Fix xslt_process() to ensure that it inserts a NULL terminator after the
[PostgreSQL.git] / src / backend / access / transam / xlog.c
blobd6a9f202e579a74bba32d90201be064bfeef5736
1 /*-------------------------------------------------------------------------
3 * xlog.c
4 * PostgreSQL transaction log manager
7 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * $PostgreSQL$
12 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include <ctype.h>
18 #include <signal.h>
19 #include <time.h>
20 #include <fcntl.h>
21 #include <sys/stat.h>
22 #include <sys/time.h>
23 #include <sys/wait.h>
24 #include <unistd.h>
26 #include "access/clog.h"
27 #include "access/multixact.h"
28 #include "access/subtrans.h"
29 #include "access/transam.h"
30 #include "access/tuptoaster.h"
31 #include "access/twophase.h"
32 #include "access/xact.h"
33 #include "access/xlog_internal.h"
34 #include "access/xlogutils.h"
35 #include "catalog/catversion.h"
36 #include "catalog/pg_control.h"
37 #include "catalog/pg_type.h"
38 #include "funcapi.h"
39 #include "libpq/pqsignal.h"
40 #include "miscadmin.h"
41 #include "pgstat.h"
42 #include "postmaster/bgwriter.h"
43 #include "storage/bufmgr.h"
44 #include "storage/fd.h"
45 #include "storage/ipc.h"
46 #include "storage/pmsignal.h"
47 #include "storage/procarray.h"
48 #include "storage/smgr.h"
49 #include "storage/spin.h"
50 #include "utils/builtins.h"
51 #include "utils/flatfiles.h"
52 #include "utils/guc.h"
53 #include "utils/ps_status.h"
54 #include "pg_trace.h"
57 /* File path names (all relative to $PGDATA) */
58 #define BACKUP_LABEL_FILE "backup_label"
59 #define BACKUP_LABEL_OLD "backup_label.old"
60 #define RECOVERY_COMMAND_FILE "recovery.conf"
61 #define RECOVERY_COMMAND_DONE "recovery.done"
64 /* User-settable parameters */
65 int CheckPointSegments = 3;
66 int XLOGbuffers = 8;
67 int XLogArchiveTimeout = 0;
68 bool XLogArchiveMode = false;
69 char *XLogArchiveCommand = NULL;
70 bool fullPageWrites = true;
71 bool log_checkpoints = false;
72 int sync_method = DEFAULT_SYNC_METHOD;
74 #ifdef WAL_DEBUG
75 bool XLOG_DEBUG = false;
76 #endif
79 * XLOGfileslop is the maximum number of preallocated future XLOG segments.
80 * When we are done with an old XLOG segment file, we will recycle it as a
81 * future XLOG segment as long as there aren't already XLOGfileslop future
82 * segments; else we'll delete it. This could be made a separate GUC
83 * variable, but at present I think it's sufficient to hardwire it as
84 * 2*CheckPointSegments+1. Under normal conditions, a checkpoint will free
85 * no more than 2*CheckPointSegments log segments, and we want to recycle all
86 * of them; the +1 allows boundary cases to happen without wasting a
87 * delete/create-segment cycle.
89 #define XLOGfileslop (2*CheckPointSegments + 1)
92 * GUC support
94 const struct config_enum_entry sync_method_options[] = {
95 {"fsync", SYNC_METHOD_FSYNC, false},
96 #ifdef HAVE_FSYNC_WRITETHROUGH
97 {"fsync_writethrough", SYNC_METHOD_FSYNC_WRITETHROUGH, false},
98 #endif
99 #ifdef HAVE_FDATASYNC
100 {"fdatasync", SYNC_METHOD_FDATASYNC, false},
101 #endif
102 #ifdef OPEN_SYNC_FLAG
103 {"open_sync", SYNC_METHOD_OPEN, false},
104 #endif
105 #ifdef OPEN_DATASYNC_FLAG
106 {"open_datasync", SYNC_METHOD_OPEN_DSYNC, false},
107 #endif
108 {NULL, 0, false}
112 * Statistics for current checkpoint are collected in this global struct.
113 * Because only the background writer or a stand-alone backend can perform
114 * checkpoints, this will be unused in normal backends.
116 CheckpointStatsData CheckpointStats;
119 * ThisTimeLineID will be same in all backends --- it identifies current
120 * WAL timeline for the database system.
122 TimeLineID ThisTimeLineID = 0;
125 * Are we doing recovery from XLOG?
127 * This is only ever true in the startup process; it should be read as meaning
128 * "this process is replaying WAL records", rather than "the system is in
129 * recovery mode". It should be examined primarily by functions that need
130 * to act differently when called from a WAL redo function (e.g., to skip WAL
131 * logging). To check whether the system is in recovery regardless of which
132 * process you're running in, use RecoveryInProgress().
134 bool InRecovery = false;
137 * Local copy of SharedRecoveryInProgress variable. True actually means "not
138 * known, need to check the shared state".
140 static bool LocalRecoveryInProgress = true;
143 * Local state for XLogInsertAllowed():
144 * 1: unconditionally allowed to insert XLOG
145 * 0: unconditionally not allowed to insert XLOG
146 * -1: must check RecoveryInProgress(); disallow until it is false
147 * Most processes start with -1 and transition to 1 after seeing that recovery
148 * is not in progress. But we can also force the value for special cases.
149 * The coding in XLogInsertAllowed() depends on the first two of these states
150 * being numerically the same as bool true and false.
152 static int LocalXLogInsertAllowed = -1;
154 /* Are we recovering using offline XLOG archives? */
155 static bool InArchiveRecovery = false;
157 /* Was the last xlog file restored from archive, or local? */
158 static bool restoredFromArchive = false;
160 /* options taken from recovery.conf */
161 static char *recoveryRestoreCommand = NULL;
162 static char *recoveryEndCommand = NULL;
163 static bool recoveryTarget = false;
164 static bool recoveryTargetExact = false;
165 static bool recoveryTargetInclusive = true;
166 static TransactionId recoveryTargetXid;
167 static TimestampTz recoveryTargetTime;
168 static TimestampTz recoveryLastXTime = 0;
170 /* if recoveryStopsHere returns true, it saves actual stop xid/time here */
171 static TransactionId recoveryStopXid;
172 static TimestampTz recoveryStopTime;
173 static bool recoveryStopAfter;
176 * During normal operation, the only timeline we care about is ThisTimeLineID.
177 * During recovery, however, things are more complicated. To simplify life
178 * for rmgr code, we keep ThisTimeLineID set to the "current" timeline as we
179 * scan through the WAL history (that is, it is the line that was active when
180 * the currently-scanned WAL record was generated). We also need these
181 * timeline values:
183 * recoveryTargetTLI: the desired timeline that we want to end in.
185 * expectedTLIs: an integer list of recoveryTargetTLI and the TLIs of
186 * its known parents, newest first (so recoveryTargetTLI is always the
187 * first list member). Only these TLIs are expected to be seen in the WAL
188 * segments we read, and indeed only these TLIs will be considered as
189 * candidate WAL files to open at all.
191 * curFileTLI: the TLI appearing in the name of the current input WAL file.
192 * (This is not necessarily the same as ThisTimeLineID, because we could
193 * be scanning data that was copied from an ancestor timeline when the current
194 * file was created.) During a sequential scan we do not allow this value
195 * to decrease.
197 static TimeLineID recoveryTargetTLI;
198 static List *expectedTLIs;
199 static TimeLineID curFileTLI;
202 * ProcLastRecPtr points to the start of the last XLOG record inserted by the
203 * current backend. It is updated for all inserts. XactLastRecEnd points to
204 * end+1 of the last record, and is reset when we end a top-level transaction,
205 * or start a new one; so it can be used to tell if the current transaction has
206 * created any XLOG records.
208 static XLogRecPtr ProcLastRecPtr = {0, 0};
210 XLogRecPtr XactLastRecEnd = {0, 0};
213 * RedoRecPtr is this backend's local copy of the REDO record pointer
214 * (which is almost but not quite the same as a pointer to the most recent
215 * CHECKPOINT record). We update this from the shared-memory copy,
216 * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
217 * hold the Insert lock). See XLogInsert for details. We are also allowed
218 * to update from XLogCtl->Insert.RedoRecPtr if we hold the info_lck;
219 * see GetRedoRecPtr. A freshly spawned backend obtains the value during
220 * InitXLOGAccess.
222 static XLogRecPtr RedoRecPtr;
224 /*----------
225 * Shared-memory data structures for XLOG control
227 * LogwrtRqst indicates a byte position that we need to write and/or fsync
228 * the log up to (all records before that point must be written or fsynced).
229 * LogwrtResult indicates the byte positions we have already written/fsynced.
230 * These structs are identical but are declared separately to indicate their
231 * slightly different functions.
233 * We do a lot of pushups to minimize the amount of access to lockable
234 * shared memory values. There are actually three shared-memory copies of
235 * LogwrtResult, plus one unshared copy in each backend. Here's how it works:
236 * XLogCtl->LogwrtResult is protected by info_lck
237 * XLogCtl->Write.LogwrtResult is protected by WALWriteLock
238 * XLogCtl->Insert.LogwrtResult is protected by WALInsertLock
239 * One must hold the associated lock to read or write any of these, but
240 * of course no lock is needed to read/write the unshared LogwrtResult.
242 * XLogCtl->LogwrtResult and XLogCtl->Write.LogwrtResult are both "always
243 * right", since both are updated by a write or flush operation before
244 * it releases WALWriteLock. The point of keeping XLogCtl->Write.LogwrtResult
245 * is that it can be examined/modified by code that already holds WALWriteLock
246 * without needing to grab info_lck as well.
248 * XLogCtl->Insert.LogwrtResult may lag behind the reality of the other two,
249 * but is updated when convenient. Again, it exists for the convenience of
250 * code that is already holding WALInsertLock but not the other locks.
252 * The unshared LogwrtResult may lag behind any or all of these, and again
253 * is updated when convenient.
255 * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
256 * (protected by info_lck), but we don't need to cache any copies of it.
258 * Note that this all works because the request and result positions can only
259 * advance forward, never back up, and so we can easily determine which of two
260 * values is "more up to date".
262 * info_lck is only held long enough to read/update the protected variables,
263 * so it's a plain spinlock. The other locks are held longer (potentially
264 * over I/O operations), so we use LWLocks for them. These locks are:
266 * WALInsertLock: must be held to insert a record into the WAL buffers.
268 * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
269 * XLogFlush).
271 * ControlFileLock: must be held to read/update control file or create
272 * new log file.
274 * CheckpointLock: must be held to do a checkpoint or restartpoint (ensures
275 * only one checkpointer at a time; currently, with all checkpoints done by
276 * the bgwriter, this is just pro forma).
278 *----------
281 typedef struct XLogwrtRqst
283 XLogRecPtr Write; /* last byte + 1 to write out */
284 XLogRecPtr Flush; /* last byte + 1 to flush */
285 } XLogwrtRqst;
287 typedef struct XLogwrtResult
289 XLogRecPtr Write; /* last byte + 1 written out */
290 XLogRecPtr Flush; /* last byte + 1 flushed */
291 } XLogwrtResult;
294 * Shared state data for XLogInsert.
296 typedef struct XLogCtlInsert
298 XLogwrtResult LogwrtResult; /* a recent value of LogwrtResult */
299 XLogRecPtr PrevRecord; /* start of previously-inserted record */
300 int curridx; /* current block index in cache */
301 XLogPageHeader currpage; /* points to header of block in cache */
302 char *currpos; /* current insertion point in cache */
303 XLogRecPtr RedoRecPtr; /* current redo point for insertions */
304 bool forcePageWrites; /* forcing full-page writes for PITR? */
305 } XLogCtlInsert;
308 * Shared state data for XLogWrite/XLogFlush.
310 typedef struct XLogCtlWrite
312 XLogwrtResult LogwrtResult; /* current value of LogwrtResult */
313 int curridx; /* cache index of next block to write */
314 pg_time_t lastSegSwitchTime; /* time of last xlog segment switch */
315 } XLogCtlWrite;
318 * Total shared-memory state for XLOG.
320 typedef struct XLogCtlData
322 /* Protected by WALInsertLock: */
323 XLogCtlInsert Insert;
325 /* Protected by info_lck: */
326 XLogwrtRqst LogwrtRqst;
327 XLogwrtResult LogwrtResult;
328 uint32 ckptXidEpoch; /* nextXID & epoch of latest checkpoint */
329 TransactionId ckptXid;
330 XLogRecPtr asyncCommitLSN; /* LSN of newest async commit */
332 /* Protected by WALWriteLock: */
333 XLogCtlWrite Write;
336 * These values do not change after startup, although the pointed-to pages
337 * and xlblocks values certainly do. Permission to read/write the pages
338 * and xlblocks values depends on WALInsertLock and WALWriteLock.
340 char *pages; /* buffers for unwritten XLOG pages */
341 XLogRecPtr *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
342 int XLogCacheBlck; /* highest allocated xlog buffer index */
343 TimeLineID ThisTimeLineID;
346 * SharedRecoveryInProgress indicates if we're still in crash or archive
347 * recovery. Protected by info_lck.
349 bool SharedRecoveryInProgress;
352 * During recovery, we keep a copy of the latest checkpoint record here.
353 * Used by the background writer when it wants to create a restartpoint.
355 * Protected by info_lck.
357 XLogRecPtr lastCheckPointRecPtr;
358 CheckPoint lastCheckPoint;
360 /* end+1 of the last record replayed (or being replayed) */
361 XLogRecPtr replayEndRecPtr;
363 slock_t info_lck; /* locks shared variables shown above */
364 } XLogCtlData;
366 static XLogCtlData *XLogCtl = NULL;
369 * We maintain an image of pg_control in shared memory.
371 static ControlFileData *ControlFile = NULL;
374 * Macros for managing XLogInsert state. In most cases, the calling routine
375 * has local copies of XLogCtl->Insert and/or XLogCtl->Insert->curridx,
376 * so these are passed as parameters instead of being fetched via XLogCtl.
379 /* Free space remaining in the current xlog page buffer */
380 #define INSERT_FREESPACE(Insert) \
381 (XLOG_BLCKSZ - ((Insert)->currpos - (char *) (Insert)->currpage))
383 /* Construct XLogRecPtr value for current insertion point */
384 #define INSERT_RECPTR(recptr,Insert,curridx) \
386 (recptr).xlogid = XLogCtl->xlblocks[curridx].xlogid, \
387 (recptr).xrecoff = \
388 XLogCtl->xlblocks[curridx].xrecoff - INSERT_FREESPACE(Insert) \
391 #define PrevBufIdx(idx) \
392 (((idx) == 0) ? XLogCtl->XLogCacheBlck : ((idx) - 1))
394 #define NextBufIdx(idx) \
395 (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
398 * Private, possibly out-of-date copy of shared LogwrtResult.
399 * See discussion above.
401 static XLogwrtResult LogwrtResult = {{0, 0}, {0, 0}};
404 * openLogFile is -1 or a kernel FD for an open log file segment.
405 * When it's open, openLogOff is the current seek offset in the file.
406 * openLogId/openLogSeg identify the segment. These variables are only
407 * used to write the XLOG, and so will normally refer to the active segment.
409 static int openLogFile = -1;
410 static uint32 openLogId = 0;
411 static uint32 openLogSeg = 0;
412 static uint32 openLogOff = 0;
415 * These variables are used similarly to the ones above, but for reading
416 * the XLOG. Note, however, that readOff generally represents the offset
417 * of the page just read, not the seek position of the FD itself, which
418 * will be just past that page.
420 static int readFile = -1;
421 static uint32 readId = 0;
422 static uint32 readSeg = 0;
423 static uint32 readOff = 0;
425 /* Buffer for currently read page (XLOG_BLCKSZ bytes) */
426 static char *readBuf = NULL;
428 /* Buffer for current ReadRecord result (expandable) */
429 static char *readRecordBuf = NULL;
430 static uint32 readRecordBufSize = 0;
432 /* State information for XLOG reading */
433 static XLogRecPtr ReadRecPtr; /* start of last record read */
434 static XLogRecPtr EndRecPtr; /* end+1 of last record read */
435 static XLogRecord *nextRecord = NULL;
436 static TimeLineID lastPageTLI = 0;
438 static XLogRecPtr minRecoveryPoint; /* local copy of
439 * ControlFile->minRecoveryPoint */
440 static bool updateMinRecoveryPoint = true;
442 static bool InRedo = false;
445 * Flags set by interrupt handlers for later service in the redo loop.
447 static volatile sig_atomic_t got_SIGHUP = false;
448 static volatile sig_atomic_t shutdown_requested = false;
451 * Flag set when executing a restore command, to tell SIGTERM signal handler
452 * that it's safe to just proc_exit.
454 static volatile sig_atomic_t in_restore_command = false;
457 static void XLogArchiveNotify(const char *xlog);
458 static void XLogArchiveNotifySeg(uint32 log, uint32 seg);
459 static bool XLogArchiveCheckDone(const char *xlog);
460 static bool XLogArchiveIsBusy(const char *xlog);
461 static void XLogArchiveCleanup(const char *xlog);
462 static void readRecoveryCommandFile(void);
463 static void exitArchiveRecovery(TimeLineID endTLI,
464 uint32 endLogId, uint32 endLogSeg);
465 static bool recoveryStopsHere(XLogRecord *record, bool *includeThis);
466 static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
468 static bool XLogCheckBuffer(XLogRecData *rdata, bool doPageWrites,
469 XLogRecPtr *lsn, BkpBlock *bkpb);
470 static bool AdvanceXLInsertBuffer(bool new_segment);
471 static void XLogWrite(XLogwrtRqst WriteRqst, bool flexible, bool xlog_switch);
472 static int XLogFileInit(uint32 log, uint32 seg,
473 bool *use_existent, bool use_lock);
474 static bool InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath,
475 bool find_free, int *max_advance,
476 bool use_lock);
477 static int XLogFileOpen(uint32 log, uint32 seg);
478 static int XLogFileRead(uint32 log, uint32 seg, int emode);
479 static void XLogFileClose(void);
480 static bool RestoreArchivedFile(char *path, const char *xlogfname,
481 const char *recovername, off_t expectedSize);
482 static void ExecuteRecoveryEndCommand(void);
483 static void PreallocXlogFiles(XLogRecPtr endptr);
484 static void RemoveOldXlogFiles(uint32 log, uint32 seg, XLogRecPtr endptr);
485 static void ValidateXLOGDirectoryStructure(void);
486 static void CleanupBackupHistory(void);
487 static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
488 static XLogRecord *ReadRecord(XLogRecPtr *RecPtr, int emode);
489 static bool ValidXLOGHeader(XLogPageHeader hdr, int emode);
490 static XLogRecord *ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt);
491 static List *readTimeLineHistory(TimeLineID targetTLI);
492 static bool existsTimeLineHistory(TimeLineID probeTLI);
493 static TimeLineID findNewestTimeLine(TimeLineID startTLI);
494 static void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI,
495 TimeLineID endTLI,
496 uint32 endLogId, uint32 endLogSeg);
497 static void WriteControlFile(void);
498 static void ReadControlFile(void);
499 static char *str_time(pg_time_t tnow);
501 #ifdef WAL_DEBUG
502 static void xlog_outrec(StringInfo buf, XLogRecord *record);
503 #endif
504 static void issue_xlog_fsync(void);
505 static void pg_start_backup_callback(int code, Datum arg);
506 static bool read_backup_label(XLogRecPtr *checkPointLoc,
507 XLogRecPtr *minRecoveryLoc);
508 static void rm_redo_error_callback(void *arg);
509 static int get_sync_bit(int method);
513 * Insert an XLOG record having the specified RMID and info bytes,
514 * with the body of the record being the data chunk(s) described by
515 * the rdata chain (see xlog.h for notes about rdata).
517 * Returns XLOG pointer to end of record (beginning of next record).
518 * This can be used as LSN for data pages affected by the logged action.
519 * (LSN is the XLOG point up to which the XLOG must be flushed to disk
520 * before the data page can be written out. This implements the basic
521 * WAL rule "write the log before the data".)
523 * NB: this routine feels free to scribble on the XLogRecData structs,
524 * though not on the data they reference. This is OK since the XLogRecData
525 * structs are always just temporaries in the calling code.
527 XLogRecPtr
528 XLogInsert(RmgrId rmid, uint8 info, XLogRecData *rdata)
530 XLogCtlInsert *Insert = &XLogCtl->Insert;
531 XLogRecord *record;
532 XLogContRecord *contrecord;
533 XLogRecPtr RecPtr;
534 XLogRecPtr WriteRqst;
535 uint32 freespace;
536 int curridx;
537 XLogRecData *rdt;
538 Buffer dtbuf[XLR_MAX_BKP_BLOCKS];
539 bool dtbuf_bkp[XLR_MAX_BKP_BLOCKS];
540 BkpBlock dtbuf_xlg[XLR_MAX_BKP_BLOCKS];
541 XLogRecPtr dtbuf_lsn[XLR_MAX_BKP_BLOCKS];
542 XLogRecData dtbuf_rdt1[XLR_MAX_BKP_BLOCKS];
543 XLogRecData dtbuf_rdt2[XLR_MAX_BKP_BLOCKS];
544 XLogRecData dtbuf_rdt3[XLR_MAX_BKP_BLOCKS];
545 pg_crc32 rdata_crc;
546 uint32 len,
547 write_len;
548 unsigned i;
549 bool updrqst;
550 bool doPageWrites;
551 bool isLogSwitch = (rmid == RM_XLOG_ID && info == XLOG_SWITCH);
553 /* cross-check on whether we should be here or not */
554 if (!XLogInsertAllowed())
555 elog(ERROR, "cannot make new WAL entries during recovery");
557 /* info's high bits are reserved for use by me */
558 if (info & XLR_INFO_MASK)
559 elog(PANIC, "invalid xlog info mask %02X", info);
561 TRACE_POSTGRESQL_XLOG_INSERT(rmid, info);
564 * In bootstrap mode, we don't actually log anything but XLOG resources;
565 * return a phony record pointer.
567 if (IsBootstrapProcessingMode() && rmid != RM_XLOG_ID)
569 RecPtr.xlogid = 0;
570 RecPtr.xrecoff = SizeOfXLogLongPHD; /* start of 1st chkpt record */
571 return RecPtr;
575 * Here we scan the rdata chain, determine which buffers must be backed
576 * up, and compute the CRC values for the data. Note that the record
577 * header isn't added into the CRC initially since we don't know the final
578 * length or info bits quite yet. Thus, the CRC will represent the CRC of
579 * the whole record in the order "rdata, then backup blocks, then record
580 * header".
582 * We may have to loop back to here if a race condition is detected below.
