611 <term>intarray</term>
612 <listitem>
613 <para>RD-Tree for one-dimensional array of int4 values</para>
614 </listitem>
615 </varlistentry>
617 <varlistentry>
618 <term>ltree</term>
619 <listitem>
620 <para>Indexing for tree-like structures</para>
621 </listitem>
622 </varlistentry>
624 <varlistentry>
625 <term>pg_trgm</term>
626 <listitem>
627 <para>Text similarity using trigram matching</para>
628 </listitem>
629 </varlistentry>
631 <varlistentry>
632 <term>seg</term>
633 <listitem>
634 <para>Indexing for <quote>float ranges</quote></para>
635 </listitem>
636 </varlistentry>
637 </variablelist>
639 </sect1>
641 <sect1 id="gist-recovery">
642 <title>Crash Recovery</title>
644 <para>
645 Usually, replay of the WAL log is sufficient to restore the integrity
646 of a GiST index following a database crash. However, there are some
647 corner cases in which the index state is not fully rebuilt. The index
648 will still be functionally correct, but there might be some performance
649 degradation. When this occurs, the index can be repaired by
650 <command>VACUUM</>ing its table, or by rebuilding the index using
651 <command>REINDEX</>. In some cases a plain <command>VACUUM</> is
652 not sufficient, and either <command>VACUUM FULL</> or <command>REINDEX</>
653 is needed. The need for one of these procedures is indicated by occurrence
654 of this log message during crash recovery:
655 <programlisting>
656 LOG: index NNN/NNN/NNN needs VACUUM or REINDEX to finish crash recovery
657 </programlisting>
658 or this log message during routine index insertions:
659 <programlisting>
660 LOG: index "FOO" needs VACUUM or REINDEX to finish crash recovery
661 </programlisting>
662 If a plain <command>VACUUM</> finds itself unable to complete recovery
663 fully, it will return a notice:
664 <programlisting>
665 NOTICE: index "FOO" needs VACUUM FULL or REINDEX to finish crash recovery
666 </programlisting>
667 </para>
668 </sect1>
670 </chapter>