583 * We could prevent the race by doing all this work while holding the
584 * insert lock, but it seems better to avoid doing CRC calculations while
585 * holding the lock. This means we have to be careful about modifying the
586 * rdata chain until we know we aren't going to loop back again. The only
587 * change we allow ourselves to make earlier is to set rdt->data = NULL in
588 * chain items we have decided we will have to back up the whole buffer
589 * for. This is OK because we will certainly decide the same thing again
590 * for those items if we do it over; doing it here saves an extra pass
591 * over the chain later.
593 begin:;
594 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
596 dtbuf[i] = InvalidBuffer;
597 dtbuf_bkp[i] = false;
601 * Decide if we need to do full-page writes in this XLOG record: true if
602 * full_page_writes is on or we have a PITR request for it. Since we
603 * don't yet have the insert lock, forcePageWrites could change under us,
604 * but we'll recheck it once we have the lock.
606 doPageWrites = fullPageWrites || Insert->forcePageWrites;
608 INIT_CRC32(rdata_crc);
609 len = 0;
610 for (rdt = rdata;;)
612 if (rdt->buffer == InvalidBuffer)
614 /* Simple data, just include it */
615 len += rdt->len;
616 COMP_CRC32(rdata_crc, rdt->data, rdt->len);
618 else
620 /* Find info for buffer */
621 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
623 if (rdt->buffer == dtbuf[i])
625 /* Buffer already referenced by earlier chain item */
626 if (dtbuf_bkp[i])
627 rdt->data = NULL;
628 else if (rdt->data)
630 len += rdt->len;
631 COMP_CRC32(rdata_crc, rdt->data, rdt->len);
633 break;
635 if (dtbuf[i] == InvalidBuffer)
637 /* OK, put it in this slot */
638 dtbuf[i] = rdt->buffer;
639 if (XLogCheckBuffer(rdt, doPageWrites,
640 &(dtbuf_lsn[i]), &(dtbuf_xlg[i])))
642 dtbuf_bkp[i] = true;
643 rdt->data = NULL;
645 else if (rdt->data)
647 len += rdt->len;
648 COMP_CRC32(rdata_crc, rdt->data, rdt->len);
650 break;
653 if (i >= XLR_MAX_BKP_BLOCKS)
654 elog(PANIC, "can backup at most %d blocks per xlog record",
655 XLR_MAX_BKP_BLOCKS);
657 /* Break out of loop when rdt points to last chain item */
658 if (rdt->next == NULL)
659 break;
660 rdt = rdt->next;
664 * Now add the backup block headers and data into the CRC
666 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
668 if (dtbuf_bkp[i])
670 BkpBlock *bkpb = &(dtbuf_xlg[i]);
671 char *page;
673 COMP_CRC32(rdata_crc,
674 (char *) bkpb,
675 sizeof(BkpBlock));
676 page = (char *) BufferGetBlock(dtbuf[i]);
677 if (bkpb->hole_length == 0)
679 COMP_CRC32(rdata_crc,
680 page,
681 BLCKSZ);
683 else
685 /* must skip the hole */
686 COMP_CRC32(rdata_crc,
687 page,
688 bkpb->hole_offset);
689 COMP_CRC32(rdata_crc,
690 page + (bkpb->hole_offset + bkpb->hole_length),
691 BLCKSZ - (bkpb->hole_offset + bkpb->hole_length));
697 * NOTE: We disallow len == 0 because it provides a useful bit of extra
698 * error checking in ReadRecord. This means that all callers of
699 * XLogInsert must supply at least some not-in-a-buffer data. However, we
700 * make an exception for XLOG SWITCH records because we don't want them to
701 * ever cross a segment boundary.
703 if (len == 0 && !isLogSwitch)
704 elog(PANIC, "invalid xlog record length %u", len);
706 START_CRIT_SECTION();
708 /* Now wait to get insert lock */
709 LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
712 * Check to see if my RedoRecPtr is out of date. If so, may have to go
713 * back and recompute everything. This can only happen just after a
714 * checkpoint, so it's better to be slow in this case and fast otherwise.
716 * If we aren't doing full-page writes then RedoRecPtr doesn't actually
717 * affect the contents of the XLOG record, so we'll update our local copy
718 * but not force a recomputation.
720 if (!XLByteEQ(RedoRecPtr, Insert->RedoRecPtr))
722 Assert(XLByteLT(RedoRecPtr, Insert->RedoRecPtr));
723 RedoRecPtr = Insert->RedoRecPtr;
725 if (doPageWrites)
727 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
729 if (dtbuf[i] == InvalidBuffer)
730 continue;
731 if (dtbuf_bkp[i] == false &&
732 XLByteLE(dtbuf_lsn[i], RedoRecPtr))
735 * Oops, this buffer now needs to be backed up, but we
736 * didn't think so above. Start over.
738 LWLockRelease(WALInsertLock);
739 END_CRIT_SECTION();
740 goto begin;
747 * Also check to see if forcePageWrites was just turned on; if we weren't
748 * already doing full-page writes then go back and recompute. (If it was
749 * just turned off, we could recompute the record without full pages, but
750 * we choose not to bother.)
752 if (Insert->forcePageWrites && !doPageWrites)
754 /* Oops, must redo it with full-page data */
755 LWLockRelease(WALInsertLock);
756 END_CRIT_SECTION();
757 goto begin;
761 * Make additional rdata chain entries for the backup blocks, so that we
762 * don't need to special-case them in the write loop. Note that we have
763 * now irrevocably changed the input rdata chain. At the exit of this
764 * loop, write_len includes the backup block data.
766 * Also set the appropriate info bits to show which buffers were backed
767 * up. The i'th XLR_SET_BKP_BLOCK bit corresponds to the i'th distinct
768 * buffer value (ignoring InvalidBuffer) appearing in the rdata chain.
770 write_len = len;
771 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
773 BkpBlock *bkpb;
774 char *page;
776 if (!dtbuf_bkp[i])
777 continue;
779 info |= XLR_SET_BKP_BLOCK(i);
781 bkpb = &(dtbuf_xlg[i]);
782 page = (char *) BufferGetBlock(dtbuf[i]);
784 rdt->next = &(dtbuf_rdt1[i]);
785 rdt = rdt->next;
787 rdt->data = (char *) bkpb;
788 rdt->len = sizeof(BkpBlock);
789 write_len += sizeof(BkpBlock);
791 rdt->next = &(dtbuf_rdt2[i]);
792 rdt = rdt->next;
794 if (bkpb->hole_length == 0)
796 rdt->data = page;
797 rdt->len = BLCKSZ;
798 write_len += BLCKSZ;
799 rdt->next = NULL;
801 else
803 /* must skip the hole */
804 rdt->data = page;
805 rdt->len = bkpb->hole_offset;
806 write_len += bkpb->hole_offset;
808 rdt->next = &(dtbuf_rdt3[i]);
809 rdt = rdt->next;
811 rdt->data = page + (bkpb->hole_offset + bkpb->hole_length);
812 rdt->len = BLCKSZ - (bkpb->hole_offset + bkpb->hole_length);
813 write_len += rdt->len;
814 rdt->next = NULL;
819 * If we backed up any full blocks and online backup is not in progress,
820 * mark the backup blocks as removable. This allows the WAL archiver to
821 * know whether it is safe to compress archived WAL data by transforming
822 * full-block records into the non-full-block format.
824 * Note: we could just set the flag whenever !forcePageWrites, but
825 * defining it like this leaves the info bit free for some potential other
826 * use in records without any backup blocks.
828 if ((info & XLR_BKP_BLOCK_MASK) && !Insert->forcePageWrites)
829 info |= XLR_BKP_REMOVABLE;
832 * If there isn't enough space on the current XLOG page for a record
833 * header, advance to the next page (leaving the unused space as zeroes).
835 updrqst = false;
836 freespace = INSERT_FREESPACE(Insert);
837 if (freespace < SizeOfXLogRecord)
839 updrqst = AdvanceXLInsertBuffer(false);
840 freespace = INSERT_FREESPACE(Insert);
843 /* Compute record's XLOG location */
844 curridx = Insert->curridx;
845 INSERT_RECPTR(RecPtr, Insert, curridx);
848 * If the record is an XLOG_SWITCH, and we are exactly at the start of a
849 * segment, we need not insert it (and don't want to because we'd like
850 * consecutive switch requests to be no-ops). Instead, make sure
851 * everything is written and flushed through the end of the prior segment,
852 * and return the prior segment's end address.
854 if (isLogSwitch &&
855 (RecPtr.xrecoff % XLogSegSize) == SizeOfXLogLongPHD)
857 /* We can release insert lock immediately */
858 LWLockRelease(WALInsertLock);
860 RecPtr.xrecoff -= SizeOfXLogLongPHD;
861 if (RecPtr.xrecoff == 0)
863 /* crossing a logid boundary */
864 RecPtr.xlogid -= 1;
865 RecPtr.xrecoff = XLogFileSize;
868 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
869 LogwrtResult = XLogCtl->Write.LogwrtResult;
870 if (!XLByteLE(RecPtr, LogwrtResult.Flush))
872 XLogwrtRqst FlushRqst;
874 FlushRqst.Write = RecPtr;
875 FlushRqst.Flush = RecPtr;
876 XLogWrite(FlushRqst, false, false);
878 LWLockRelease(WALWriteLock);
880 END_CRIT_SECTION();
882 return RecPtr;
885 /* Insert record header */
887 record = (XLogRecord *) Insert->currpos;
888 record->xl_prev = Insert->PrevRecord;
889 record->xl_xid = GetCurrentTransactionIdIfAny();
890 record->xl_tot_len = SizeOfXLogRecord + write_len;
891 record->xl_len = len; /* doesn't include backup blocks */
892 record->xl_info = info;
893 record->xl_rmid = rmid;
895 /* Now we can finish computing the record's CRC */
896 COMP_CRC32(rdata_crc, (char *) record + sizeof(pg_crc32),
897 SizeOfXLogRecord - sizeof(pg_crc32));
898 FIN_CRC32(rdata_crc);
899 record->xl_crc = rdata_crc;
901 #ifdef WAL_DEBUG
902 if (XLOG_DEBUG)
904 StringInfoData buf;
906 initStringInfo(&buf);
907 appendStringInfo(&buf, "INSERT @ %X/%X: ",
908 RecPtr.xlogid, RecPtr.xrecoff);
909 xlog_outrec(&buf, record);
910 if (rdata->data != NULL)
912 appendStringInfo(&buf, " - ");
913 RmgrTable[record->xl_rmid].rm_desc(&buf, record->xl_info, rdata->data);
915 elog(LOG, "%s", buf.data);
916 pfree(buf.data);
918 #endif
920 /* Record begin of record in appropriate places */
921 ProcLastRecPtr = RecPtr;
922 Insert->PrevRecord = RecPtr;
924 Insert->currpos += SizeOfXLogRecord;
925 freespace -= SizeOfXLogRecord;
928 * Append the data, including backup blocks if any
930 while (write_len)
932 while (rdata->data == NULL)
933 rdata = rdata->next;
935 if (freespace > 0)
937 if (rdata->len > freespace)
939 memcpy(Insert->currpos, rdata->data, freespace);
940 rdata->data += freespace;
941 rdata->len -= freespace;
942 write_len -= freespace;
944 else
946 memcpy(Insert->currpos, rdata->data, rdata->len);
947 freespace -= rdata->len;
948 write_len -= rdata->len;
949 Insert->currpos += rdata->len;
950 rdata = rdata->next;
951 continue;
955 /* Use next buffer */
956 updrqst = AdvanceXLInsertBuffer(false);
957 curridx = Insert->curridx;
958 /* Insert cont-record header */
959 Insert->currpage->xlp_info |= XLP_FIRST_IS_CONTRECORD;
960 contrecord = (XLogContRecord *) Insert->currpos;
961 contrecord->xl_rem_len = write_len;
962 Insert->currpos += SizeOfXLogContRecord;
963 freespace = INSERT_FREESPACE(Insert);
966 /* Ensure next record will be properly aligned */
967 Insert->currpos = (char *) Insert->currpage +
968 MAXALIGN(Insert->currpos - (char *) Insert->currpage);
969 freespace = INSERT_FREESPACE(Insert);
972 * The recptr I return is the beginning of the *next* record. This will be
973 * stored as LSN for changed data pages...
975 INSERT_RECPTR(RecPtr, Insert, curridx);
978 * If the record is an XLOG_SWITCH, we must now write and flush all the
979 * existing data, and then forcibly advance to the start of the next
980 * segment. It's not good to do this I/O while holding the insert lock,
981 * but there seems too much risk of confusion if we try to release the
982 * lock sooner. Fortunately xlog switch needn't be a high-performance
983 * operation anyway...
985 if (isLogSwitch)
987 XLogCtlWrite *Write = &XLogCtl->Write;
988 XLogwrtRqst FlushRqst;
989 XLogRecPtr OldSegEnd;
991 TRACE_POSTGRESQL_XLOG_SWITCH();
993 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
996 * Flush through the end of the page containing XLOG_SWITCH, and
997 * perform end-of-segment actions (eg, notifying archiver).
999 WriteRqst = XLogCtl->xlblocks[curridx];
1000 FlushRqst.Write = WriteRqst;
1001 FlushRqst.Flush = WriteRqst;
1002 XLogWrite(FlushRqst, false, true);
1004 /* Set up the next buffer as first page of next segment */
1005 /* Note: AdvanceXLInsertBuffer cannot need to do I/O here */
1006 (void) AdvanceXLInsertBuffer(true);
1008 /* There should be no unwritten data */
1009 curridx = Insert->curridx;
1010 Assert(curridx == Write->curridx);
1012 /* Compute end address of old segment */
1013 OldSegEnd = XLogCtl->xlblocks[curridx];
1014 OldSegEnd.xrecoff -= XLOG_BLCKSZ;
1015 if (OldSegEnd.xrecoff == 0)
1017 /* crossing a logid boundary */
1018 OldSegEnd.xlogid -= 1;
1019 OldSegEnd.xrecoff = XLogFileSize;
1022 /* Make it look like we've written and synced all of old segment */
1023 LogwrtResult.Write = OldSegEnd;
1024 LogwrtResult.Flush = OldSegEnd;
1027 * Update shared-memory status --- this code should match XLogWrite
1030 /* use volatile pointer to prevent code rearrangement */
1031 volatile XLogCtlData *xlogctl = XLogCtl;
1033 SpinLockAcquire(&xlogctl->info_lck);
1034 xlogctl->LogwrtResult = LogwrtResult;
1035 if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write))
1036 xlogctl->LogwrtRqst.Write = LogwrtResult.Write;
1037 if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush))
1038 xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush;
1039 SpinLockRelease(&xlogctl->info_lck);
1042 Write->LogwrtResult = LogwrtResult;
1044 LWLockRelease(WALWriteLock);
1046 updrqst = false; /* done already */
1048 else
1050 /* normal case, ie not xlog switch */
1052 /* Need to update shared LogwrtRqst if some block was filled up */
1053 if (freespace < SizeOfXLogRecord)
1055 /* curridx is filled and available for writing out */
1056 updrqst = true;
1058 else
1060 /* if updrqst already set, write through end of previous buf */
1061 curridx = PrevBufIdx(curridx);
1063 WriteRqst = XLogCtl->xlblocks[curridx];
1066 LWLockRelease(WALInsertLock);
1068 if (updrqst)
1070 /* use volatile pointer to prevent code rearrangement */
1071 volatile XLogCtlData *xlogctl = XLogCtl;
1073 SpinLockAcquire(&xlogctl->info_lck);
1074 /* advance global request to include new block(s) */
1075 if (XLByteLT(xlogctl->LogwrtRqst.Write, WriteRqst))
1076 xlogctl->LogwrtRqst.Write = WriteRqst;
1077 /* update local result copy while I have the chance */
1078 LogwrtResult = xlogctl->LogwrtResult;
1079 SpinLockRelease(&xlogctl->info_lck);
1082 XactLastRecEnd = RecPtr;
1084 END_CRIT_SECTION();
1086 return RecPtr;
1090 * Determine whether the buffer referenced by an XLogRecData item has to
1091 * be backed up, and if so fill a BkpBlock struct for it. In any case
1092 * save the buffer's LSN at *lsn.
1094 static bool
1095 XLogCheckBuffer(XLogRecData *rdata, bool doPageWrites,
1096 XLogRecPtr *lsn, BkpBlock *bkpb)
1098 Page page;
1100 page = BufferGetPage(rdata->buffer);
1103 * XXX We assume page LSN is first data on *every* page that can be passed
1104 * to XLogInsert, whether it otherwise has the standard page layout or
1105 * not.
1107 *lsn = PageGetLSN(page);
1109 if (doPageWrites &&
1110 XLByteLE(PageGetLSN(page), RedoRecPtr))
1113 * The page needs to be backed up, so set up *bkpb
1115 BufferGetTag(rdata->buffer, &bkpb->node, &bkpb->fork, &bkpb->block);
1117 if (rdata->buffer_std)
1119 /* Assume we can omit data between pd_lower and pd_upper */
1120 uint16 lower = ((PageHeader) page)->pd_lower;
1121 uint16 upper = ((PageHeader) page)->pd_upper;
1123 if (lower >= SizeOfPageHeaderData &&
1124 upper > lower &&
1125 upper <= BLCKSZ)
1127 bkpb->hole_offset = lower;
1128 bkpb->hole_length = upper - lower;
1130 else
1132 /* No "hole" to compress out */
1133 bkpb->hole_offset = 0;
1134 bkpb->hole_length = 0;
1137 else
1139 /* Not a standard page header, don't try to eliminate "hole" */
1140 bkpb->hole_offset = 0;
1141 bkpb->hole_length = 0;
1144 return true; /* buffer requires backup */
1147 return false; /* buffer does not need to be backed up */
1151 * XLogArchiveNotify
1153 * Create an archive notification file
1155 * The name of the notification file is the message that will be picked up
1156 * by the archiver, e.g. we write 0000000100000001000000C6.ready
1157 * and the archiver then knows to archive XLOGDIR/0000000100000001000000C6,
1158 * then when complete, rename it to 0000000100000001000000C6.done
1160 static void
1161 XLogArchiveNotify(const char *xlog)
1163 char archiveStatusPath[MAXPGPATH];
1164 FILE *fd;
1166 /* insert an otherwise empty file called <XLOG>.ready */
1167 StatusFilePath(archiveStatusPath, xlog, ".ready");
1168 fd = AllocateFile(archiveStatusPath, "w");
1169 if (fd == NULL)
1171 ereport(LOG,
1172 (errcode_for_file_access(),
1173 errmsg("could not create archive status file \"%s\": %m",
1174 archiveStatusPath)));
1175 return;
1177 if (FreeFile(fd))
1179 ereport(LOG,
1180 (errcode_for_file_access(),
1181 errmsg("could not write archive status file \"%s\": %m",
1182 archiveStatusPath)));
1183 return;
1186 /* Notify archiver that it's got something to do */
1187 if (IsUnderPostmaster)
1188 SendPostmasterSignal(PMSIGNAL_WAKEN_ARCHIVER);
1192 * Convenience routine to notify using log/seg representation of filename
1194 static void
1195 XLogArchiveNotifySeg(uint32 log, uint32 seg)
1197 char xlog[MAXFNAMELEN];
1199 XLogFileName(xlog, ThisTimeLineID, log, seg);
1200 XLogArchiveNotify(xlog);
1204 * XLogArchiveCheckDone
1206 * This is called when we are ready to delete or recycle an old XLOG segment
1207 * file or backup history file. If it is okay to delete it then return true.
1208 * If it is not time to delete it, make sure a .ready file exists, and return
1209 * false.
1211 * If <XLOG>.done exists, then return true; else if <XLOG>.ready exists,
1212 * then return false; else create <XLOG>.ready and return false.
1214 * The reason we do things this way is so that if the original attempt to
1215 * create <XLOG>.ready fails, we'll retry during subsequent checkpoints.
1217 static bool
1218 XLogArchiveCheckDone(const char *xlog)
1220 char archiveStatusPath[MAXPGPATH];
1221 struct stat stat_buf;
1223 /* Always deletable if archiving is off */
1224 if (!XLogArchivingActive())
1225 return true;
1227 /* First check for .done --- this means archiver is done with it */
1228 StatusFilePath(archiveStatusPath, xlog, ".done");
1229 if (stat(archiveStatusPath, &stat_buf) == 0)
1230 return true;
1232 /* check for .ready --- this means archiver is still busy with it */
1233 StatusFilePath(archiveStatusPath, xlog, ".ready");
1234 if (stat(archiveStatusPath, &stat_buf) == 0)
1235 return false;
1237 /* Race condition --- maybe archiver just finished, so recheck */
1238 StatusFilePath(archiveStatusPath, xlog, ".done");
1239 if (stat(archiveStatusPath, &stat_buf) == 0)
1240 return true;
1242 /* Retry creation of the .ready file */
1243 XLogArchiveNotify(xlog);
1244 return false;
1248 * XLogArchiveIsBusy
1250 * Check to see if an XLOG segment file is still unarchived.
1251 * This is almost but not quite the inverse of XLogArchiveCheckDone: in
1252 * the first place we aren't chartered to recreate the .ready file, and
1253 * in the second place we should consider that if the file is already gone
1254 * then it's not busy. (This check is needed to handle the race condition
1255 * that a checkpoint already deleted the no-longer-needed file.)
1257 static bool
1258 XLogArchiveIsBusy(const char *xlog)
1260 char archiveStatusPath[MAXPGPATH];
1261 struct stat stat_buf;
1263 /* First check for .done --- this means archiver is done with it */
1264 StatusFilePath(archiveStatusPath, xlog, ".done");
1265 if (stat(archiveStatusPath, &stat_buf) == 0)
1266 return false;
1268 /* check for .ready --- this means archiver is still busy with it */
1269 StatusFilePath(archiveStatusPath, xlog, ".ready");
1270 if (stat(archiveStatusPath, &stat_buf) == 0)
1271 return true;
1273 /* Race condition --- maybe archiver just finished, so recheck */
1274 StatusFilePath(archiveStatusPath, xlog, ".done");
1275 if (stat(archiveStatusPath, &stat_buf) == 0)
1276 return false;
1279 * Check to see if the WAL file has been removed by checkpoint, which
1280 * implies it has already been archived, and explains why we can't see a
1281 * status file for it.
1283 snprintf(archiveStatusPath, MAXPGPATH, XLOGDIR "/%s", xlog);
1284 if (stat(archiveStatusPath, &stat_buf) != 0 &&
1285 errno == ENOENT)
1286 return false;
1288 return true;
1292 * XLogArchiveCleanup
1294 * Cleanup archive notification file(s) for a particular xlog segment
1296 static void
1297 XLogArchiveCleanup(const char *xlog)
1299 char archiveStatusPath[MAXPGPATH];
1301 /* Remove the .done file */
1302 StatusFilePath(archiveStatusPath, xlog, ".done");
1303 unlink(archiveStatusPath);
1304 /* should we complain about failure? */
1306 /* Remove the .ready file if present --- normally it shouldn't be */
1307 StatusFilePath(archiveStatusPath, xlog, ".ready");
1308 unlink(archiveStatusPath);
1309 /* should we complain about failure? */
1313 * Advance the Insert state to the next buffer page, writing out the next
1314 * buffer if it still contains unwritten data.
1316 * If new_segment is TRUE then we set up the next buffer page as the first
1317 * page of the next xlog segment file, possibly but not usually the next
1318 * consecutive file page.
1320 * The global LogwrtRqst.Write pointer needs to be advanced to include the
1321 * just-filled page. If we can do this for free (without an extra lock),
1322 * we do so here. Otherwise the caller must do it. We return TRUE if the
1323 * request update still needs to be done, FALSE if we did it internally.
1325 * Must be called with WALInsertLock held.
1327 static bool
1328 AdvanceXLInsertBuffer(bool new_segment)
1330 XLogCtlInsert *Insert = &XLogCtl->Insert;
1331 XLogCtlWrite *Write = &XLogCtl->Write;
1332 int nextidx = NextBufIdx(Insert->curridx);
1333 bool update_needed = true;
1334 XLogRecPtr OldPageRqstPtr;
1335 XLogwrtRqst WriteRqst;
1336 XLogRecPtr NewPageEndPtr;
1337 XLogPageHeader NewPage;
1339 /* Use Insert->LogwrtResult copy if it's more fresh */
1340 if (XLByteLT(LogwrtResult.Write, Insert->LogwrtResult.Write))
1341 LogwrtResult = Insert->LogwrtResult;
1344 * Get ending-offset of the buffer page we need to replace (this may be
1345 * zero if the buffer hasn't been used yet). Fall through if it's already
1346 * written out.
1348 OldPageRqstPtr = XLogCtl->xlblocks[nextidx];
1349 if (!XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
1351 /* nope, got work to do... */
1352 XLogRecPtr FinishedPageRqstPtr;
1354 FinishedPageRqstPtr = XLogCtl->xlblocks[Insert->curridx];
1356 /* Before waiting, get info_lck and update LogwrtResult */
1358 /* use volatile pointer to prevent code rearrangement */
1359 volatile XLogCtlData *xlogctl = XLogCtl;
1361 SpinLockAcquire(&xlogctl->info_lck);
1362 if (XLByteLT(xlogctl->LogwrtRqst.Write, FinishedPageRqstPtr))
1363 xlogctl->LogwrtRqst.Write = FinishedPageRqstPtr;
1364 LogwrtResult = xlogctl->LogwrtResult;
1365 SpinLockRelease(&xlogctl->info_lck);
1368 update_needed = false; /* Did the shared-request update */
1370 if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
1372 /* OK, someone wrote it already */
1373 Insert->LogwrtResult = LogwrtResult;
1375 else
1377 /* Must acquire write lock */
1378 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
1379 LogwrtResult = Write->LogwrtResult;
1380 if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
1382 /* OK, someone wrote it already */
1383 LWLockRelease(WALWriteLock);
1384 Insert->LogwrtResult = LogwrtResult;
1386 else
1389 * Have to write buffers while holding insert lock. This is
1390 * not good, so only write as much as we absolutely must.
1392 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
1393 WriteRqst.Write = OldPageRqstPtr;
1394 WriteRqst.Flush.xlogid = 0;
1395 WriteRqst.Flush.xrecoff = 0;
1396 XLogWrite(WriteRqst, false, false);
1397 LWLockRelease(WALWriteLock);
1398 Insert->LogwrtResult = LogwrtResult;
1399 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
1405 * Now the next buffer slot is free and we can set it up to be the next
1406 * output page.
1408 NewPageEndPtr = XLogCtl->xlblocks[Insert->curridx];
1410 if (new_segment)
1412 /* force it to a segment start point */
1413 NewPageEndPtr.xrecoff += XLogSegSize - 1;
1414 NewPageEndPtr.xrecoff -= NewPageEndPtr.xrecoff % XLogSegSize;
1417 if (NewPageEndPtr.xrecoff >= XLogFileSize)
1419 /* crossing a logid boundary */
1420 NewPageEndPtr.xlogid += 1;
1421 NewPageEndPtr.xrecoff = XLOG_BLCKSZ;
1423 else
1424 NewPageEndPtr.xrecoff += XLOG_BLCKSZ;
1425 XLogCtl->xlblocks[nextidx] = NewPageEndPtr;
1426 NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
1428 Insert->curridx = nextidx;
1429 Insert->currpage = NewPage;
1431 Insert->currpos = ((char *) NewPage) +SizeOfXLogShortPHD;
1434 * Be sure to re-zero the buffer so that bytes beyond what we've written
1435 * will look like zeroes and not valid XLOG records...
1437 MemSet((char *) NewPage, 0, XLOG_BLCKSZ);
1440 * Fill the new page's header
1442 NewPage ->xlp_magic = XLOG_PAGE_MAGIC;
1444 /* NewPage->xlp_info = 0; */ /* done by memset */
1445 NewPage ->xlp_tli = ThisTimeLineID;
1446 NewPage ->xlp_pageaddr.xlogid = NewPageEndPtr.xlogid;
1447 NewPage ->xlp_pageaddr.xrecoff = NewPageEndPtr.xrecoff - XLOG_BLCKSZ;
1450 * If first page of an XLOG segment file, make it a long header.
1452 if ((NewPage->xlp_pageaddr.xrecoff % XLogSegSize) == 0)
1454 XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
1456 NewLongPage->xlp_sysid = ControlFile->system_identifier;
1457 NewLongPage->xlp_seg_size = XLogSegSize;
1458 NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
1459 NewPage ->xlp_info |= XLP_LONG_HEADER;
1461 Insert->currpos = ((char *) NewPage) +SizeOfXLogLongPHD;
1464 return update_needed;
1468 * Check whether we've consumed enough xlog space that a checkpoint is needed.
1470 * Caller must have just finished filling the open log file (so that
1471 * openLogId/openLogSeg are valid). We measure the distance from RedoRecPtr
1472 * to the open log file and see if that exceeds CheckPointSegments.
1474 * Note: it is caller's responsibility that RedoRecPtr is up-to-date.
1476 static bool
1477 XLogCheckpointNeeded(void)
1480 * A straight computation of segment number could overflow 32 bits. Rather
1481 * than assuming we have working 64-bit arithmetic, we compare the
1482 * highest-order bits separately, and force a checkpoint immediately when
1483 * they change.
1485 uint32 old_segno,
1486 new_segno;
1487 uint32 old_highbits,
1488 new_highbits;
1490 old_segno = (RedoRecPtr.xlogid % XLogSegSize) * XLogSegsPerFile +
1491 (RedoRecPtr.xrecoff / XLogSegSize);
1492 old_highbits = RedoRecPtr.xlogid / XLogSegSize;
1493 new_segno = (openLogId % XLogSegSize) * XLogSegsPerFile + openLogSeg;
1494 new_highbits = openLogId / XLogSegSize;
1495 if (new_highbits != old_highbits ||
1496 new_segno >= old_segno + (uint32) (CheckPointSegments - 1))
1497 return true;
1498 return false;
1502 * Write and/or fsync the log at least as far as WriteRqst indicates.
1504 * If flexible == TRUE, we don't have to write as far as WriteRqst, but
1505 * may stop at any convenient boundary (such as a cache or logfile boundary).
1506 * This option allows us to avoid uselessly issuing multiple writes when a
1507 * single one would do.
1509 * If xlog_switch == TRUE, we are intending an xlog segment switch, so
1510 * perform end-of-segment actions after writing the last page, even if
1511 * it's not physically the end of its segment. (NB: this will work properly
1512 * only if caller specifies WriteRqst == page-end and flexible == false,
1513 * and there is some data to write.)
1515 * Must be called with WALWriteLock held.
1517 static void
1518 XLogWrite(XLogwrtRqst WriteRqst, bool flexible, bool xlog_switch)
1520 XLogCtlWrite *Write = &XLogCtl->Write;
1521 bool ispartialpage;
1522 bool last_iteration;
1523 bool finishing_seg;
1524 bool use_existent;
1525 int curridx;
1526 int npages;
1527 int startidx;
1528 uint32 startoffset;
1530 /* We should always be inside a critical section here */
1531 Assert(CritSectionCount > 0);
1534 * Update local LogwrtResult (caller probably did this already, but...)
1536 LogwrtResult = Write->LogwrtResult;
1539 * Since successive pages in the xlog cache are consecutively allocated,
1540 * we can usually gather multiple pages together and issue just one
1541 * write() call. npages is the number of pages we have determined can be
1542 * written together; startidx is the cache block index of the first one,
1543 * and startoffset is the file offset at which it should go. The latter
1544 * two variables are only valid when npages > 0, but we must initialize
1545 * all of them to keep the compiler quiet.
1547 npages = 0;
1548 startidx = 0;
1549 startoffset = 0;
1552 * Within the loop, curridx is the cache block index of the page to
1553 * consider writing. We advance Write->curridx only after successfully
1554 * writing pages. (Right now, this refinement is useless since we are
1555 * going to PANIC if any error occurs anyway; but someday it may come in
1556 * useful.)
1558 curridx = Write->curridx;
1560 while (XLByteLT(LogwrtResult.Write, WriteRqst.Write))
1563 * Make sure we're not ahead of the insert process. This could happen
1564 * if we're passed a bogus WriteRqst.Write that is past the end of the
1565 * last page that's been initialized by AdvanceXLInsertBuffer.
1567 if (!XLByteLT(LogwrtResult.Write, XLogCtl->xlblocks[curridx]))
1568 elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
1569 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
1570 XLogCtl->xlblocks[curridx].xlogid,
1571 XLogCtl->xlblocks[curridx].xrecoff);
1573 /* Advance LogwrtResult.Write to end of current buffer page */
1574 LogwrtResult.Write = XLogCtl->xlblocks[curridx];
1575 ispartialpage = XLByteLT(WriteRqst.Write, LogwrtResult.Write);
1577 if (!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
1580 * Switch to new logfile segment. We cannot have any pending
1581 * pages here (since we dump what we have at segment end).
1583 Assert(npages == 0);
1584 if (openLogFile >= 0)
1585 XLogFileClose();
1586 XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
1588 /* create/use new log file */
1589 use_existent = true;
1590 openLogFile = XLogFileInit(openLogId, openLogSeg,
1591 &use_existent, true);
1592 openLogOff = 0;
1595 /* Make sure we have the current logfile open */
1596 if (openLogFile < 0)
1598 XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
1599 openLogFile = XLogFileOpen(openLogId, openLogSeg);
1600 openLogOff = 0;
1603 /* Add current page to the set of pending pages-to-dump */
1604 if (npages == 0)
1606 /* first of group */
1607 startidx = curridx;
1608 startoffset = (LogwrtResult.Write.xrecoff - XLOG_BLCKSZ) % XLogSegSize;
1610 npages++;
1613 * Dump the set if this will be the last loop iteration, or if we are
1614 * at the last page of the cache area (since the next page won't be
1615 * contiguous in memory), or if we are at the end of the logfile
1616 * segment.
1618 last_iteration = !XLByteLT(LogwrtResult.Write, WriteRqst.Write);
1620 finishing_seg = !ispartialpage &&
1621 (startoffset + npages * XLOG_BLCKSZ) >= XLogSegSize;
1623 if (last_iteration ||
1624 curridx == XLogCtl->XLogCacheBlck ||
1625 finishing_seg)
1627 char *from;
1628 Size nbytes;
1630 /* Need to seek in the file? */
1631 if (openLogOff != startoffset)
1633 if (lseek(openLogFile, (off_t) startoffset, SEEK_SET) < 0)
1634 ereport(PANIC,
1635 (errcode_for_file_access(),
1636 errmsg("could not seek in log file %u, "
1637 "segment %u to offset %u: %m",
1638 openLogId, openLogSeg, startoffset)));
1639 openLogOff = startoffset;
1642 /* OK to write the page(s) */
1643 from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
1644 nbytes = npages * (Size) XLOG_BLCKSZ;
1645 errno = 0;
1646 if (write(openLogFile, from, nbytes) != nbytes)
1648 /* if write didn't set errno, assume no disk space */
1649 if (errno == 0)
1650 errno = ENOSPC;
1651 ereport(PANIC,
1652 (errcode_for_file_access(),
1653 errmsg("could not write to log file %u, segment %u "
1654 "at offset %u, length %lu: %m",
1655 openLogId, openLogSeg,
1656 openLogOff, (unsigned long) nbytes)));
1659 /* Update state for write */
1660 openLogOff += nbytes;
1661 Write->curridx = ispartialpage ? curridx : NextBufIdx(curridx);
1662 npages = 0;
1665 * If we just wrote the whole last page of a logfile segment,
1666 * fsync the segment immediately. This avoids having to go back
1667 * and re-open prior segments when an fsync request comes along
1668 * later. Doing it here ensures that one and only one backend will
1669 * perform this fsync.
1671 * We also do this if this is the last page written for an xlog
1672 * switch.
1674 * This is also the right place to notify the Archiver that the
1675 * segment is ready to copy to archival storage, and to update the
1676 * timer for archive_timeout, and to signal for a checkpoint if
1677 * too many logfile segments have been used since the last
1678 * checkpoint.
1680 if (finishing_seg || (xlog_switch && last_iteration))
1682 issue_xlog_fsync();
1683 LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
1685 if (XLogArchivingActive())
1686 XLogArchiveNotifySeg(openLogId, openLogSeg);
1688 Write->lastSegSwitchTime = (pg_time_t) time(NULL);
1691 * Signal bgwriter to start a checkpoint if we've consumed too
1692 * much xlog since the last one. For speed, we first check
1693 * using the local copy of RedoRecPtr, which might be out of
1694 * date; if it looks like a checkpoint is needed, forcibly
1695 * update RedoRecPtr and recheck.
1697 if (IsUnderPostmaster &&
1698 XLogCheckpointNeeded())
1700 (void) GetRedoRecPtr();
1701 if (XLogCheckpointNeeded())
1702 RequestCheckpoint(CHECKPOINT_CAUSE_XLOG);
1707 if (ispartialpage)
1709 /* Only asked to write a partial page */
1710 LogwrtResult.Write = WriteRqst.Write;
1711 break;
1713 curridx = NextBufIdx(curridx);
1715 /* If flexible, break out of loop as soon as we wrote something */
1716 if (flexible && npages == 0)
1717 break;
1720 Assert(npages == 0);
1721 Assert(curridx == Write->curridx);
1724 * If asked to flush, do so
1726 if (XLByteLT(LogwrtResult.Flush, WriteRqst.Flush) &&
1727 XLByteLT(LogwrtResult.Flush, LogwrtResult.Write))
1730 * Could get here without iterating above loop, in which case we might
1731 * have no open file or the wrong one. However, we do not need to
1732 * fsync more than one file.
1734 if (sync_method != SYNC_METHOD_OPEN &&
1735 sync_method != SYNC_METHOD_OPEN_DSYNC)
1737 if (openLogFile >= 0 &&
1738 !XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
1739 XLogFileClose();
1740 if (openLogFile < 0)
1742 XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
1743 openLogFile = XLogFileOpen(openLogId, openLogSeg);
1744 openLogOff = 0;
1746 issue_xlog_fsync();
1748 LogwrtResult.Flush = LogwrtResult.Write;
1752 * Update shared-memory status
1754 * We make sure that the shared 'request' values do not fall behind the
1755 * 'result' values. This is not absolutely essential, but it saves some
1756 * code in a couple of places.
1759 /* use volatile pointer to prevent code rearrangement */
1760 volatile XLogCtlData *xlogctl = XLogCtl;
1762 SpinLockAcquire(&xlogctl->info_lck);
1763 xlogctl->LogwrtResult = LogwrtResult;
1764 if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write))
1765 xlogctl->LogwrtRqst.Write = LogwrtResult.Write;
1766 if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush))
1767 xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush;
1768 SpinLockRelease(&xlogctl->info_lck);
1771 Write->LogwrtResult = LogwrtResult;
1775 * Record the LSN for an asynchronous transaction commit.
1776 * (This should not be called for aborts, nor for synchronous commits.)
1778 void
1779 XLogSetAsyncCommitLSN(XLogRecPtr asyncCommitLSN)
1781 /* use volatile pointer to prevent code rearrangement */
1782 volatile XLogCtlData *xlogctl = XLogCtl;
1784 SpinLockAcquire(&xlogctl->info_lck);
1785 if (XLByteLT(xlogctl->asyncCommitLSN, asyncCommitLSN))
1786 xlogctl->asyncCommitLSN = asyncCommitLSN;
1787 SpinLockRelease(&xlogctl->info_lck);
1791 * Advance minRecoveryPoint in control file.
1793 * If we crash during recovery, we must reach this point again before the
1794 * database is consistent.
1796 * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
1797 * is only updated if it's not already greater than or equal to 'lsn'.
1799 static void
1800 UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
1802 /* Quick check using our local copy of the variable */
1803 if (!updateMinRecoveryPoint || (!force && XLByteLE(lsn, minRecoveryPoint)))
1804 return;
1806 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
1808 /* update local copy */
1809 minRecoveryPoint = ControlFile->minRecoveryPoint;
1812 * An invalid minRecoveryPoint means that we need to recover all the WAL,
1813 * i.e., we're doing crash recovery. We never modify the control file's
1814 * value in that case, so we can short-circuit future checks here too.
1816 if (minRecoveryPoint.xlogid == 0 && minRecoveryPoint.xrecoff == 0)
1817 updateMinRecoveryPoint = false;
1818 else if (force || XLByteLT(minRecoveryPoint, lsn))
1820 /* use volatile pointer to prevent code rearrangement */
1821 volatile XLogCtlData *xlogctl = XLogCtl;
1822 XLogRecPtr newMinRecoveryPoint;
1825 * To avoid having to update the control file too often, we update it
1826 * all the way to the last record being replayed, even though 'lsn'
1827 * would suffice for correctness. This also allows the 'force' case
1828 * to not need a valid 'lsn' value.
1830 * Another important reason for doing it this way is that the passed
1831 * 'lsn' value could be bogus, i.e., past the end of available WAL,
1832 * if the caller got it from a corrupted heap page. Accepting such
1833 * a value as the min recovery point would prevent us from coming up
1834 * at all. Instead, we just log a warning and continue with recovery.
1835 * (See also the comments about corrupt LSNs in XLogFlush.)
1837 SpinLockAcquire(&xlogctl->info_lck);
1838 newMinRecoveryPoint = xlogctl->replayEndRecPtr;
1839 SpinLockRelease(&xlogctl->info_lck);
1841 if (!force && XLByteLT(newMinRecoveryPoint, lsn))
1842 elog(WARNING,
1843 "xlog min recovery request %X/%X is past current point %X/%X",
1844 lsn.xlogid, lsn.xrecoff,
1845 newMinRecoveryPoint.xlogid, newMinRecoveryPoint.xrecoff);
1847 /* update control file */
1848 if (XLByteLT(ControlFile->minRecoveryPoint, newMinRecoveryPoint))
1850 ControlFile->minRecoveryPoint = newMinRecoveryPoint;
1851 UpdateControlFile();
1852 minRecoveryPoint = newMinRecoveryPoint;
1854 ereport(DEBUG2,
1855 (errmsg("updated min recovery point to %X/%X",
1856 minRecoveryPoint.xlogid, minRecoveryPoint.xrecoff)));
1859 LWLockRelease(ControlFileLock);
1863 * Ensure that all XLOG data through the given position is flushed to disk.
1865 * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
1866 * already held, and we try to avoid acquiring it if possible.
1868 void
1869 XLogFlush(XLogRecPtr record)
1871 XLogRecPtr WriteRqstPtr;
1872 XLogwrtRqst WriteRqst;
1875 * During REDO, we are reading not writing WAL. Therefore, instead of
1876 * trying to flush the WAL, we should update minRecoveryPoint instead.
1877 * We test XLogInsertAllowed(), not InRecovery, because we need the
1878 * bgwriter to act this way too, and because when the bgwriter tries
1879 * to write the end-of-recovery checkpoint, it should indeed flush.
1881 if (!XLogInsertAllowed())
1883 UpdateMinRecoveryPoint(record, false);
1884 return;
1887 /* Quick exit if already known flushed */
1888 if (XLByteLE(record, LogwrtResult.Flush))
1889 return;
1891 #ifdef WAL_DEBUG
1892 if (XLOG_DEBUG)
1893 elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
1894 record.xlogid, record.xrecoff,
1895 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
1896 LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
1897 #endif
1899 START_CRIT_SECTION();
1902 * Since fsync is usually a horribly expensive operation, we try to
1903 * piggyback as much data as we can on each fsync: if we see any more data
1904 * entered into the xlog buffer, we'll write and fsync that too, so that
1905 * the final value of LogwrtResult.Flush is as large as possible. This
1906 * gives us some chance of avoiding another fsync immediately after.
1909 /* initialize to given target; may increase below */
1910 WriteRqstPtr = record;
1912 /* read LogwrtResult and update local state */
1914 /* use volatile pointer to prevent code rearrangement */
1915 volatile XLogCtlData *xlogctl = XLogCtl;
1917 SpinLockAcquire(&xlogctl->info_lck);
1918 if (XLByteLT(WriteRqstPtr, xlogctl->LogwrtRqst.Write))
1919 WriteRqstPtr = xlogctl->LogwrtRqst.Write;
1920 LogwrtResult = xlogctl->LogwrtResult;
1921 SpinLockRelease(&xlogctl->info_lck);
1924 /* done already? */
1925 if (!XLByteLE(record, LogwrtResult.Flush))
1927 /* now wait for the write lock */
1928 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
1929 LogwrtResult = XLogCtl->Write.LogwrtResult;
1930 if (!XLByteLE(record, LogwrtResult.Flush))
1932 /* try to write/flush later additions to XLOG as well */
1933 if (LWLockConditionalAcquire(WALInsertLock, LW_EXCLUSIVE))
1935 XLogCtlInsert *Insert = &XLogCtl->Insert;
1936 uint32 freespace = INSERT_FREESPACE(Insert);
1938 if (freespace < SizeOfXLogRecord) /* buffer is full */
1939 WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
1940 else
1942 WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
1943 WriteRqstPtr.xrecoff -= freespace;
1945 LWLockRelease(WALInsertLock);
1946 WriteRqst.Write = WriteRqstPtr;
1947 WriteRqst.Flush = WriteRqstPtr;
1949 else
1951 WriteRqst.Write = WriteRqstPtr;
1952 WriteRqst.Flush = record;
1954 XLogWrite(WriteRqst, false, false);
1956 LWLockRelease(WALWriteLock);
1959 END_CRIT_SECTION();
1962 * If we still haven't flushed to the request point then we have a
1963 * problem; most likely, the requested flush point is past end of XLOG.
1964 * This has been seen to occur when a disk page has a corrupted LSN.
1966 * Formerly we treated this as a PANIC condition, but that hurts the
1967 * system's robustness rather than helping it: we do not want to take down
1968 * the whole system due to corruption on one data page. In particular, if
1969 * the bad page is encountered again during recovery then we would be
1970 * unable to restart the database at all! (This scenario actually
1971 * happened in the field several times with 7.1 releases.) As of 8.4,
1972 * bad LSNs encountered during recovery are UpdateMinRecoveryPoint's
1973 * problem; the only time we can reach here during recovery is while
1974 * flushing the end-of-recovery checkpoint record, and we don't expect
1975 * that to have a bad LSN.
1977 * Note that for calls from xact.c, the ERROR will
1978 * be promoted to PANIC since xact.c calls this routine inside a critical
1979 * section. However, calls from bufmgr.c are not within critical sections
1980 * and so we will not force a restart for a bad LSN on a data page.
1982 if (XLByteLT(LogwrtResult.Flush, record))
1983 elog(ERROR,
1984 "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
1985 record.xlogid, record.xrecoff,
1986 LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
1990 * Flush xlog, but without specifying exactly where to flush to.
1992 * We normally flush only completed blocks; but if there is nothing to do on
1993 * that basis, we check for unflushed async commits in the current incomplete
1994 * block, and flush through the latest one of those. Thus, if async commits
1995 * are not being used, we will flush complete blocks only. We can guarantee
1996 * that async commits reach disk after at most three cycles; normally only
1997 * one or two. (We allow XLogWrite to write "flexibly", meaning it can stop
1998 * at the end of the buffer ring; this makes a difference only with very high
1999 * load or long wal_writer_delay, but imposes one extra cycle for the worst
2000 * case for async commits.)
2002 * This routine is invoked periodically by the background walwriter process.
2004 void
2005 XLogBackgroundFlush(void)
2007 XLogRecPtr WriteRqstPtr;
2008 bool flexible = true;
2010 /* XLOG doesn't need flushing during recovery */
2011 if (RecoveryInProgress())
2012 return;
2014 /* read LogwrtResult and update local state */
2016 /* use volatile pointer to prevent code rearrangement */
2017 volatile XLogCtlData *xlogctl = XLogCtl;
2019 SpinLockAcquire(&xlogctl->info_lck);
2020 LogwrtResult = xlogctl->LogwrtResult;
2021 WriteRqstPtr = xlogctl->LogwrtRqst.Write;
2022 SpinLockRelease(&xlogctl->info_lck);
2025 /* back off to last completed page boundary */
2026 WriteRqstPtr.xrecoff -= WriteRqstPtr.xrecoff % XLOG_BLCKSZ;
2028 /* if we have already flushed that far, consider async commit records */
2029 if (XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
2031 /* use volatile pointer to prevent code rearrangement */
2032 volatile XLogCtlData *xlogctl = XLogCtl;
2034 SpinLockAcquire(&xlogctl->info_lck);
2035 WriteRqstPtr = xlogctl->asyncCommitLSN;
2036 SpinLockRelease(&xlogctl->info_lck);
2037 flexible = false; /* ensure it all gets written */
2040 /* Done if already known flushed */
2041 if (XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
2042 return;
2044 #ifdef WAL_DEBUG
2045 if (XLOG_DEBUG)
2046 elog(LOG, "xlog bg flush request %X/%X; write %X/%X; flush %X/%X",
2047 WriteRqstPtr.xlogid, WriteRqstPtr.xrecoff,
2048 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
2049 LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
2050 #endif
2052 START_CRIT_SECTION();
2054 /* now wait for the write lock */
2055 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
2056 LogwrtResult = XLogCtl->Write.LogwrtResult;
2057 if (!XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
2059 XLogwrtRqst WriteRqst;
2061 WriteRqst.Write = WriteRqstPtr;
2062 WriteRqst.Flush = WriteRqstPtr;
2063 XLogWrite(WriteRqst, flexible, false);
2065 LWLockRelease(WALWriteLock);
2067 END_CRIT_SECTION();
2071 * Flush any previous asynchronously-committed transactions' commit records.
2073 * NOTE: it is unwise to assume that this provides any strong guarantees.
2074 * In particular, because of the inexact LSN bookkeeping used by clog.c,
2075 * we cannot assume that hint bits will be settable for these transactions.
2077 void
2078 XLogAsyncCommitFlush(void)
2080 XLogRecPtr WriteRqstPtr;
2082 /* use volatile pointer to prevent code rearrangement */
2083 volatile XLogCtlData *xlogctl = XLogCtl;
2085 /* There's no asynchronously committed transactions during recovery */
2086 if (RecoveryInProgress())
2087 return;
2089 SpinLockAcquire(&xlogctl->info_lck);
2090 WriteRqstPtr = xlogctl->asyncCommitLSN;
2091 SpinLockRelease(&xlogctl->info_lck);
2093 XLogFlush(WriteRqstPtr);
2097 * Test whether XLOG data has been flushed up to (at least) the given position.
2099 * Returns true if a flush is still needed. (It may be that someone else
2100 * is already in process of flushing that far, however.)
2102 bool
2103 XLogNeedsFlush(XLogRecPtr record)
2105 /* XLOG doesn't need flushing during recovery */
2106 if (RecoveryInProgress())
2107 return false;
2109 /* Quick exit if already known flushed */
2110 if (XLByteLE(record, LogwrtResult.Flush))
2111 return false;
2113 /* read LogwrtResult and update local state */
2115 /* use volatile pointer to prevent code rearrangement */
2116 volatile XLogCtlData *xlogctl = XLogCtl;
2118 SpinLockAcquire(&xlogctl->info_lck);
2119 LogwrtResult = xlogctl->LogwrtResult;
2120 SpinLockRelease(&xlogctl->info_lck);
2123 /* check again */
2124 if (XLByteLE(record, LogwrtResult.Flush))
2125 return false;
2127 return true;
2131 * Create a new XLOG file segment, or open a pre-existing one.
2133 * log, seg: identify segment to be created/opened.
2135 * *use_existent: if TRUE, OK to use a pre-existing file (else, any
2136 * pre-existing file will be deleted). On return, TRUE if a pre-existing
2137 * file was used.
2139 * use_lock: if TRUE, acquire ControlFileLock while moving file into
2140 * place. This should be TRUE except during bootstrap log creation. The
2141 * caller must *not* hold the lock at call.
2143 * Returns FD of opened file.
2145 * Note: errors here are ERROR not PANIC because we might or might not be
2146 * inside a critical section (eg, during checkpoint there is no reason to
2147 * take down the system on failure). They will promote to PANIC if we are
2148 * in a critical section.
2150 static int
2151 XLogFileInit(uint32 log, uint32 seg,
2152 bool *use_existent, bool use_lock)
2154 char path[MAXPGPATH];
2155 char tmppath[MAXPGPATH];
2156 char *zbuffer;
2157 uint32 installed_log;
2158 uint32 installed_seg;
2159 int max_advance;
2160 int fd;
2161 int nbytes;
2163 XLogFilePath(path, ThisTimeLineID, log, seg);
2166 * Try to use existent file (checkpoint maker may have created it already)
2168 if (*use_existent)
2170 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
2171 S_IRUSR | S_IWUSR);
2172 if (fd < 0)
2174 if (errno != ENOENT)
2175 ereport(ERROR,
2176 (errcode_for_file_access(),
2177 errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
2178 path, log, seg)));
2180 else
2181 return fd;
2185 * Initialize an empty (all zeroes) segment. NOTE: it is possible that
2186 * another process is doing the same thing. If so, we will end up
2187 * pre-creating an extra log segment. That seems OK, and better than
2188 * holding the lock throughout this lengthy process.
2190 elog(DEBUG2, "creating and filling new WAL file");
2192 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
2194 unlink(tmppath);
2196 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
2197 fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
2198 S_IRUSR | S_IWUSR);
2199 if (fd < 0)
2200 ereport(ERROR,
2201 (errcode_for_file_access(),
2202 errmsg("could not create file \"%s\": %m", tmppath)));
2205 * Zero-fill the file. We have to do this the hard way to ensure that all
2206 * the file space has really been allocated --- on platforms that allow
2207 * "holes" in files, just seeking to the end doesn't allocate intermediate
2208 * space. This way, we know that we have all the space and (after the
2209 * fsync below) that all the indirect blocks are down on disk. Therefore,
2210 * fdatasync(2) or O_DSYNC will be sufficient to sync future writes to the
2211 * log file.
2213 * Note: palloc zbuffer, instead of just using a local char array, to
2214 * ensure it is reasonably well-aligned; this may save a few cycles
2215 * transferring data to the kernel.
2217 zbuffer = (char *) palloc0(XLOG_BLCKSZ);
2218 for (nbytes = 0; nbytes < XLogSegSize; nbytes += XLOG_BLCKSZ)
2220 errno = 0;
2221 if ((int) write(fd, zbuffer, XLOG_BLCKSZ) != (int) XLOG_BLCKSZ)
2223 int save_errno = errno;
2226 * If we fail to make the file, delete it to release disk space
2228 unlink(tmppath);
2229 /* if write didn't set errno, assume problem is no disk space */
2230 errno = save_errno ? save_errno : ENOSPC;
2232 ereport(ERROR,
2233 (errcode_for_file_access(),
2234 errmsg("could not write to file \"%s\": %m", tmppath)));
2237 pfree(zbuffer);
2239 if (pg_fsync(fd) != 0)
2240 ereport(ERROR,
2241 (errcode_for_file_access(),
2242 errmsg("could not fsync file \"%s\": %m", tmppath)));
2244 if (close(fd))
2245 ereport(ERROR,
2246 (errcode_for_file_access(),
2247 errmsg("could not close file \"%s\": %m", tmppath)));
2250 * Now move the segment into place with its final name.
2252 * If caller didn't want to use a pre-existing file, get rid of any
2253 * pre-existing file. Otherwise, cope with possibility that someone else
2254 * has created the file while we were filling ours: if so, use ours to
2255 * pre-create a future log segment.
2257 installed_log = log;
2258 installed_seg = seg;
2259 max_advance = XLOGfileslop;
2260 if (!InstallXLogFileSegment(&installed_log, &installed_seg, tmppath,
2261 *use_existent, &max_advance,
2262 use_lock))
2264 /* No need for any more future segments... */
2265 unlink(tmppath);
2268 elog(DEBUG2, "done creating and filling new WAL file");
2270 /* Set flag to tell caller there was no existent file */
2271 *use_existent = false;
2273 /* Now open original target segment (might not be file I just made) */
2274 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
2275 S_IRUSR | S_IWUSR);
2276 if (fd < 0)
2277 ereport(ERROR,
2278 (errcode_for_file_access(),
2279 errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
2280 path, log, seg)));
2282 return fd;
2286 * Create a new XLOG file segment by copying a pre-existing one.
2288 * log, seg: identify segment to be created.
2290 * srcTLI, srclog, srcseg: identify segment to be copied (could be from
2291 * a different timeline)
2293 * Currently this is only used during recovery, and so there are no locking
2294 * considerations. But we should be just as tense as XLogFileInit to avoid
2295 * emplacing a bogus file.
2297 static void
2298 XLogFileCopy(uint32 log, uint32 seg,
2299 TimeLineID srcTLI, uint32 srclog, uint32 srcseg)
2301 char path[MAXPGPATH];
2302 char tmppath[MAXPGPATH];
2303 char buffer[XLOG_BLCKSZ];
2304 int srcfd;
2305 int fd;
2306 int nbytes;
2309 * Open the source file
2311 XLogFilePath(path, srcTLI, srclog, srcseg);
2312 srcfd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
2313 if (srcfd < 0)
2314 ereport(ERROR,
2315 (errcode_for_file_access(),
2316 errmsg("could not open file \"%s\": %m", path)));
2319 * Copy into a temp file name.
2321 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
2323 unlink(tmppath);
2325 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
2326 fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
2327 S_IRUSR | S_IWUSR);
2328 if (fd < 0)
2329 ereport(ERROR,
2330 (errcode_for_file_access(),
2331 errmsg("could not create file \"%s\": %m", tmppath)));
2334 * Do the data copying.
2336 for (nbytes = 0; nbytes < XLogSegSize; nbytes += sizeof(buffer))
2338 errno = 0;
2339 if ((int) read(srcfd, buffer, sizeof(buffer)) != (int) sizeof(buffer))
2341 if (errno != 0)
2342 ereport(ERROR,
2343 (errcode_for_file_access(),
2344 errmsg("could not read file \"%s\": %m", path)));
2345 else
2346 ereport(ERROR,
2347 (errmsg("not enough data in file \"%s\"", path)));
2349 errno = 0;
2350 if ((int) write(fd, buffer, sizeof(buffer)) != (int) sizeof(buffer))
2352 int save_errno = errno;
2355 * If we fail to make the file, delete it to release disk space
2357 unlink(tmppath);
2358 /* if write didn't set errno, assume problem is no disk space */
2359 errno = save_errno ? save_errno : ENOSPC;
2361 ereport(ERROR,
2362 (errcode_for_file_access(),
2363 errmsg("could not write to file \"%s\": %m", tmppath)));
2367 if (pg_fsync(fd) != 0)
2368 ereport(ERROR,
2369 (errcode_for_file_access(),
2370 errmsg("could not fsync file \"%s\": %m", tmppath)));
2372 if (close(fd))
2373 ereport(ERROR,
2374 (errcode_for_file_access(),
2375 errmsg("could not close file \"%s\": %m", tmppath)));
2377 close(srcfd);
2380 * Now move the segment into place with its final name.
2382 if (!InstallXLogFileSegment(&log, &seg, tmppath, false, NULL, false))
2383 elog(ERROR, "InstallXLogFileSegment should not have failed");
2387 * Install a new XLOG segment file as a current or future log segment.
2389 * This is used both to install a newly-created segment (which has a temp
2390 * filename while it's being created) and to recycle an old segment.
2392 * *log, *seg: identify segment to install as (or first possible target).
2393 * When find_free is TRUE, these are modified on return to indicate the
2394 * actual installation location or last segment searched.
2396 * tmppath: initial name of file to install. It will be renamed into place.
2398 * find_free: if TRUE, install the new segment at the first empty log/seg
2399 * number at or after the passed numbers. If FALSE, install the new segment
2400 * exactly where specified, deleting any existing segment file there.
2402 * *max_advance: maximum number of log/seg slots to advance past the starting
2403 * point. Fail if no free slot is found in this range. On return, reduced
2404 * by the number of slots skipped over. (Irrelevant, and may be NULL,
2405 * when find_free is FALSE.)
2407 * use_lock: if TRUE, acquire ControlFileLock while moving file into
2408 * place. This should be TRUE except during bootstrap log creation. The
2409 * caller must *not* hold the lock at call.
2411 * Returns TRUE if file installed, FALSE if not installed because of
2412 * exceeding max_advance limit. On Windows, we also return FALSE if we
2413 * can't rename the file into place because someone's got it open.
2414 * (Any other kind of failure causes ereport().)
2416 static bool
2417 InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath,
2418 bool find_free, int *max_advance,
2419 bool use_lock)
2421 char path[MAXPGPATH];
2422 struct stat stat_buf;
2424 XLogFilePath(path, ThisTimeLineID, *log, *seg);
2427 * We want to be sure that only one process does this at a time.
2429 if (use_lock)
2430 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
2432 if (!find_free)
2434 /* Force installation: get rid of any pre-existing segment file */
2435 unlink(path);
2437 else
2439 /* Find a free slot to put it in */
2440 while (stat(path, &stat_buf) == 0)
2442 if (*max_advance <= 0)
2444 /* Failed to find a free slot within specified range */
2445 if (use_lock)
2446 LWLockRelease(ControlFileLock);
2447 return false;
2449 NextLogSeg(*log, *seg);
2450 (*max_advance)--;
2451 XLogFilePath(path, ThisTimeLineID, *log, *seg);
2456 * Prefer link() to rename() here just to be really sure that we don't
2457 * overwrite an existing logfile. However, there shouldn't be one, so
2458 * rename() is an acceptable substitute except for the truly paranoid.
2460 #if HAVE_WORKING_LINK
2461 if (link(tmppath, path) < 0)
2462 ereport(ERROR,
2463 (errcode_for_file_access(),
2464 errmsg("could not link file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m",
2465 tmppath, path, *log, *seg)));
2466 unlink(tmppath);
2467 #else
2468 if (rename(tmppath, path) < 0)
2470 #ifdef WIN32
2471 #if !defined(__CYGWIN__)
2472 if (GetLastError() == ERROR_ACCESS_DENIED)
2473 #else
2474 if (errno == EACCES)
2475 #endif
2477 if (use_lock)
2478 LWLockRelease(ControlFileLock);
2479 return false;
2481 #endif /* WIN32 */
2483 ereport(ERROR,
2484 (errcode_for_file_access(),
2485 errmsg("could not rename file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m",
2486 tmppath, path, *log, *seg)));
2488 #endif
2490 if (use_lock)
2491 LWLockRelease(ControlFileLock);
2493 return true;
2497 * Open a pre-existing logfile segment for writing.
2499 static int
2500 XLogFileOpen(uint32 log, uint32 seg)
2502 char path[MAXPGPATH];
2503 int fd;
2505 XLogFilePath(path, ThisTimeLineID, log, seg);
2507 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
2508 S_IRUSR | S_IWUSR);
2509 if (fd < 0)
2510 ereport(PANIC,
2511 (errcode_for_file_access(),
2512 errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
2513 path, log, seg)));
2515 return fd;
2519 * Open a logfile segment for reading (during recovery).
2521 static int
2522 XLogFileRead(uint32 log, uint32 seg, int emode)
2524 char path[MAXPGPATH];
2525 char xlogfname[MAXFNAMELEN];
2526 char activitymsg[MAXFNAMELEN + 16];
2527 ListCell *cell;
2528 int fd;
2531 * Loop looking for a suitable timeline ID: we might need to read any of
2532 * the timelines listed in expectedTLIs.
2534 * We expect curFileTLI on entry to be the TLI of the preceding file in
2535 * sequence, or 0 if there was no predecessor. We do not allow curFileTLI
2536 * to go backwards; this prevents us from picking up the wrong file when a
2537 * parent timeline extends to higher segment numbers than the child we
2538 * want to read.
2540 foreach(cell, expectedTLIs)
2542 TimeLineID tli = (TimeLineID) lfirst_int(cell);
2544 if (tli < curFileTLI)
2545 break; /* don't bother looking at too-old TLIs */
2547 XLogFileName(xlogfname, tli, log, seg);
2549 if (InArchiveRecovery)
2551 /* Report recovery progress in PS display */
2552 snprintf(activitymsg, sizeof(activitymsg), "waiting for %s",
2553 xlogfname);
2554 set_ps_display(activitymsg, false);
2556 restoredFromArchive = RestoreArchivedFile(path, xlogfname,
2557 "RECOVERYXLOG",
2558 XLogSegSize);
2560 else
2561 XLogFilePath(path, tli, log, seg);
2563 fd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
2564 if (fd >= 0)
2566 /* Success! */
2567 curFileTLI = tli;
2569 /* Report recovery progress in PS display */
2570 snprintf(activitymsg, sizeof(activitymsg), "recovering %s",
2571 xlogfname);
2572 set_ps_display(activitymsg, false);
2574 return fd;
2576 if (errno != ENOENT) /* unexpected failure? */
2577 ereport(PANIC,
2578 (errcode_for_file_access(),
2579 errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
2580 path, log, seg)));
2583 /* Couldn't find it. For simplicity, complain about front timeline */
2584 XLogFilePath(path, recoveryTargetTLI, log, seg);
2585 errno = ENOENT;
2586 ereport(emode,
2587 (errcode_for_file_access(),
2588 errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
2589 path, log, seg)));
2590 return -1;
2594 * Close the current logfile segment for writing.
2596 static void
2597 XLogFileClose(void)
2599 Assert(openLogFile >= 0);
2602 * WAL segment files will not be re-read in normal operation, so we advise
2603 * the OS to release any cached pages. But do not do so if WAL archiving
2604 * is active, because archiver process could use the cache to read the WAL
2605 * segment. Also, don't bother with it if we are using O_DIRECT, since
2606 * the kernel is presumably not caching in that case.
2608 #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
2609 if (!XLogArchivingActive() &&
2610 (get_sync_bit(sync_method) & PG_O_DIRECT) == 0)
2611 (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
2612 #endif
2614 if (close(openLogFile))
2615 ereport(PANIC,
2616 (errcode_for_file_access(),
2617 errmsg("could not close log file %u, segment %u: %m",
2618 openLogId, openLogSeg)));
2619 openLogFile = -1;
2623 * Attempt to retrieve the specified file from off-line archival storage.
2624 * If successful, fill "path" with its complete path (note that this will be
2625 * a temp file name that doesn't follow the normal naming convention), and
2626 * return TRUE.
2628 * If not successful, fill "path" with the name of the normal on-line file
2629 * (which may or may not actually exist, but we'll try to use it), and return
2630 * FALSE.
2632 * For fixed-size files, the caller may pass the expected size as an
2633 * additional crosscheck on successful recovery. If the file size is not
2634 * known, set expectedSize = 0.
2636 static bool
2637 RestoreArchivedFile(char *path, const char *xlogfname,
2638 const char *recovername, off_t expectedSize)
2640 char xlogpath[MAXPGPATH];
2641 char xlogRestoreCmd[MAXPGPATH];
2642 char lastRestartPointFname[MAXPGPATH];
2643 char *dp;
2644 char *endp;
2645 const char *sp;
2646 int rc;
2647 bool signaled;
2648 struct stat stat_buf;
2649 uint32 restartLog;
2650 uint32 restartSeg;
2653 * When doing archive recovery, we always prefer an archived log file even
2654 * if a file of the same name exists in XLOGDIR. The reason is that the
2655 * file in XLOGDIR could be an old, un-filled or partly-filled version
2656 * that was copied and restored as part of backing up $PGDATA.
2658 * We could try to optimize this slightly by checking the local copy
2659 * lastchange timestamp against the archived copy, but we have no API to
2660 * do this, nor can we guarantee that the lastchange timestamp was
2661 * preserved correctly when we copied to archive. Our aim is robustness,
2662 * so we elect not to do this.
2664 * If we cannot obtain the log file from the archive, however, we will try
2665 * to use the XLOGDIR file if it exists. This is so that we can make use
2666 * of log segments that weren't yet transferred to the archive.
2668 * Notice that we don't actually overwrite any files when we copy back
2669 * from archive because the recoveryRestoreCommand may inadvertently
2670 * restore inappropriate xlogs, or they may be corrupt, so we may wish to
2671 * fallback to the segments remaining in current XLOGDIR later. The
2672 * copy-from-archive filename is always the same, ensuring that we don't
2673 * run out of disk space on long recoveries.
2675 snprintf(xlogpath, MAXPGPATH, XLOGDIR "/%s", recovername);
2678 * Make sure there is no existing file named recovername.
2680 if (stat(xlogpath, &stat_buf) != 0)
2682 if (errno != ENOENT)
2683 ereport(FATAL,
2684 (errcode_for_file_access(),
2685 errmsg("could not stat file \"%s\": %m",
2686 xlogpath)));
2688 else
2690 if (unlink(xlogpath) != 0)
2691 ereport(FATAL,
2692 (errcode_for_file_access(),
2693 errmsg("could not remove file \"%s\": %m",
2694 xlogpath)));
2698 * Calculate the archive file cutoff point for use during log shipping
2699 * replication. All files earlier than this point can be deleted from the
2700 * archive, though there is no requirement to do so.
2702 * We initialise this with the filename of an InvalidXLogRecPtr, which
2703 * will prevent the deletion of any WAL files from the archive because of
2704 * the alphabetic sorting property of WAL filenames.
2706 * Once we have successfully located the redo pointer of the checkpoint
2707 * from which we start recovery we never request a file prior to the redo
2708 * pointer of the last restartpoint. When redo begins we know that we have
2709 * successfully located it, so there is no need for additional status
2710 * flags to signify the point when we can begin deleting WAL files from
2711 * the archive.
2713 if (InRedo)
2715 XLByteToSeg(ControlFile->checkPointCopy.redo,
2716 restartLog, restartSeg);
2717 XLogFileName(lastRestartPointFname,
2718 ControlFile->checkPointCopy.ThisTimeLineID,
2719 restartLog, restartSeg);
2720 /* we shouldn't need anything earlier than last restart point */
2721 Assert(strcmp(lastRestartPointFname, xlogfname) <= 0);
2723 else
2724 XLogFileName(lastRestartPointFname, 0, 0, 0);
2727 * construct the command to be executed
2729 dp = xlogRestoreCmd;
2730 endp = xlogRestoreCmd + MAXPGPATH - 1;
2731 *endp = '\0';
2733 for (sp = recoveryRestoreCommand; *sp; sp++)
2735 if (*sp == '%')
2737 switch (sp[1])
2739 case 'p':
2740 /* %p: relative path of target file */
2741 sp++;
2742 StrNCpy(dp, xlogpath, endp - dp);
2743 make_native_path(dp);
2744 dp += strlen(dp);
2745 break;
2746 case 'f':
2747 /* %f: filename of desired file */
2748 sp++;
2749 StrNCpy(dp, xlogfname, endp - dp);
2750 dp += strlen(dp);
2751 break;
2752 case 'r':
2753 /* %r: filename of last restartpoint */
2754 sp++;
2755 StrNCpy(dp, lastRestartPointFname, endp - dp);
2756 dp += strlen(dp);
2757 break;
2758 case '%':
2759 /* convert %% to a single % */
2760 sp++;
2761 if (dp < endp)
2762 *dp++ = *sp;
2763 break;
2764 default:
2765 /* otherwise treat the % as not special */
2766 if (dp < endp)
2767 *dp++ = *sp;
2768 break;
2771 else
2773 if (dp < endp)
2774 *dp++ = *sp;
2777 *dp = '\0';
2779 ereport(DEBUG3,
2780 (errmsg_internal("executing restore command \"%s\"",
2781 xlogRestoreCmd)));
2784 * Set in_restore_command to tell the signal handler that we should exit
2785 * right away on SIGTERM. We know that we're at a safe point to do that.
2786 * Check if we had already received the signal, so that we don't miss a
2787 * shutdown request received just before this.
2789 in_restore_command = true;
2790 if (shutdown_requested)
2791 proc_exit(1);
2794 * Copy xlog from archival storage to XLOGDIR
2796 rc = system(xlogRestoreCmd);
2798 in_restore_command = false;
2800 if (rc == 0)
2803 * command apparently succeeded, but let's make sure the file is
2804 * really there now and has the correct size.
2806 * XXX I made wrong-size a fatal error to ensure the DBA would notice
2807 * it, but is that too strong? We could try to plow ahead with a
2808 * local copy of the file ... but the problem is that there probably
2809 * isn't one, and we'd incorrectly conclude we've reached the end of
2810 * WAL and we're done recovering ...
2812 if (stat(xlogpath, &stat_buf) == 0)
2814 if (expectedSize > 0 && stat_buf.st_size != expectedSize)
2815 ereport(FATAL,
2816 (errmsg("archive file \"%s\" has wrong size: %lu instead of %lu",
2817 xlogfname,
2818 (unsigned long) stat_buf.st_size,
2819 (unsigned long) expectedSize)));
2820 else
2822 ereport(LOG,
2823 (errmsg("restored log file \"%s\" from archive",
2824 xlogfname)));
2825 strcpy(path, xlogpath);
2826 return true;
2829 else
2831 /* stat failed */
2832 if (errno != ENOENT)
2833 ereport(FATAL,
2834 (errcode_for_file_access(),
2835 errmsg("could not stat file \"%s\": %m",
2836 xlogpath)));
2841 * Remember, we rollforward UNTIL the restore fails so failure here is
2842 * just part of the process... that makes it difficult to determine
2843 * whether the restore failed because there isn't an archive to restore,
2844 * or because the administrator has specified the restore program
2845 * incorrectly. We have to assume the former.
2847 * However, if the failure was due to any sort of signal, it's best to
2848 * punt and abort recovery. (If we "return false" here, upper levels will
2849 * assume that recovery is complete and start up the database!) It's
2850 * essential to abort on child SIGINT and SIGQUIT, because per spec
2851 * system() ignores SIGINT and SIGQUIT while waiting; if we see one of
2852 * those it's a good bet we should have gotten it too.
2854 * On SIGTERM, assume we have received a fast shutdown request, and exit
2855 * cleanly. It's pure chance whether we receive the SIGTERM first, or the
2856 * child process. If we receive it first, the signal handler will call
2857 * proc_exit, otherwise we do it here. If we or the child process received
2858 * SIGTERM for any other reason than a fast shutdown request, postmaster
2859 * will perform an immediate shutdown when it sees us exiting
2860 * unexpectedly.
2862 * Per the Single Unix Spec, shells report exit status > 128 when a called
2863 * command died on a signal. Also, 126 and 127 are used to report
2864 * problems such as an unfindable command; treat those as fatal errors
2865 * too.
2867 if (WIFSIGNALED(rc) && WTERMSIG(rc) == SIGTERM)
2868 proc_exit(1);
2870 signaled = WIFSIGNALED(rc) || WEXITSTATUS(rc) > 125;
2872 ereport(signaled ? FATAL : DEBUG2,
2873 (errmsg("could not restore file \"%s\" from archive: return code %d",
2874 xlogfname, rc)));
2877 * if an archived file is not available, there might still be a version of
2878 * this file in XLOGDIR, so return that as the filename to open.
2880 * In many recovery scenarios we expect this to fail also, but if so that
2881 * just means we've reached the end of WAL.
2883 snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlogfname);
2884 return false;
2888 * Attempt to execute the recovery_end_command.
2890 static void
2891 ExecuteRecoveryEndCommand(void)
2893 char xlogRecoveryEndCmd[MAXPGPATH];
2894 char lastRestartPointFname[MAXPGPATH];
2895 char *dp;
2896 char *endp;
2897 const char *sp;
2898 int rc;
2899 bool signaled;
2900 uint32 restartLog;
2901 uint32 restartSeg;
2903 Assert(recoveryEndCommand);
2906 * Calculate the archive file cutoff point for use during log shipping
2907 * replication. All files earlier than this point can be deleted from the
2908 * archive, though there is no requirement to do so.
2910 * We initialise this with the filename of an InvalidXLogRecPtr, which
2911 * will prevent the deletion of any WAL files from the archive because of
2912 * the alphabetic sorting property of WAL filenames.
2914 * Once we have successfully located the redo pointer of the checkpoint
2915 * from which we start recovery we never request a file prior to the redo
2916 * pointer of the last restartpoint. When redo begins we know that we have
2917 * successfully located it, so there is no need for additional status
2918 * flags to signify the point when we can begin deleting WAL files from
2919 * the archive.
2921 if (InRedo)
2923 XLByteToSeg(ControlFile->checkPointCopy.redo,
2924 restartLog, restartSeg);
2925 XLogFileName(lastRestartPointFname,
2926 ControlFile->checkPointCopy.ThisTimeLineID,
2927 restartLog, restartSeg);
2929 else
2930 XLogFileName(lastRestartPointFname, 0, 0, 0);
2933 * construct the command to be executed
2935 dp = xlogRecoveryEndCmd;
2936 endp = xlogRecoveryEndCmd + MAXPGPATH - 1;
2937 *endp = '\0';
2939 for (sp = recoveryEndCommand; *sp; sp++)
2941 if (*sp == '%')
2943 switch (sp[1])
2945 case 'r':
2946 /* %r: filename of last restartpoint */
2947 sp++;
2948 StrNCpy(dp, lastRestartPointFname, endp - dp);
2949 dp += strlen(dp);
2950 break;
2951 case '%':
2952 /* convert %% to a single % */
2953 sp++;
2954 if (dp < endp)
2955 *dp++ = *sp;
2956 break;
2957 default:
2958 /* otherwise treat the % as not special */
2959 if (dp < endp)
2960 *dp++ = *sp;
2961 break;
2964 else
2966 if (dp < endp)
2967 *dp++ = *sp;
2970 *dp = '\0';
2972 ereport(DEBUG3,
2973 (errmsg_internal("executing recovery end command \"%s\"",
2974 xlogRecoveryEndCmd)));
2977 * execute the constructed command
2979 rc = system(xlogRecoveryEndCmd);
2980 if (rc != 0)
2983 * If the failure was due to any sort of signal, it's best to punt and
2984 * abort recovery. See also detailed comments on signals in
2985 * RestoreArchivedFile().
2987 signaled = WIFSIGNALED(rc) || WEXITSTATUS(rc) > 125;
2989 ereport(signaled ? FATAL : WARNING,
2990 (errmsg("recovery_end_command \"%s\": return code %d",
2991 xlogRecoveryEndCmd, rc)));
2996 * Preallocate log files beyond the specified log endpoint.
2998 * XXX this is currently extremely conservative, since it forces only one
2999 * future log segment to exist, and even that only if we are 75% done with
3000 * the current one. This is only appropriate for very low-WAL-volume systems.
3001 * High-volume systems will be OK once they've built up a sufficient set of
3002 * recycled log segments, but the startup transient is likely to include
3003 * a lot of segment creations by foreground processes, which is not so good.
3005 static void
3006 PreallocXlogFiles(XLogRecPtr endptr)
3008 uint32 _logId;
3009 uint32 _logSeg;
3010 int lf;
3011 bool use_existent;
3013 XLByteToPrevSeg(endptr, _logId, _logSeg);
3014 if ((endptr.xrecoff - 1) % XLogSegSize >=
3015 (uint32) (0.75 * XLogSegSize))
3017 NextLogSeg(_logId, _logSeg);
3018 use_existent = true;
3019 lf = XLogFileInit(_logId, _logSeg, &use_existent, true);
3020 close(lf);
3021 if (!use_existent)
3022 CheckpointStats.ckpt_segs_added++;
3027 * Recycle or remove all log files older or equal to passed log/seg#
3029 * endptr is current (or recent) end of xlog; this is used to determine
3030 * whether we want to recycle rather than delete no-longer-wanted log files.
3032 static void
3033 RemoveOldXlogFiles(uint32 log, uint32 seg, XLogRecPtr endptr)
3035 uint32 endlogId;
3036 uint32 endlogSeg;
3037 int max_advance;
3038 DIR *xldir;
3039 struct dirent *xlde;
3040 char lastoff[MAXFNAMELEN];
3041 char path[MAXPGPATH];
3042 struct stat statbuf;
3045 * Initialize info about where to try to recycle to. We allow recycling
3046 * segments up to XLOGfileslop segments beyond the current XLOG location.
3048 XLByteToPrevSeg(endptr, endlogId, endlogSeg);
3049 max_advance = XLOGfileslop;
3051 xldir = AllocateDir(XLOGDIR);
3052 if (xldir == NULL)
3053 ereport(ERROR,
3054 (errcode_for_file_access(),
3055 errmsg("could not open transaction log directory \"%s\": %m",
3056 XLOGDIR)));
3058 XLogFileName(lastoff, ThisTimeLineID, log, seg);
3060 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3063 * We ignore the timeline part of the XLOG segment identifiers in
3064 * deciding whether a segment is still needed. This ensures that we
3065 * won't prematurely remove a segment from a parent timeline. We could
3066 * probably be a little more proactive about removing segments of
3067 * non-parent timelines, but that would be a whole lot more
3068 * complicated.
3070 * We use the alphanumeric sorting property of the filenames to decide
3071 * which ones are earlier than the lastoff segment.
3073 if (strlen(xlde->d_name) == 24 &&
3074 strspn(xlde->d_name, "0123456789ABCDEF") == 24 &&
3075 strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
3077 if (XLogArchiveCheckDone(xlde->d_name))
3079 snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3082 * Before deleting the file, see if it can be recycled as a
3083 * future log segment. Only recycle normal files, pg_standby
3084 * for example can create symbolic links pointing to a
3085 * separate archive directory.
3087 if (lstat(path, &statbuf) == 0 && S_ISREG(statbuf.st_mode) &&
3088 InstallXLogFileSegment(&endlogId, &endlogSeg, path,
3089 true, &max_advance, true))
3091 ereport(DEBUG2,
3092 (errmsg("recycled transaction log file \"%s\"",
3093 xlde->d_name)));
3094 CheckpointStats.ckpt_segs_recycled++;
3095 /* Needn't recheck that slot on future iterations */
3096 if (max_advance > 0)
3098 NextLogSeg(endlogId, endlogSeg);
3099 max_advance--;
3102 else
3104 /* No need for any more future segments... */
3105 ereport(DEBUG2,
3106 (errmsg("removing transaction log file \"%s\"",
3107 xlde->d_name)));
3108 unlink(path);
3109 CheckpointStats.ckpt_segs_removed++;
3112 XLogArchiveCleanup(xlde->d_name);
3117 FreeDir(xldir);
3121 * Verify whether pg_xlog and pg_xlog/archive_status exist.
3122 * If the latter does not exist, recreate it.
3124 * It is not the goal of this function to verify the contents of these
3125 * directories, but to help in cases where someone has performed a cluster
3126 * copy for PITR purposes but omitted pg_xlog from the copy.
3128 * We could also recreate pg_xlog if it doesn't exist, but a deliberate
3129 * policy decision was made not to. It is fairly common for pg_xlog to be
3130 * a symlink, and if that was the DBA's intent then automatically making a
3131 * plain directory would result in degraded performance with no notice.
3133 static void
3134 ValidateXLOGDirectoryStructure(void)
3136 char path[MAXPGPATH];
3137 struct stat stat_buf;
3139 /* Check for pg_xlog; if it doesn't exist, error out */
3140 if (stat(XLOGDIR, &stat_buf) != 0 ||
3141 !S_ISDIR(stat_buf.st_mode))
3142 ereport(FATAL,
3143 (errmsg("required WAL directory \"%s\" does not exist",
3144 XLOGDIR)));
3146 /* Check for archive_status */
3147 snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
3148 if (stat(path, &stat_buf) == 0)
3150 /* Check for weird cases where it exists but isn't a directory */
3151 if (!S_ISDIR(stat_buf.st_mode))
3152 ereport(FATAL,
3153 (errmsg("required WAL directory \"%s\" does not exist",
3154 path)));
3156 else
3158 ereport(LOG,
3159 (errmsg("creating missing WAL directory \"%s\"", path)));
3160 if (mkdir(path, 0700) < 0)
3161 ereport(FATAL,
3162 (errmsg("could not create missing directory \"%s\": %m",
3163 path)));
3168 * Remove previous backup history files. This also retries creation of
3169 * .ready files for any backup history files for which XLogArchiveNotify
3170 * failed earlier.
3172 static void
3173 CleanupBackupHistory(void)
3175 DIR *xldir;
3176 struct dirent *xlde;
3177 char path[MAXPGPATH];
3179 xldir = AllocateDir(XLOGDIR);
3180 if (xldir == NULL)
3181 ereport(ERROR,
3182 (errcode_for_file_access(),
3183 errmsg("could not open transaction log directory \"%s\": %m",
3184 XLOGDIR)));
3186 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3188 if (strlen(xlde->d_name) > 24 &&
3189 strspn(xlde->d_name, "0123456789ABCDEF") == 24 &&
3190 strcmp(xlde->d_name + strlen(xlde->d_name) - strlen(".backup"),
3191 ".backup") == 0)
3193 if (XLogArchiveCheckDone(xlde->d_name))
3195 ereport(DEBUG2,
3196 (errmsg("removing transaction log backup history file \"%s\"",
3197 xlde->d_name)));
3198 snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3199 unlink(path);
3200 XLogArchiveCleanup(xlde->d_name);
3205 FreeDir(xldir);
3209 * Restore the backup blocks present in an XLOG record, if any.
3211 * We assume all of the record has been read into memory at *record.
3213 * Note: when a backup block is available in XLOG, we restore it
3214 * unconditionally, even if the page in the database appears newer.
3215 * This is to protect ourselves against database pages that were partially
3216 * or incorrectly written during a crash. We assume that the XLOG data
3217 * must be good because it has passed a CRC check, while the database
3218 * page might not be. This will force us to replay all subsequent
3219 * modifications of the page that appear in XLOG, rather than possibly
3220 * ignoring them as already applied, but that's not a huge drawback.
3222 * If 'cleanup' is true, a cleanup lock is used when restoring blocks.
3223 * Otherwise, a normal exclusive lock is used. At the moment, that's just
3224 * pro forma, because there can't be any regular backends in the system
3225 * during recovery. The 'cleanup' argument applies to all backup blocks
3226 * in the WAL record, that suffices for now.
3228 void
3229 RestoreBkpBlocks(XLogRecPtr lsn, XLogRecord *record, bool cleanup)
3231 Buffer buffer;
3232 Page page;
3233 BkpBlock bkpb;
3234 char *blk;
3235 int i;
3237 if (!(record->xl_info & XLR_BKP_BLOCK_MASK))
3238 return;
3240 blk = (char *) XLogRecGetData(record) + record->xl_len;
3241 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
3243 if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
3244 continue;
3246 memcpy(&bkpb, blk, sizeof(BkpBlock));
3247 blk += sizeof(BkpBlock);
3249 buffer = XLogReadBufferExtended(bkpb.node, bkpb.fork, bkpb.block,
3250 RBM_ZERO);
3251 Assert(BufferIsValid(buffer));
3252 if (cleanup)
3253 LockBufferForCleanup(buffer);
3254 else
3255 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
3257 page = (Page) BufferGetPage(buffer);
3259 if (bkpb.hole_length == 0)
3261 memcpy((char *) page, blk, BLCKSZ);
3263 else
3265 /* must zero-fill the hole */
3266 MemSet((char *) page, 0, BLCKSZ);
3267 memcpy((char *) page, blk, bkpb.hole_offset);
3268 memcpy((char *) page + (bkpb.hole_offset + bkpb.hole_length),
3269 blk + bkpb.hole_offset,
3270 BLCKSZ - (bkpb.hole_offset + bkpb.hole_length));
3273 PageSetLSN(page, lsn);
3274 PageSetTLI(page, ThisTimeLineID);
3275 MarkBufferDirty(buffer);
3276 UnlockReleaseBuffer(buffer);
3278 blk += BLCKSZ - bkpb.hole_length;
3283 * CRC-check an XLOG record. We do not believe the contents of an XLOG
3284 * record (other than to the minimal extent of computing the amount of
3285 * data to read in) until we've checked the CRCs.
3287 * We assume all of the record has been read into memory at *record.
3289 static bool
3290 RecordIsValid(XLogRecord *record, XLogRecPtr recptr, int emode)
3292 pg_crc32 crc;
3293 int i;
3294 uint32 len = record->xl_len;
3295 BkpBlock bkpb;
3296 char *blk;
3298 /* First the rmgr data */
3299 INIT_CRC32(crc);
3300 COMP_CRC32(crc, XLogRecGetData(record), len);
3302 /* Add in the backup blocks, if any */
3303 blk = (char *) XLogRecGetData(record) + len;
3304 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
3306 uint32 blen;
3308 if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
3309 continue;
3311 memcpy(&bkpb, blk, sizeof(BkpBlock));
3312 if (bkpb.hole_offset + bkpb.hole_length > BLCKSZ)
3314 ereport(emode,
3315 (errmsg("incorrect hole size in record at %X/%X",
3316 recptr.xlogid, recptr.xrecoff)));
3317 return false;
3319 blen = sizeof(BkpBlock) + BLCKSZ - bkpb.hole_length;
3320 COMP_CRC32(crc, blk, blen);
3321 blk += blen;
3324 /* Check that xl_tot_len agrees with our calculation */
3325 if (blk != (char *) record + record->xl_tot_len)
3327 ereport(emode,
3328 (errmsg("incorrect total length in record at %X/%X",
3329 recptr.xlogid, recptr.xrecoff)));
3330 return false;
3333 /* Finally include the record header */
3334 COMP_CRC32(crc, (char *) record + sizeof(pg_crc32),
3335 SizeOfXLogRecord - sizeof(pg_crc32));
3336 FIN_CRC32(crc);
3338 if (!EQ_CRC32(record->xl_crc, crc))
3340 ereport(emode,
3341 (errmsg("incorrect resource manager data checksum in record at %X/%X",
3342 recptr.xlogid, recptr.xrecoff)));
3343 return false;
3346 return true;
3350 * Attempt to read an XLOG record.
3352 * If RecPtr is not NULL, try to read a record at that position. Otherwise
3353 * try to read a record just after the last one previously read.
3355 * If no valid record is available, returns NULL, or fails if emode is PANIC.
3356 * (emode must be either PANIC or LOG.)
3358 * The record is copied into readRecordBuf, so that on successful return,
3359 * the returned record pointer always points there.
3361 static XLogRecord *
3362 ReadRecord(XLogRecPtr *RecPtr, int emode)
3364 XLogRecord *record;
3365 char *buffer;
3366 XLogRecPtr tmpRecPtr = EndRecPtr;
3367 bool randAccess = false;
3368 uint32 len,
3369 total_len;
3370 uint32 targetPageOff;
3371 uint32 targetRecOff;
3372 uint32 pageHeaderSize;
3374 if (readBuf == NULL)
3377 * First time through, permanently allocate readBuf. We do it this
3378 * way, rather than just making a static array, for two reasons: (1)
3379 * no need to waste the storage in most instantiations of the backend;
3380 * (2) a static char array isn't guaranteed to have any particular
3381 * alignment, whereas malloc() will provide MAXALIGN'd storage.
3383 readBuf = (char *) malloc(XLOG_BLCKSZ);
3384 Assert(readBuf != NULL);
3387 if (RecPtr == NULL)
3389 RecPtr = &tmpRecPtr;
3390 /* fast case if next record is on same page */
3391 if (nextRecord != NULL)
3393 record = nextRecord;
3394 goto got_record;
3396 /* align old recptr to next page */
3397 if (tmpRecPtr.xrecoff % XLOG_BLCKSZ != 0)
3398 tmpRecPtr.xrecoff += (XLOG_BLCKSZ - tmpRecPtr.xrecoff % XLOG_BLCKSZ);
3399 if (tmpRecPtr.xrecoff >= XLogFileSize)
3401 (tmpRecPtr.xlogid)++;
3402 tmpRecPtr.xrecoff = 0;
3404 /* We will account for page header size below */
3406 else
3408 if (!XRecOffIsValid(RecPtr->xrecoff))
3409 ereport(PANIC,
3410 (errmsg("invalid record offset at %X/%X",
3411 RecPtr->xlogid, RecPtr->xrecoff)));
3414 * Since we are going to a random position in WAL, forget any prior
3415 * state about what timeline we were in, and allow it to be any
3416 * timeline in expectedTLIs. We also set a flag to allow curFileTLI
3417 * to go backwards (but we can't reset that variable right here, since
3418 * we might not change files at all).
3420 lastPageTLI = 0; /* see comment in ValidXLOGHeader */
3421 randAccess = true; /* allow curFileTLI to go backwards too */
3424 if (readFile >= 0 && !XLByteInSeg(*RecPtr, readId, readSeg))
3426 close(readFile);
3427 readFile = -1;
3429 XLByteToSeg(*RecPtr, readId, readSeg);
3430 if (readFile < 0)
3432 /* Now it's okay to reset curFileTLI if random fetch */
3433 if (randAccess)
3434 curFileTLI = 0;
3436 readFile = XLogFileRead(readId, readSeg, emode);
3437 if (readFile < 0)
3438 goto next_record_is_invalid;
3441 * Whenever switching to a new WAL segment, we read the first page of
3442 * the file and validate its header, even if that's not where the
3443 * target record is. This is so that we can check the additional
3444 * identification info that is present in the first page's "long"
3445 * header.
3447 readOff = 0;
3448 if (read(readFile, readBuf, XLOG_BLCKSZ) != XLOG_BLCKSZ)
3450 ereport(emode,
3451 (errcode_for_file_access(),
3452 errmsg("could not read from log file %u, segment %u, offset %u: %m",
3453 readId, readSeg, readOff)));
3454 goto next_record_is_invalid;
3456 if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode))
3457 goto next_record_is_invalid;
3460 targetPageOff = ((RecPtr->xrecoff % XLogSegSize) / XLOG_BLCKSZ) * XLOG_BLCKSZ;
3461 if (readOff != targetPageOff)
3463 readOff = targetPageOff;
3464 if (lseek(readFile, (off_t) readOff, SEEK_SET) < 0)
3466 ereport(emode,
3467 (errcode_for_file_access(),
3468 errmsg("could not seek in log file %u, segment %u to offset %u: %m",
3469 readId, readSeg, readOff)));
3470 goto next_record_is_invalid;
3472 if (read(readFile, readBuf, XLOG_BLCKSZ) != XLOG_BLCKSZ)
3474 ereport(emode,
3475 (errcode_for_file_access(),
3476 errmsg("could not read from log file %u, segment %u, offset %u: %m",
3477 readId, readSeg, readOff)));
3478 goto next_record_is_invalid;
3480 if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode))
3481 goto next_record_is_invalid;
3483 pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
3484 targetRecOff = RecPtr->xrecoff % XLOG_BLCKSZ;
3485 if (targetRecOff == 0)
3488 * Can only get here in the continuing-from-prev-page case, because
3489 * XRecOffIsValid eliminated the zero-page-offset case otherwise. Need
3490 * to skip over the new page's header.
3492 tmpRecPtr.xrecoff += pageHeaderSize;
3493 targetRecOff = pageHeaderSize;
3495 else if (targetRecOff < pageHeaderSize)
3497 ereport(emode,
3498 (errmsg("invalid record offset at %X/%X",
3499 RecPtr->xlogid, RecPtr->xrecoff)));
3500 goto next_record_is_invalid;
3502 if ((((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD) &&
3503 targetRecOff == pageHeaderSize)
3505 ereport(emode,
3506 (errmsg("contrecord is requested by %X/%X",
3507 RecPtr->xlogid, RecPtr->xrecoff)));
3508 goto next_record_is_invalid;
3510 record = (XLogRecord *) ((char *) readBuf + RecPtr->xrecoff % XLOG_BLCKSZ);
3512 got_record:;
3515 * xl_len == 0 is bad data for everything except XLOG SWITCH, where it is
3516 * required.
3518 if (record->xl_rmid == RM_XLOG_ID && record->xl_info == XLOG_SWITCH)
3520 if (record->xl_len != 0)
3522 ereport(emode,
3523 (errmsg("invalid xlog switch record at %X/%X",
3524 RecPtr->xlogid, RecPtr->xrecoff)));
3525 goto next_record_is_invalid;
3528 else if (record->xl_len == 0)
3530 ereport(emode,
3531 (errmsg("record with zero length at %X/%X",
3532 RecPtr->xlogid, RecPtr->xrecoff)));
3533 goto next_record_is_invalid;
3535 if (record->xl_tot_len < SizeOfXLogRecord + record->xl_len ||
3536 record->xl_tot_len > SizeOfXLogRecord + record->xl_len +
3537 XLR_MAX_BKP_BLOCKS * (sizeof(BkpBlock) + BLCKSZ))
3539 ereport(emode,
3540 (errmsg("invalid record length at %X/%X",
3541 RecPtr->xlogid, RecPtr->xrecoff)));
3542 goto next_record_is_invalid;
3544 if (record->xl_rmid > RM_MAX_ID)
3546 ereport(emode,
3547 (errmsg("invalid resource manager ID %u at %X/%X",
3548 record->xl_rmid, RecPtr->xlogid, RecPtr->xrecoff)));
3549 goto next_record_is_invalid;
3551 if (randAccess)
3554 * We can't exactly verify the prev-link, but surely it should be less
3555 * than the record's own address.
3557 if (!XLByteLT(record->xl_prev, *RecPtr))
3559 ereport(emode,
3560 (errmsg("record with incorrect prev-link %X/%X at %X/%X",
3561 record->xl_prev.xlogid, record->xl_prev.xrecoff,
3562 RecPtr->xlogid, RecPtr->xrecoff)));
3563 goto next_record_is_invalid;
3566 else
3569 * Record's prev-link should exactly match our previous location. This
3570 * check guards against torn WAL pages where a stale but valid-looking
3571 * WAL record starts on a sector boundary.
3573 if (!XLByteEQ(record->xl_prev, ReadRecPtr))
3575 ereport(emode,
3576 (errmsg("record with incorrect prev-link %X/%X at %X/%X",
3577 record->xl_prev.xlogid, record->xl_prev.xrecoff,
3578 RecPtr->xlogid, RecPtr->xrecoff)));
3579 goto next_record_is_invalid;
3584 * Allocate or enlarge readRecordBuf as needed. To avoid useless small
3585 * increases, round its size to a multiple of XLOG_BLCKSZ, and make sure
3586 * it's at least 4*Max(BLCKSZ, XLOG_BLCKSZ) to start with. (That is
3587 * enough for all "normal" records, but very large commit or abort records
3588 * might need more space.)
3590 total_len = record->xl_tot_len;
3591 if (total_len > readRecordBufSize)
3593 uint32 newSize = total_len;
3595 newSize += XLOG_BLCKSZ - (newSize % XLOG_BLCKSZ);
3596 newSize = Max(newSize, 4 * Max(BLCKSZ, XLOG_BLCKSZ));
3597 if (readRecordBuf)
3598 free(readRecordBuf);
3599 readRecordBuf = (char *) malloc(newSize);
3600 if (!readRecordBuf)
3602 readRecordBufSize = 0;
3603 /* We treat this as a "bogus data" condition */
3604 ereport(emode,
3605 (errmsg("record length %u at %X/%X too long",
3606 total_len, RecPtr->xlogid, RecPtr->xrecoff)));
3607 goto next_record_is_invalid;
3609 readRecordBufSize = newSize;
3612 buffer = readRecordBuf;
3613 nextRecord = NULL;
3614 len = XLOG_BLCKSZ - RecPtr->xrecoff % XLOG_BLCKSZ;
3615 if (total_len > len)
3617 /* Need to reassemble record */
3618 XLogContRecord *contrecord;
3619 uint32 gotlen = len;
3621 memcpy(buffer, record, len);
3622 record = (XLogRecord *) buffer;
3623 buffer += len;
3624 for (;;)
3626 readOff += XLOG_BLCKSZ;
3627 if (readOff >= XLogSegSize)
3629 close(readFile);
3630 readFile = -1;
3631 NextLogSeg(readId, readSeg);
3632 readFile = XLogFileRead(readId, readSeg, emode);
3633 if (readFile < 0)
3634 goto next_record_is_invalid;
3635 readOff = 0;
3637 if (read(readFile, readBuf, XLOG_BLCKSZ) != XLOG_BLCKSZ)
3639 ereport(emode,
3640 (errcode_for_file_access(),
3641 errmsg("could not read from log file %u, segment %u, offset %u: %m",
3642 readId, readSeg, readOff)));
3643 goto next_record_is_invalid;
3645 if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode))
3646 goto next_record_is_invalid;
3647 if (!(((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD))
3649 ereport(emode,
3650 (errmsg("there is no contrecord flag in log file %u, segment %u, offset %u",
3651 readId, readSeg, readOff)));
3652 goto next_record_is_invalid;
3654 pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
3655 contrecord = (XLogContRecord *) ((char *) readBuf + pageHeaderSize);
3656 if (contrecord->xl_rem_len == 0 ||
3657 total_len != (contrecord->xl_rem_len + gotlen))
3659 ereport(emode,
3660 (errmsg("invalid contrecord length %u in log file %u, segment %u, offset %u",
3661 contrecord->xl_rem_len,
3662 readId, readSeg, readOff)));
3663 goto next_record_is_invalid;
3665 len = XLOG_BLCKSZ - pageHeaderSize - SizeOfXLogContRecord;
3666 if (contrecord->xl_rem_len > len)
3668 memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord, len);
3669 gotlen += len;
3670 buffer += len;
3671 continue;
3673 memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord,
3674 contrecord->xl_rem_len);
3675 break;
3677 if (!RecordIsValid(record, *RecPtr, emode))
3678 goto next_record_is_invalid;
3679 pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
3680 if (XLOG_BLCKSZ - SizeOfXLogRecord >= pageHeaderSize +
3681 MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len))
3683 nextRecord = (XLogRecord *) ((char *) contrecord +
3684 MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len));
3686 EndRecPtr.xlogid = readId;
3687 EndRecPtr.xrecoff = readSeg * XLogSegSize + readOff +
3688 pageHeaderSize +
3689 MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len);
3690 ReadRecPtr = *RecPtr;
3691 /* needn't worry about XLOG SWITCH, it can't cross page boundaries */
3692 return record;
3695 /* Record does not cross a page boundary */
3696 if (!RecordIsValid(record, *RecPtr, emode))
3697 goto next_record_is_invalid;
3698 if (XLOG_BLCKSZ - SizeOfXLogRecord >= RecPtr->xrecoff % XLOG_BLCKSZ +
3699 MAXALIGN(total_len))
3700 nextRecord = (XLogRecord *) ((char *) record + MAXALIGN(total_len));
3701 EndRecPtr.xlogid = RecPtr->xlogid;
3702 EndRecPtr.xrecoff = RecPtr->xrecoff + MAXALIGN(total_len);
3703 ReadRecPtr = *RecPtr;
3704 memcpy(buffer, record, total_len);
3707 * Special processing if it's an XLOG SWITCH record
3709 if (record->xl_rmid == RM_XLOG_ID && record->xl_info == XLOG_SWITCH)
3711 /* Pretend it extends to end of segment */
3712 EndRecPtr.xrecoff += XLogSegSize - 1;
3713 EndRecPtr.xrecoff -= EndRecPtr.xrecoff % XLogSegSize;
3714 nextRecord = NULL; /* definitely not on same page */
3717 * Pretend that readBuf contains the last page of the segment. This is
3718 * just to avoid Assert failure in StartupXLOG if XLOG ends with this
3719 * segment.
3721 readOff = XLogSegSize - XLOG_BLCKSZ;
3723 return (XLogRecord *) buffer;
3725 next_record_is_invalid:;
3726 if (readFile >= 0)
3728 close(readFile);
3729 readFile = -1;
3731 nextRecord = NULL;
3732 return NULL;
3736 * Check whether the xlog header of a page just read in looks valid.
3738 * This is just a convenience subroutine to avoid duplicated code in
3739 * ReadRecord. It's not intended for use from anywhere else.
3741 static bool
3742 ValidXLOGHeader(XLogPageHeader hdr, int emode)
3744 XLogRecPtr recaddr;
3746 if (hdr->xlp_magic != XLOG_PAGE_MAGIC)
3748 ereport(emode,
3749 (errmsg("invalid magic number %04X in log file %u, segment %u, offset %u",
3750 hdr->xlp_magic, readId, readSeg, readOff)));
3751 return false;
3753 if ((hdr->xlp_info & ~XLP_ALL_FLAGS) != 0)
3755 ereport(emode,
3756 (errmsg("invalid info bits %04X in log file %u, segment %u, offset %u",
3757 hdr->xlp_info, readId, readSeg, readOff)));
3758 return false;
3760 if (hdr->xlp_info & XLP_LONG_HEADER)
3762 XLogLongPageHeader longhdr = (XLogLongPageHeader) hdr;
3764 if (longhdr->xlp_sysid != ControlFile->system_identifier)
3766 char fhdrident_str[32];
3767 char sysident_str[32];
3770 * Format sysids separately to keep platform-dependent format code
3771 * out of the translatable message string.
3773 snprintf(fhdrident_str, sizeof(fhdrident_str), UINT64_FORMAT,
3774 longhdr->xlp_sysid);
3775 snprintf(sysident_str, sizeof(sysident_str), UINT64_FORMAT,
3776 ControlFile->system_identifier);
3777 ereport(emode,
3778 (errmsg("WAL file is from different system"),
3779 errdetail("WAL file SYSID is %s, pg_control SYSID is %s",
3780 fhdrident_str, sysident_str)));
3781 return false;
3783 if (longhdr->xlp_seg_size != XLogSegSize)
3785 ereport(emode,
3786 (errmsg("WAL file is from different system"),
3787 errdetail("Incorrect XLOG_SEG_SIZE in page header.")));
3788 return false;
3790 if (longhdr->xlp_xlog_blcksz != XLOG_BLCKSZ)
3792 ereport(emode,
3793 (errmsg("WAL file is from different system"),
3794 errdetail("Incorrect XLOG_BLCKSZ in page header.")));
3795 return false;
3798 else if (readOff == 0)
3800 /* hmm, first page of file doesn't have a long header? */
3801 ereport(emode,
3802 (errmsg("invalid info bits %04X in log file %u, segment %u, offset %u",
3803 hdr->xlp_info, readId, readSeg, readOff)));
3804 return false;
3807 recaddr.xlogid = readId;
3808 recaddr.xrecoff = readSeg * XLogSegSize + readOff;
3809 if (!XLByteEQ(hdr->xlp_pageaddr, recaddr))
3811 ereport(emode,
3812 (errmsg("unexpected pageaddr %X/%X in log file %u, segment %u, offset %u",
3813 hdr->xlp_pageaddr.xlogid, hdr->xlp_pageaddr.xrecoff,
3814 readId, readSeg, readOff)));
3815 return false;
3819 * Check page TLI is one of the expected values.
3821 if (!list_member_int(expectedTLIs, (int) hdr->xlp_tli))
3823 ereport(emode,
3824 (errmsg("unexpected timeline ID %u in log file %u, segment %u, offset %u",
3825 hdr->xlp_tli,
3826 readId, readSeg, readOff)));
3827 return false;
3831 * Since child timelines are always assigned a TLI greater than their
3832 * immediate parent's TLI, we should never see TLI go backwards across
3833 * successive pages of a consistent WAL sequence.
3835 * Of course this check should only be applied when advancing sequentially
3836 * across pages; therefore ReadRecord resets lastPageTLI to zero when
3837 * going to a random page.
3839 if (hdr->xlp_tli < lastPageTLI)
3841 ereport(emode,
3842 (errmsg("out-of-sequence timeline ID %u (after %u) in log file %u, segment %u, offset %u",
3843 hdr->xlp_tli, lastPageTLI,
3844 readId, readSeg, readOff)));
3845 return false;
3847 lastPageTLI = hdr->xlp_tli;
3848 return true;
3852 * Try to read a timeline's history file.
3854 * If successful, return the list of component TLIs (the given TLI followed by
3855 * its ancestor TLIs). If we can't find the history file, assume that the
3856 * timeline has no parents, and return a list of just the specified timeline
3857 * ID.
3859 static List *
3860 readTimeLineHistory(TimeLineID targetTLI)
3862 List *result;
3863 char path[MAXPGPATH];
3864 char histfname[MAXFNAMELEN];
3865 char fline[MAXPGPATH];
3866 FILE *fd;
3868 if (InArchiveRecovery)
3870 TLHistoryFileName(histfname, targetTLI);
3871 RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
3873 else
3874 TLHistoryFilePath(path, targetTLI);
3876 fd = AllocateFile(path, "r");
3877 if (fd == NULL)
3879 if (errno != ENOENT)
3880 ereport(FATAL,
3881 (errcode_for_file_access(),
3882 errmsg("could not open file \"%s\": %m", path)));
3883 /* Not there, so assume no parents */
3884 return list_make1_int((int) targetTLI);
3887 result = NIL;
3890 * Parse the file...
3892 while (fgets(fline, sizeof(fline), fd) != NULL)
3894 /* skip leading whitespace and check for # comment */
3895 char *ptr;
3896 char *endptr;
3897 TimeLineID tli;
3899 for (ptr = fline; *ptr; ptr++)
3901 if (!isspace((unsigned char) *ptr))
3902 break;
3904 if (*ptr == '\0' || *ptr == '#')
3905 continue;
3907 /* expect a numeric timeline ID as first field of line */
3908 tli = (TimeLineID) strtoul(ptr, &endptr, 0);
3909 if (endptr == ptr)
3910 ereport(FATAL,
3911 (errmsg("syntax error in history file: %s", fline),
3912 errhint("Expected a numeric timeline ID.")));
3914 if (result &&
3915 tli <= (TimeLineID) linitial_int(result))
3916 ereport(FATAL,
3917 (errmsg("invalid data in history file: %s", fline),
3918 errhint("Timeline IDs must be in increasing sequence.")));
3920 /* Build list with newest item first */
3921 result = lcons_int((int) tli, result);
3923 /* we ignore the remainder of each line */
3926 FreeFile(fd);
3928 if (result &&
3929 targetTLI <= (TimeLineID) linitial_int(result))
3930 ereport(FATAL,
3931 (errmsg("invalid data in history file \"%s\"", path),
3932 errhint("Timeline IDs must be less than child timeline's ID.")));
3934 result = lcons_int((int) targetTLI, result);
3936 ereport(DEBUG3,
3937 (errmsg_internal("history of timeline %u is %s",
3938 targetTLI, nodeToString(result))));
3940 return result;
3944 * Probe whether a timeline history file exists for the given timeline ID
3946 static bool
3947 existsTimeLineHistory(TimeLineID probeTLI)
3949 char path[MAXPGPATH];
3950 char histfname[MAXFNAMELEN];
3951 FILE *fd;
3953 if (InArchiveRecovery)
3955 TLHistoryFileName(histfname, probeTLI);
3956 RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
3958 else
3959 TLHistoryFilePath(path, probeTLI);
3961 fd = AllocateFile(path, "r");
3962 if (fd != NULL)
3964 FreeFile(fd);
3965 return true;
3967 else
3969 if (errno != ENOENT)
3970 ereport(FATAL,
3971 (errcode_for_file_access(),
3972 errmsg("could not open file \"%s\": %m", path)));
3973 return false;
3978 * Find the newest existing timeline, assuming that startTLI exists.
3980 * Note: while this is somewhat heuristic, it does positively guarantee
3981 * that (result + 1) is not a known timeline, and therefore it should
3982 * be safe to assign that ID to a new timeline.
3984 static TimeLineID
3985 findNewestTimeLine(TimeLineID startTLI)
3987 TimeLineID newestTLI;
3988 TimeLineID probeTLI;
3991 * The algorithm is just to probe for the existence of timeline history
3992 * files. XXX is it useful to allow gaps in the sequence?
3994 newestTLI = startTLI;
3996 for (probeTLI = startTLI + 1;; probeTLI++)
3998 if (existsTimeLineHistory(probeTLI))
4000 newestTLI = probeTLI; /* probeTLI exists */
4002 else
4004 /* doesn't exist, assume we're done */
4005 break;
4009 return newestTLI;
4013 * Create a new timeline history file.
4015 * newTLI: ID of the new timeline
4016 * parentTLI: ID of its immediate parent
4017 * endTLI et al: ID of the last used WAL file, for annotation purposes
4019 * Currently this is only used during recovery, and so there are no locking
4020 * considerations. But we should be just as tense as XLogFileInit to avoid
4021 * emplacing a bogus file.
4023 static void
4024 writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI,
4025 TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg)
4027 char path[MAXPGPATH];
4028 char tmppath[MAXPGPATH];
4029 char histfname[MAXFNAMELEN];
4030 char xlogfname[MAXFNAMELEN];
4031 char buffer[BLCKSZ];
4032 int srcfd;
4033 int fd;
4034 int nbytes;
4036 Assert(newTLI > parentTLI); /* else bad selection of newTLI */
4039 * Write into a temp file name.
4041 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
4043 unlink(tmppath);
4045 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
4046 fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL,
4047 S_IRUSR | S_IWUSR);
4048 if (fd < 0)
4049 ereport(ERROR,
4050 (errcode_for_file_access(),
4051 errmsg("could not create file \"%s\": %m", tmppath)));
4054 * If a history file exists for the parent, copy it verbatim
4056 if (InArchiveRecovery)
4058 TLHistoryFileName(histfname, parentTLI);
4059 RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
4061 else
4062 TLHistoryFilePath(path, parentTLI);
4064 srcfd = BasicOpenFile(path, O_RDONLY, 0);
4065 if (srcfd < 0)
4067 if (errno != ENOENT)
4068 ereport(ERROR,
4069 (errcode_for_file_access(),
4070 errmsg("could not open file \"%s\": %m", path)));
4071 /* Not there, so assume parent has no parents */
4073 else
4075 for (;;)
4077 errno = 0;
4078 nbytes = (int) read(srcfd, buffer, sizeof(buffer));
4079 if (nbytes < 0 || errno != 0)
4080 ereport(ERROR,
4081 (errcode_for_file_access(),
4082 errmsg("could not read file \"%s\": %m", path)));
4083 if (nbytes == 0)
4084 break;
4085 errno = 0;
4086 if ((int) write(fd, buffer, nbytes) != nbytes)
4088 int save_errno = errno;
4091 * If we fail to make the file, delete it to release disk
4092 * space
4094 unlink(tmppath);
4097 * if write didn't set errno, assume problem is no disk space
4099 errno = save_errno ? save_errno : ENOSPC;
4101 ereport(ERROR,
4102 (errcode_for_file_access(),
4103 errmsg("could not write to file \"%s\": %m", tmppath)));
4106 close(srcfd);
4110 * Append one line with the details of this timeline split.
4112 * If we did have a parent file, insert an extra newline just in case the
4113 * parent file failed to end with one.
4115 XLogFileName(xlogfname, endTLI, endLogId, endLogSeg);
4117 snprintf(buffer, sizeof(buffer),
4118 "%s%u\t%s\t%s transaction %u at %s\n",
4119 (srcfd < 0) ? "" : "\n",
4120 parentTLI,
4121 xlogfname,
4122 recoveryStopAfter ? "after" : "before",
4123 recoveryStopXid,
4124 timestamptz_to_str(recoveryStopTime));
4126 nbytes = strlen(buffer);
4127 errno = 0;
4128 if ((int) write(fd, buffer, nbytes) != nbytes)
4130 int save_errno = errno;
4133 * If we fail to make the file, delete it to release disk space
4135 unlink(tmppath);
4136 /* if write didn't set errno, assume problem is no disk space */
4137 errno = save_errno ? save_errno : ENOSPC;
4139 ereport(ERROR,
4140 (errcode_for_file_access(),
4141 errmsg("could not write to file \"%s\": %m", tmppath)));
4144 if (pg_fsync(fd) != 0)
4145 ereport(ERROR,
4146 (errcode_for_file_access(),
4147 errmsg("could not fsync file \"%s\": %m", tmppath)));
4149 if (close(fd))
4150 ereport(ERROR,
4151 (errcode_for_file_access(),
4152 errmsg("could not close file \"%s\": %m", tmppath)));
4156 * Now move the completed history file into place with its final name.
4158 TLHistoryFilePath(path, newTLI);
4161 * Prefer link() to rename() here just to be really sure that we don't
4162 * overwrite an existing logfile. However, there shouldn't be one, so
4163 * rename() is an acceptable substitute except for the truly paranoid.
4165 #if HAVE_WORKING_LINK
4166 if (link(tmppath, path) < 0)
4167 ereport(ERROR,
4168 (errcode_for_file_access(),
4169 errmsg("could not link file \"%s\" to \"%s\": %m",
4170 tmppath, path)));
4171 unlink(tmppath);
4172 #else
4173 if (rename(tmppath, path) < 0)
4174 ereport(ERROR,
4175 (errcode_for_file_access(),
4176 errmsg("could not rename file \"%s\" to \"%s\": %m",
4177 tmppath, path)));
4178 #endif
4180 /* The history file can be archived immediately. */
4181 TLHistoryFileName(histfname, newTLI);
4182 XLogArchiveNotify(histfname);
4186 * I/O routines for pg_control
4188 * *ControlFile is a buffer in shared memory that holds an image of the
4189 * contents of pg_control. WriteControlFile() initializes pg_control
4190 * given a preloaded buffer, ReadControlFile() loads the buffer from
4191 * the pg_control file (during postmaster or standalone-backend startup),
4192 * and UpdateControlFile() rewrites pg_control after we modify xlog state.
4194 * For simplicity, WriteControlFile() initializes the fields of pg_control
4195 * that are related to checking backend/database compatibility, and
4196 * ReadControlFile() verifies they are correct. We could split out the
4197 * I/O and compatibility-check functions, but there seems no need currently.
4199 static void
4200 WriteControlFile(void)
4202 int fd;
4203 char buffer[PG_CONTROL_SIZE]; /* need not be aligned */
4206 * Initialize version and compatibility-check fields
4208 ControlFile->pg_control_version = PG_CONTROL_VERSION;
4209 ControlFile->catalog_version_no = CATALOG_VERSION_NO;
4211 ControlFile->maxAlign = MAXIMUM_ALIGNOF;
4212 ControlFile->floatFormat = FLOATFORMAT_VALUE;
4214 ControlFile->blcksz = BLCKSZ;
4215 ControlFile->relseg_size = RELSEG_SIZE;
4216 ControlFile->xlog_blcksz = XLOG_BLCKSZ;
4217 ControlFile->xlog_seg_size = XLOG_SEG_SIZE;
4219 ControlFile->nameDataLen = NAMEDATALEN;
4220 ControlFile->indexMaxKeys = INDEX_MAX_KEYS;
4222 ControlFile->toast_max_chunk_size = TOAST_MAX_CHUNK_SIZE;
4224 #ifdef HAVE_INT64_TIMESTAMP
4225 ControlFile->enableIntTimes = true;
4226 #else
4227 ControlFile->enableIntTimes = false;
4228 #endif
4229 ControlFile->float4ByVal = FLOAT4PASSBYVAL;
4230 ControlFile->float8ByVal = FLOAT8PASSBYVAL;
4232 /* Contents are protected with a CRC */
4233 INIT_CRC32(ControlFile->crc);
4234 COMP_CRC32(ControlFile->crc,
4235 (char *) ControlFile,
4236 offsetof(ControlFileData, crc));
4237 FIN_CRC32(ControlFile->crc);
4240 * We write out PG_CONTROL_SIZE bytes into pg_control, zero-padding the
4241 * excess over sizeof(ControlFileData). This reduces the odds of
4242 * premature-EOF errors when reading pg_control. We'll still fail when we
4243 * check the contents of the file, but hopefully with a more specific
4244 * error than "couldn't read pg_control".
4246 if (sizeof(ControlFileData) > PG_CONTROL_SIZE)
4247 elog(PANIC, "sizeof(ControlFileData) is larger than PG_CONTROL_SIZE; fix either one");
4249 memset(buffer, 0, PG_CONTROL_SIZE);
4250 memcpy(buffer, ControlFile, sizeof(ControlFileData));
4252 fd = BasicOpenFile(XLOG_CONTROL_FILE,
4253 O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
4254 S_IRUSR | S_IWUSR);
4255 if (fd < 0)
4256 ereport(PANIC,
4257 (errcode_for_file_access(),
4258 errmsg("could not create control file \"%s\": %m",
4259 XLOG_CONTROL_FILE)));
4261 errno = 0;
4262 if (write(fd, buffer, PG_CONTROL_SIZE) != PG_CONTROL_SIZE)
4264 /* if write didn't set errno, assume problem is no disk space */
4265 if (errno == 0)
4266 errno = ENOSPC;
4267 ereport(PANIC,
4268 (errcode_for_file_access(),
4269 errmsg("could not write to control file: %m")));
4272 if (pg_fsync(fd) != 0)
4273 ereport(PANIC,
4274 (errcode_for_file_access(),
4275 errmsg("could not fsync control file: %m")));
4277 if (close(fd))
4278 ereport(PANIC,
4279 (errcode_for_file_access(),
4280 errmsg("could not close control file: %m")));
4283 static void
4284 ReadControlFile(void)
4286 pg_crc32 crc;
4287 int fd;
4290 * Read data...
4292 fd = BasicOpenFile(XLOG_CONTROL_FILE,
4293 O_RDWR | PG_BINARY,
4294 S_IRUSR | S_IWUSR);
4295 if (fd < 0)
4296 ereport(PANIC,
4297 (errcode_for_file_access(),
4298 errmsg("could not open control file \"%s\": %m",
4299 XLOG_CONTROL_FILE)));
4301 if (read(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
4302 ereport(PANIC,
4303 (errcode_for_file_access(),
4304 errmsg("could not read from control file: %m")));
4306 close(fd);
4309 * Check for expected pg_control format version. If this is wrong, the
4310 * CRC check will likely fail because we'll be checking the wrong number
4311 * of bytes. Complaining about wrong version will probably be more
4312 * enlightening than complaining about wrong CRC.
4315 if (ControlFile->pg_control_version != PG_CONTROL_VERSION && ControlFile->pg_control_version % 65536 == 0 && ControlFile->pg_control_version / 65536 != 0)
4316 ereport(FATAL,
4317 (errmsg("database files are incompatible with server"),
4318 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
4319 " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
4320 ControlFile->pg_control_version, ControlFile->pg_control_version,
4321 PG_CONTROL_VERSION, PG_CONTROL_VERSION),
4322 errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
4324 if (ControlFile->pg_control_version != PG_CONTROL_VERSION)
4325 ereport(FATAL,
4326 (errmsg("database files are incompatible with server"),
4327 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
4328 " but the server was compiled with PG_CONTROL_VERSION %d.",
4329 ControlFile->pg_control_version, PG_CONTROL_VERSION),
4330 errhint("It looks like you need to initdb.")));
4332 /* Now check the CRC. */
4333 INIT_CRC32(crc);
4334 COMP_CRC32(crc,
4335 (char *) ControlFile,
4336 offsetof(ControlFileData, crc));
4337 FIN_CRC32(crc);
4339 if (!EQ_CRC32(crc, ControlFile->crc))
4340 ereport(FATAL,
4341 (errmsg("incorrect checksum in control file")));
4344 * Do compatibility checking immediately. If the database isn't
4345 * compatible with the backend executable, we want to abort before we can
4346 * possibly do any damage.
4348 if (ControlFile->catalog_version_no != CATALOG_VERSION_NO)
4349 ereport(FATAL,
4350 (errmsg("database files are incompatible with server"),
4351 errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d,"
4352 " but the server was compiled with CATALOG_VERSION_NO %d.",
4353 ControlFile->catalog_version_no, CATALOG_VERSION_NO),
4354 errhint("It looks like you need to initdb.")));
4355 if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
4356 ereport(FATAL,
4357 (errmsg("database files are incompatible with server"),
4358 errdetail("The database cluster was initialized with MAXALIGN %d,"
4359 " but the server was compiled with MAXALIGN %d.",
4360 ControlFile->maxAlign, MAXIMUM_ALIGNOF),
4361 errhint("It looks like you need to initdb.")));
4362 if (ControlFile->floatFormat != FLOATFORMAT_VALUE)
4363 ereport(FATAL,
4364 (errmsg("database files are incompatible with server"),
4365 errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
4366 errhint("It looks like you need to initdb.")));
4367 if (ControlFile->blcksz != BLCKSZ)
4368 ereport(FATAL,
4369 (errmsg("database files are incompatible with server"),
4370 errdetail("The database cluster was initialized with BLCKSZ %d,"
4371 " but the server was compiled with BLCKSZ %d.",
4372 ControlFile->blcksz, BLCKSZ),
4373 errhint("It looks like you need to recompile or initdb.")));
4374 if (ControlFile->relseg_size != RELSEG_SIZE)
4375 ereport(FATAL,
4376 (errmsg("database files are incompatible with server"),
4377 errdetail("The database cluster was initialized with RELSEG_SIZE %d,"
4378 " but the server was compiled with RELSEG_SIZE %d.",
4379 ControlFile->relseg_size, RELSEG_SIZE),
4380 errhint("It looks like you need to recompile or initdb.")));
4381 if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
4382 ereport(FATAL,
4383 (errmsg("database files are incompatible with server"),
4384 errdetail("The database cluster was initialized with XLOG_BLCKSZ %d,"
4385 " but the server was compiled with XLOG_BLCKSZ %d.",
4386 ControlFile->xlog_blcksz, XLOG_BLCKSZ),
4387 errhint("It looks like you need to recompile or initdb.")));
4388 if (ControlFile->xlog_seg_size != XLOG_SEG_SIZE)
4389 ereport(FATAL,
4390 (errmsg("database files are incompatible with server"),
4391 errdetail("The database cluster was initialized with XLOG_SEG_SIZE %d,"
4392 " but the server was compiled with XLOG_SEG_SIZE %d.",
4393 ControlFile->xlog_seg_size, XLOG_SEG_SIZE),
4394 errhint("It looks like you need to recompile or initdb.")));
4395 if (ControlFile->nameDataLen != NAMEDATALEN)
4396 ereport(FATAL,
4397 (errmsg("database files are incompatible with server"),
4398 errdetail("The database cluster was initialized with NAMEDATALEN %d,"
4399 " but the server was compiled with NAMEDATALEN %d.",
4400 ControlFile->nameDataLen, NAMEDATALEN),
4401 errhint("It looks like you need to recompile or initdb.")));
4402 if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS)
4403 ereport(FATAL,
4404 (errmsg("database files are incompatible with server"),
4405 errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d,"
4406 " but the server was compiled with INDEX_MAX_KEYS %d.",
4407 ControlFile->indexMaxKeys, INDEX_MAX_KEYS),
4408 errhint("It looks like you need to recompile or initdb.")));
4409 if (ControlFile->toast_max_chunk_size != TOAST_MAX_CHUNK_SIZE)
4410 ereport(FATAL,
4411 (errmsg("database files are incompatible with server"),
4412 errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d,"
4413 " but the server was compiled with TOAST_MAX_CHUNK_SIZE %d.",
4414 ControlFile->toast_max_chunk_size, (int) TOAST_MAX_CHUNK_SIZE),
4415 errhint("It looks like you need to recompile or initdb.")));
4417 #ifdef HAVE_INT64_TIMESTAMP
4418 if (ControlFile->enableIntTimes != true)
4419 ereport(FATAL,
4420 (errmsg("database files are incompatible with server"),
4421 errdetail("The database cluster was initialized without HAVE_INT64_TIMESTAMP"
4422 " but the server was compiled with HAVE_INT64_TIMESTAMP."),
4423 errhint("It looks like you need to recompile or initdb.")));
4424 #else
4425 if (ControlFile->enableIntTimes != false)
4426 ereport(FATAL,
4427 (errmsg("database files are incompatible with server"),
4428 errdetail("The database cluster was initialized with HAVE_INT64_TIMESTAMP"
4429 " but the server was compiled without HAVE_INT64_TIMESTAMP."),
4430 errhint("It looks like you need to recompile or initdb.")));
4431 #endif
4433 #ifdef USE_FLOAT4_BYVAL
4434 if (ControlFile->float4ByVal != true)
4435 ereport(FATAL,
4436 (errmsg("database files are incompatible with server"),
4437 errdetail("The database cluster was initialized without USE_FLOAT4_BYVAL"
4438 " but the server was compiled with USE_FLOAT4_BYVAL."),
4439 errhint("It looks like you need to recompile or initdb.")));
4440 #else
4441 if (ControlFile->float4ByVal != false)
4442 ereport(FATAL,
4443 (errmsg("database files are incompatible with server"),
4444 errdetail("The database cluster was initialized with USE_FLOAT4_BYVAL"
4445 " but the server was compiled without USE_FLOAT4_BYVAL."),
4446 errhint("It looks like you need to recompile or initdb.")));
4447 #endif
4449 #ifdef USE_FLOAT8_BYVAL
4450 if (ControlFile->float8ByVal != true)
4451 ereport(FATAL,
4452 (errmsg("database files are incompatible with server"),
4453 errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
4454 " but the server was compiled with USE_FLOAT8_BYVAL."),
4455 errhint("It looks like you need to recompile or initdb.")));
4456 #else
4457 if (ControlFile->float8ByVal != false)
4458 ereport(FATAL,
4459 (errmsg("database files are incompatible with server"),
4460 errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
4461 " but the server was compiled without USE_FLOAT8_BYVAL."),
4462 errhint("It looks like you need to recompile or initdb.")));
4463 #endif
4466 void
4467 UpdateControlFile(void)
4469 int fd;
4471 INIT_CRC32(ControlFile->crc);
4472 COMP_CRC32(ControlFile->crc,
4473 (char *) ControlFile,
4474 offsetof(ControlFileData, crc));
4475 FIN_CRC32(ControlFile->crc);
4477 fd = BasicOpenFile(XLOG_CONTROL_FILE,
4478 O_RDWR | PG_BINARY,
4479 S_IRUSR | S_IWUSR);
4480 if (fd < 0)
4481 ereport(PANIC,
4482 (errcode_for_file_access(),
4483 errmsg("could not open control file \"%s\": %m",
4484 XLOG_CONTROL_FILE)));
4486 errno = 0;
4487 if (write(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
4489 /* if write didn't set errno, assume problem is no disk space */
4490 if (errno == 0)
4491 errno = ENOSPC;
4492 ereport(PANIC,
4493 (errcode_for_file_access(),
4494 errmsg("could not write to control file: %m")));
4497 if (pg_fsync(fd) != 0)
4498 ereport(PANIC,
4499 (errcode_for_file_access(),
4500 errmsg("could not fsync control file: %m")));
4502 if (close(fd))
4503 ereport(PANIC,
4504 (errcode_for_file_access(),
4505 errmsg("could not close control file: %m")));
4509 * Initialization of shared memory for XLOG
4511 Size
4512 XLOGShmemSize(void)
4514 Size size;
4516 /* XLogCtl */
4517 size = sizeof(XLogCtlData);
4518 /* xlblocks array */
4519 size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers));
4520 /* extra alignment padding for XLOG I/O buffers */
4521 size = add_size(size, ALIGNOF_XLOG_BUFFER);
4522 /* and the buffers themselves */
4523 size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
4526 * Note: we don't count ControlFileData, it comes out of the "slop factor"
4527 * added by CreateSharedMemoryAndSemaphores. This lets us use this
4528 * routine again below to compute the actual allocation size.
4531 return size;
4534 void
4535 XLOGShmemInit(void)
4537 bool foundCFile,
4538 foundXLog;
4539 char *allocptr;
4541 ControlFile = (ControlFileData *)
4542 ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
4543 XLogCtl = (XLogCtlData *)
4544 ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
4546 if (foundCFile || foundXLog)
4548 /* both should be present or neither */
4549 Assert(foundCFile && foundXLog);
4550 return;
4553 memset(XLogCtl, 0, sizeof(XLogCtlData));
4556 * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
4557 * multiple of the alignment for same, so no extra alignment padding is
4558 * needed here.
4560 allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
4561 XLogCtl->xlblocks = (XLogRecPtr *) allocptr;
4562 memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers);
4563 allocptr += sizeof(XLogRecPtr) * XLOGbuffers;
4566 * Align the start of the page buffers to an ALIGNOF_XLOG_BUFFER boundary.
4568 allocptr = (char *) TYPEALIGN(ALIGNOF_XLOG_BUFFER, allocptr);
4569 XLogCtl->pages = allocptr;
4570 memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
4573 * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
4574 * in additional info.)
4576 XLogCtl->XLogCacheBlck = XLOGbuffers - 1;
4577 XLogCtl->SharedRecoveryInProgress = true;
4578 XLogCtl->Insert.currpage = (XLogPageHeader) (XLogCtl->pages);
4579 SpinLockInit(&XLogCtl->info_lck);
4582 * If we are not in bootstrap mode, pg_control should already exist. Read
4583 * and validate it immediately (see comments in ReadControlFile() for the
4584 * reasons why).
4586 if (!IsBootstrapProcessingMode())
4587 ReadControlFile();
4591 * This func must be called ONCE on system install. It creates pg_control
4592 * and the initial XLOG segment.
4594 void
4595 BootStrapXLOG(void)
4597 CheckPoint checkPoint;
4598 char *buffer;
4599 XLogPageHeader page;
4600 XLogLongPageHeader longpage;
4601 XLogRecord *record;
4602 bool use_existent;
4603 uint64 sysidentifier;
4604 struct timeval tv;
4605 pg_crc32 crc;
4608 * Select a hopefully-unique system identifier code for this installation.
4609 * We use the result of gettimeofday(), including the fractional seconds
4610 * field, as being about as unique as we can easily get. (Think not to
4611 * use random(), since it hasn't been seeded and there's no portable way
4612 * to seed it other than the system clock value...) The upper half of the
4613 * uint64 value is just the tv_sec part, while the lower half is the XOR
4614 * of tv_sec and tv_usec. This is to ensure that we don't lose uniqueness
4615 * unnecessarily if "uint64" is really only 32 bits wide. A person
4616 * knowing this encoding can determine the initialization time of the
4617 * installation, which could perhaps be useful sometimes.
4619 gettimeofday(&tv, NULL);
4620 sysidentifier = ((uint64) tv.tv_sec) << 32;
4621 sysidentifier |= (uint32) (tv.tv_sec | tv.tv_usec);
4623 /* First timeline ID is always 1 */
4624 ThisTimeLineID = 1;
4626 /* page buffer must be aligned suitably for O_DIRECT */
4627 buffer = (char *) palloc(XLOG_BLCKSZ + ALIGNOF_XLOG_BUFFER);
4628 page = (XLogPageHeader) TYPEALIGN(ALIGNOF_XLOG_BUFFER, buffer);
4629 memset(page, 0, XLOG_BLCKSZ);
4631 /* Set up information for the initial checkpoint record */
4632 checkPoint.redo.xlogid = 0;
4633 checkPoint.redo.xrecoff = SizeOfXLogLongPHD;
4634 checkPoint.ThisTimeLineID = ThisTimeLineID;
4635 checkPoint.nextXidEpoch = 0;
4636 checkPoint.nextXid = FirstNormalTransactionId;
4637 checkPoint.nextOid = FirstBootstrapObjectId;
4638 checkPoint.nextMulti = FirstMultiXactId;
4639 checkPoint.nextMultiOffset = 0;
4640 checkPoint.time = (pg_time_t) time(NULL);
4642 ShmemVariableCache->nextXid = checkPoint.nextXid;
4643 ShmemVariableCache->nextOid = checkPoint.nextOid;
4644 ShmemVariableCache->oidCount = 0;
4645 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
4647 /* Set up the XLOG page header */
4648 page->xlp_magic = XLOG_PAGE_MAGIC;
4649 page->xlp_info = XLP_LONG_HEADER;
4650 page->xlp_tli = ThisTimeLineID;
4651 page->xlp_pageaddr.xlogid = 0;
4652 page->xlp_pageaddr.xrecoff = 0;
4653 longpage = (XLogLongPageHeader) page;
4654 longpage->xlp_sysid = sysidentifier;
4655 longpage->xlp_seg_size = XLogSegSize;
4656 longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
4658 /* Insert the initial checkpoint record */
4659 record = (XLogRecord *) ((char *) page + SizeOfXLogLongPHD);
4660 record->xl_prev.xlogid = 0;
4661 record->xl_prev.xrecoff = 0;
4662 record->xl_xid = InvalidTransactionId;
4663 record->xl_tot_len = SizeOfXLogRecord + sizeof(checkPoint);
4664 record->xl_len = sizeof(checkPoint);
4665 record->xl_info = XLOG_CHECKPOINT_SHUTDOWN;
4666 record->xl_rmid = RM_XLOG_ID;
4667 memcpy(XLogRecGetData(record), &checkPoint, sizeof(checkPoint));
4669 INIT_CRC32(crc);
4670 COMP_CRC32(crc, &checkPoint, sizeof(checkPoint));
4671 COMP_CRC32(crc, (char *) record + sizeof(pg_crc32),
4672 SizeOfXLogRecord - sizeof(pg_crc32));
4673 FIN_CRC32(crc);
4674 record->xl_crc = crc;
4676 /* Create first XLOG segment file */
4677 use_existent = false;
4678 openLogFile = XLogFileInit(0, 0, &use_existent, false);
4680 /* Write the first page with the initial record */
4681 errno = 0;
4682 if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
4684 /* if write didn't set errno, assume problem is no disk space */
4685 if (errno == 0)
4686 errno = ENOSPC;
4687 ereport(PANIC,
4688 (errcode_for_file_access(),
4689 errmsg("could not write bootstrap transaction log file: %m")));
4692 if (pg_fsync(openLogFile) != 0)
4693 ereport(PANIC,
4694 (errcode_for_file_access(),
4695 errmsg("could not fsync bootstrap transaction log file: %m")));
4697 if (close(openLogFile))
4698 ereport(PANIC,
4699 (errcode_for_file_access(),
4700 errmsg("could not close bootstrap transaction log file: %m")));
4702 openLogFile = -1;
4704 /* Now create pg_control */
4706 memset(ControlFile, 0, sizeof(ControlFileData));
4707 /* Initialize pg_control status fields */
4708 ControlFile->system_identifier = sysidentifier;
4709 ControlFile->state = DB_SHUTDOWNED;
4710 ControlFile->time = checkPoint.time;
4711 ControlFile->checkPoint = checkPoint.redo;
4712 ControlFile->checkPointCopy = checkPoint;
4713 /* some additional ControlFile fields are set in WriteControlFile() */
4715 WriteControlFile();
4717 /* Bootstrap the commit log, too */
4718 BootStrapCLOG();
4719 BootStrapSUBTRANS();
4720 BootStrapMultiXact();
4722 pfree(buffer);
4725 static char *
4726 str_time(pg_time_t tnow)
4728 static char buf[128];
4730 pg_strftime(buf, sizeof(buf),
4731 "%Y-%m-%d %H:%M:%S %Z",
4732 pg_localtime(&tnow, log_timezone));
4734 return buf;
4738 * See if there is a recovery command file (recovery.conf), and if so
4739 * read in parameters for archive recovery.
4741 * XXX longer term intention is to expand this to
4742 * cater for additional parameters and controls
4743 * possibly use a flex lexer similar to the GUC one
4745 static void
4746 readRecoveryCommandFile(void)
4748 FILE *fd;
4749 char cmdline[MAXPGPATH];
4750 TimeLineID rtli = 0;
4751 bool rtliGiven = false;
4752 bool syntaxError = false;
4754 fd = AllocateFile(RECOVERY_COMMAND_FILE, "r");
4755 if (fd == NULL)
4757 if (errno == ENOENT)
4758 return; /* not there, so no archive recovery */
4759 ereport(FATAL,
4760 (errcode_for_file_access(),
4761 errmsg("could not open recovery command file \"%s\": %m",
4762 RECOVERY_COMMAND_FILE)));
4765 ereport(LOG,
4766 (errmsg("starting archive recovery")));
4769 * Parse the file...
4771 while (fgets(cmdline, sizeof(cmdline), fd) != NULL)
4773 /* skip leading whitespace and check for # comment */
4774 char *ptr;
4775 char *tok1;
4776 char *tok2;
4778 for (ptr = cmdline; *ptr; ptr++)
4780 if (!isspace((unsigned char) *ptr))
4781 break;
4783 if (*ptr == '\0' || *ptr == '#')
4784 continue;
4786 /* identify the quoted parameter value */
4787 tok1 = strtok(ptr, "'");
4788 if (!tok1)
4790 syntaxError = true;
4791 break;
4793 tok2 = strtok(NULL, "'");
4794 if (!tok2)
4796 syntaxError = true;
4797 break;
4799 /* reparse to get just the parameter name */
4800 tok1 = strtok(ptr, " \t=");
4801 if (!tok1)
4803 syntaxError = true;
4804 break;
4807 if (strcmp(tok1, "restore_command") == 0)
4809 recoveryRestoreCommand = pstrdup(tok2);
4810 ereport(LOG,
4811 (errmsg("restore_command = '%s'",
4812 recoveryRestoreCommand)));
4814 else if (strcmp(tok1, "recovery_end_command") == 0)
4816 recoveryEndCommand = pstrdup(tok2);
4817 ereport(LOG,
4818 (errmsg("recovery_end_command = '%s'",
4819 recoveryEndCommand)));
4821 else if (strcmp(tok1, "recovery_target_timeline") == 0)
4823 rtliGiven = true;
4824 if (strcmp(tok2, "latest") == 0)
4825 rtli = 0;
4826 else
4828 errno = 0;
4829 rtli = (TimeLineID) strtoul(tok2, NULL, 0);
4830 if (errno == EINVAL || errno == ERANGE)
4831 ereport(FATAL,
4832 (errmsg("recovery_target_timeline is not a valid number: \"%s\"",
4833 tok2)));
4835 if (rtli)
4836 ereport(LOG,
4837 (errmsg("recovery_target_timeline = %u", rtli)));
4838 else
4839 ereport(LOG,
4840 (errmsg("recovery_target_timeline = latest")));
4842 else if (strcmp(tok1, "recovery_target_xid") == 0)
4844 errno = 0;
4845 recoveryTargetXid = (TransactionId) strtoul(tok2, NULL, 0);
4846 if (errno == EINVAL || errno == ERANGE)
4847 ereport(FATAL,
4848 (errmsg("recovery_target_xid is not a valid number: \"%s\"",
4849 tok2)));
4850 ereport(LOG,
4851 (errmsg("recovery_target_xid = %u",
4852 recoveryTargetXid)));
4853 recoveryTarget = true;
4854 recoveryTargetExact = true;
4856 else if (strcmp(tok1, "recovery_target_time") == 0)
4859 * if recovery_target_xid specified, then this overrides
4860 * recovery_target_time
4862 if (recoveryTargetExact)
4863 continue;
4864 recoveryTarget = true;
4865 recoveryTargetExact = false;
4868 * Convert the time string given by the user to TimestampTz form.
4870 recoveryTargetTime =
4871 DatumGetTimestampTz(DirectFunctionCall3(timestamptz_in,
4872 CStringGetDatum(tok2),
4873 ObjectIdGetDatum(InvalidOid),
4874 Int32GetDatum(-1)));
4875 ereport(LOG,
4876 (errmsg("recovery_target_time = '%s'",
4877 timestamptz_to_str(recoveryTargetTime))));
4879 else if (strcmp(tok1, "recovery_target_inclusive") == 0)
4882 * does nothing if a recovery_target is not also set
4884 if (!parse_bool(tok2, &recoveryTargetInclusive))
4885 ereport(ERROR,
4886 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4887 errmsg("parameter \"recovery_target_inclusive\" requires a Boolean value")));
4888 ereport(LOG,
4889 (errmsg("recovery_target_inclusive = %s", tok2)));
4891 else
4892 ereport(FATAL,
4893 (errmsg("unrecognized recovery parameter \"%s\"",
4894 tok1)));
4897 FreeFile(fd);
4899 if (syntaxError)
4900 ereport(FATAL,
4901 (errmsg("syntax error in recovery command file: %s",
4902 cmdline),
4903 errhint("Lines should have the format parameter = 'value'.")));
4905 /* Check that required parameters were supplied */
4906 if (recoveryRestoreCommand == NULL)
4907 ereport(FATAL,
4908 (errmsg("recovery command file \"%s\" did not specify restore_command",
4909 RECOVERY_COMMAND_FILE)));
4911 /* Enable fetching from archive recovery area */
4912 InArchiveRecovery = true;
4915 * If user specified recovery_target_timeline, validate it or compute the
4916 * "latest" value. We can't do this until after we've gotten the restore
4917 * command and set InArchiveRecovery, because we need to fetch timeline
4918 * history files from the archive.
4920 if (rtliGiven)
4922 if (rtli)
4924 /* Timeline 1 does not have a history file, all else should */
4925 if (rtli != 1 && !existsTimeLineHistory(rtli))
4926 ereport(FATAL,
4927 (errmsg("recovery target timeline %u does not exist",
4928 rtli)));
4929 recoveryTargetTLI = rtli;
4931 else
4933 /* We start the "latest" search from pg_control's timeline */
4934 recoveryTargetTLI = findNewestTimeLine(recoveryTargetTLI);
4940 * Exit archive-recovery state
4942 static void
4943 exitArchiveRecovery(TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg)
4945 char recoveryPath[MAXPGPATH];
4946 char xlogpath[MAXPGPATH];
4947 XLogRecPtr InvalidXLogRecPtr = {0, 0};
4950 * We are no longer in archive recovery state.
4952 InArchiveRecovery = false;
4955 * Update min recovery point one last time.
4957 UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
4960 * We should have the ending log segment currently open. Verify, and then
4961 * close it (to avoid problems on Windows with trying to rename or delete
4962 * an open file).
4964 Assert(readFile >= 0);
4965 Assert(readId == endLogId);
4966 Assert(readSeg == endLogSeg);
4968 close(readFile);
4969 readFile = -1;
4972 * If the segment was fetched from archival storage, we want to replace
4973 * the existing xlog segment (if any) with the archival version. This is
4974 * because whatever is in XLOGDIR is very possibly older than what we have
4975 * from the archives, since it could have come from restoring a PGDATA
4976 * backup. In any case, the archival version certainly is more
4977 * descriptive of what our current database state is, because that is what
4978 * we replayed from.
4980 * Note that if we are establishing a new timeline, ThisTimeLineID is
4981 * already set to the new value, and so we will create a new file instead
4982 * of overwriting any existing file. (This is, in fact, always the case
4983 * at present.)
4985 snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYXLOG");
4986 XLogFilePath(xlogpath, ThisTimeLineID, endLogId, endLogSeg);
4988 if (restoredFromArchive)
4990 ereport(DEBUG3,
4991 (errmsg_internal("moving last restored xlog to \"%s\"",
4992 xlogpath)));
4993 unlink(xlogpath); /* might or might not exist */
4994 if (rename(recoveryPath, xlogpath) != 0)
4995 ereport(FATAL,
4996 (errcode_for_file_access(),
4997 errmsg("could not rename file \"%s\" to \"%s\": %m",
4998 recoveryPath, xlogpath)));
4999 /* XXX might we need to fix permissions on the file? */
5001 else
5004 * If the latest segment is not archival, but there's still a
5005 * RECOVERYXLOG laying about, get rid of it.
5007 unlink(recoveryPath); /* ignore any error */
5010 * If we are establishing a new timeline, we have to copy data from
5011 * the last WAL segment of the old timeline to create a starting WAL
5012 * segment for the new timeline.
5014 * Notify the archiver that the last WAL segment of the old timeline
5015 * is ready to copy to archival storage. Otherwise, it is not archived
5016 * for a while.
5018 if (endTLI != ThisTimeLineID)
5020 XLogFileCopy(endLogId, endLogSeg,
5021 endTLI, endLogId, endLogSeg);
5023 if (XLogArchivingActive())
5025 XLogFileName(xlogpath, endTLI, endLogId, endLogSeg);
5026 XLogArchiveNotify(xlogpath);
5032 * Let's just make real sure there are not .ready or .done flags posted
5033 * for the new segment.
5035 XLogFileName(xlogpath, ThisTimeLineID, endLogId, endLogSeg);
5036 XLogArchiveCleanup(xlogpath);
5038 /* Get rid of any remaining recovered timeline-history file, too */
5039 snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYHISTORY");
5040 unlink(recoveryPath); /* ignore any error */
5043 * Rename the config file out of the way, so that we don't accidentally
5044 * re-enter archive recovery mode in a subsequent crash.
5046 unlink(RECOVERY_COMMAND_DONE);
5047 if (rename(RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE) != 0)
5048 ereport(FATAL,
5049 (errcode_for_file_access(),
5050 errmsg("could not rename file \"%s\" to \"%s\": %m",
5051 RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE)));
5053 ereport(LOG,
5054 (errmsg("archive recovery complete")));
5058 * For point-in-time recovery, this function decides whether we want to
5059 * stop applying the XLOG at or after the current record.
5061 * Returns TRUE if we are stopping, FALSE otherwise. On TRUE return,
5062 * *includeThis is set TRUE if we should apply this record before stopping.
5064 * We also track the timestamp of the latest applied COMMIT/ABORT record
5065 * in recoveryLastXTime, for logging purposes.
5066 * Also, some information is saved in recoveryStopXid et al for use in
5067 * annotating the new timeline's history file.
5069 static bool
5070 recoveryStopsHere(XLogRecord *record, bool *includeThis)
5072 bool stopsHere;
5073 uint8 record_info;
5074 TimestampTz recordXtime;
5076 /* We only consider stopping at COMMIT or ABORT records */
5077 if (record->xl_rmid != RM_XACT_ID)
5078 return false;
5079 record_info = record->xl_info & ~XLR_INFO_MASK;
5080 if (record_info == XLOG_XACT_COMMIT)
5082 xl_xact_commit *recordXactCommitData;
5084 recordXactCommitData = (xl_xact_commit *) XLogRecGetData(record);
5085 recordXtime = recordXactCommitData->xact_time;
5087 else if (record_info == XLOG_XACT_ABORT)
5089 xl_xact_abort *recordXactAbortData;
5091 recordXactAbortData = (xl_xact_abort *) XLogRecGetData(record);
5092 recordXtime = recordXactAbortData->xact_time;
5094 else
5095 return false;
5097 /* Do we have a PITR target at all? */
5098 if (!recoveryTarget)
5100 recoveryLastXTime = recordXtime;
5101 return false;
5104 if (recoveryTargetExact)
5107 * there can be only one transaction end record with this exact
5108 * transactionid
5110 * when testing for an xid, we MUST test for equality only, since
5111 * transactions are numbered in the order they start, not the order
5112 * they complete. A higher numbered xid will complete before you about
5113 * 50% of the time...
5115 stopsHere = (record->xl_xid == recoveryTargetXid);
5116 if (stopsHere)
5117 *includeThis = recoveryTargetInclusive;
5119 else
5122 * there can be many transactions that share the same commit time, so
5123 * we stop after the last one, if we are inclusive, or stop at the
5124 * first one if we are exclusive
5126 if (recoveryTargetInclusive)
5127 stopsHere = (recordXtime > recoveryTargetTime);
5128 else
5129 stopsHere = (recordXtime >= recoveryTargetTime);
5130 if (stopsHere)
5131 *includeThis = false;
5134 if (stopsHere)
5136 recoveryStopXid = record->xl_xid;
5137 recoveryStopTime = recordXtime;
5138 recoveryStopAfter = *includeThis;
5140 if (record_info == XLOG_XACT_COMMIT)
5142 if (recoveryStopAfter)
5143 ereport(LOG,
5144 (errmsg("recovery stopping after commit of transaction %u, time %s",
5145 recoveryStopXid,
5146 timestamptz_to_str(recoveryStopTime))));
5147 else
5148 ereport(LOG,
5149 (errmsg("recovery stopping before commit of transaction %u, time %s",
5150 recoveryStopXid,
5151 timestamptz_to_str(recoveryStopTime))));
5153 else
5155 if (recoveryStopAfter)
5156 ereport(LOG,
5157 (errmsg("recovery stopping after abort of transaction %u, time %s",
5158 recoveryStopXid,
5159 timestamptz_to_str(recoveryStopTime))));
5160 else
5161 ereport(LOG,
5162 (errmsg("recovery stopping before abort of transaction %u, time %s",
5163 recoveryStopXid,
5164 timestamptz_to_str(recoveryStopTime))));
5167 if (recoveryStopAfter)
5168 recoveryLastXTime = recordXtime;
5170 else
5171 recoveryLastXTime = recordXtime;
5173 return stopsHere;
5177 * This must be called ONCE during postmaster or standalone-backend startup
5179 void
5180 StartupXLOG(void)
5182 XLogCtlInsert *Insert;
5183 CheckPoint checkPoint;
5184 bool wasShutdown;
5185 bool reachedStopPoint = false;
5186 bool haveBackupLabel = false;
5187 XLogRecPtr RecPtr,
5188 LastRec,
5189 checkPointLoc,
5190 backupStopLoc,
5191 EndOfLog;
5192 uint32 endLogId;
5193 uint32 endLogSeg;
5194 XLogRecord *record;
5195 uint32 freespace;
5196 TransactionId oldestActiveXID;
5197 bool bgwriterLaunched = false;
5200 * Read control file and check XLOG status looks valid.
5202 * Note: in most control paths, *ControlFile is already valid and we need
5203 * not do ReadControlFile() here, but might as well do it to be sure.
5205 ReadControlFile();
5207 if (ControlFile->state < DB_SHUTDOWNED ||
5208 ControlFile->state > DB_IN_PRODUCTION ||
5209 !XRecOffIsValid(ControlFile->checkPoint.xrecoff))
5210 ereport(FATAL,
5211 (errmsg("control file contains invalid data")));
5213 if (ControlFile->state == DB_SHUTDOWNED)
5214 ereport(LOG,
5215 (errmsg("database system was shut down at %s",
5216 str_time(ControlFile->time))));
5217 else if (ControlFile->state == DB_SHUTDOWNING)
5218 ereport(LOG,
5219 (errmsg("database system shutdown was interrupted; last known up at %s",
5220 str_time(ControlFile->time))));
5221 else if (ControlFile->state == DB_IN_CRASH_RECOVERY)
5222 ereport(LOG,
5223 (errmsg("database system was interrupted while in recovery at %s",
5224 str_time(ControlFile->time)),
5225 errhint("This probably means that some data is corrupted and"
5226 " you will have to use the last backup for recovery.")));
5227 else if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY)
5228 ereport(LOG,
5229 (errmsg("database system was interrupted while in recovery at log time %s",
5230 str_time(ControlFile->checkPointCopy.time)),
5231 errhint("If this has occurred more than once some data might be corrupted"
5232 " and you might need to choose an earlier recovery target.")));
5233 else if (ControlFile->state == DB_IN_PRODUCTION)
5234 ereport(LOG,
5235 (errmsg("database system was interrupted; last known up at %s",
5236 str_time(ControlFile->time))));
5238 /* This is just to allow attaching to startup process with a debugger */
5239 #ifdef XLOG_REPLAY_DELAY
5240 if (ControlFile->state != DB_SHUTDOWNED)
5241 pg_usleep(60000000L);
5242 #endif
5245 * Verify that pg_xlog and pg_xlog/archive_status exist. In cases where
5246 * someone has performed a copy for PITR, these directories may have been
5247 * excluded and need to be re-created.
5249 ValidateXLOGDirectoryStructure();
5252 * Initialize on the assumption we want to recover to the same timeline
5253 * that's active according to pg_control.
5255 recoveryTargetTLI = ControlFile->checkPointCopy.ThisTimeLineID;
5258 * Check for recovery control file, and if so set up state for offline
5259 * recovery
5261 readRecoveryCommandFile();
5263 /* Now we can determine the list of expected TLIs */
5264 expectedTLIs = readTimeLineHistory(recoveryTargetTLI);
5267 * If pg_control's timeline is not in expectedTLIs, then we cannot
5268 * proceed: the backup is not part of the history of the requested
5269 * timeline.
5271 if (!list_member_int(expectedTLIs,
5272 (int) ControlFile->checkPointCopy.ThisTimeLineID))
5273 ereport(FATAL,
5274 (errmsg("requested timeline %u is not a child of database system timeline %u",
5275 recoveryTargetTLI,
5276 ControlFile->checkPointCopy.ThisTimeLineID)));
5278 if (read_backup_label(&checkPointLoc, &backupStopLoc))
5281 * When a backup_label file is present, we want to roll forward from
5282 * the checkpoint it identifies, rather than using pg_control.
5284 record = ReadCheckpointRecord(checkPointLoc, 0);
5285 if (record != NULL)
5287 ereport(DEBUG1,
5288 (errmsg("checkpoint record is at %X/%X",
5289 checkPointLoc.xlogid, checkPointLoc.xrecoff)));
5290 InRecovery = true; /* force recovery even if SHUTDOWNED */
5292 else
5294 ereport(PANIC,
5295 (errmsg("could not locate required checkpoint record"),
5296 errhint("If you are not restoring from a backup, try removing the file \"%s/backup_label\".", DataDir)));
5298 /* set flag to delete it later */
5299 haveBackupLabel = true;
5301 else
5304 * Get the last valid checkpoint record. If the latest one according
5305 * to pg_control is broken, try the next-to-last one.
5307 checkPointLoc = ControlFile->checkPoint;
5308 record = ReadCheckpointRecord(checkPointLoc, 1);
5309 if (record != NULL)
5311 ereport(DEBUG1,
5312 (errmsg("checkpoint record is at %X/%X",
5313 checkPointLoc.xlogid, checkPointLoc.xrecoff)));
5315 else
5317 checkPointLoc = ControlFile->prevCheckPoint;
5318 record = ReadCheckpointRecord(checkPointLoc, 2);
5319 if (record != NULL)
5321 ereport(LOG,
5322 (errmsg("using previous checkpoint record at %X/%X",
5323 checkPointLoc.xlogid, checkPointLoc.xrecoff)));
5324 InRecovery = true; /* force recovery even if SHUTDOWNED */
5326 else
5327 ereport(PANIC,
5328 (errmsg("could not locate a valid checkpoint record")));
5332 LastRec = RecPtr = checkPointLoc;
5333 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
5334 wasShutdown = (record->xl_info == XLOG_CHECKPOINT_SHUTDOWN);
5336 ereport(DEBUG1,
5337 (errmsg("redo record is at %X/%X; shutdown %s",
5338 checkPoint.redo.xlogid, checkPoint.redo.xrecoff,
5339 wasShutdown ? "TRUE" : "FALSE")));
5340 ereport(DEBUG1,
5341 (errmsg("next transaction ID: %u/%u; next OID: %u",
5342 checkPoint.nextXidEpoch, checkPoint.nextXid,
5343 checkPoint.nextOid)));
5344 ereport(DEBUG1,
5345 (errmsg("next MultiXactId: %u; next MultiXactOffset: %u",
5346 checkPoint.nextMulti, checkPoint.nextMultiOffset)));
5347 if (!TransactionIdIsNormal(checkPoint.nextXid))
5348 ereport(PANIC,
5349 (errmsg("invalid next transaction ID")));
5351 ShmemVariableCache->nextXid = checkPoint.nextXid;
5352 ShmemVariableCache->nextOid = checkPoint.nextOid;
5353 ShmemVariableCache->oidCount = 0;
5354 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5357 * We must replay WAL entries using the same TimeLineID they were created
5358 * under, so temporarily adopt the TLI indicated by the checkpoint (see
5359 * also xlog_redo()).
5361 ThisTimeLineID = checkPoint.ThisTimeLineID;
5363 RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
5365 if (XLByteLT(RecPtr, checkPoint.redo))
5366 ereport(PANIC,
5367 (errmsg("invalid redo in checkpoint record")));
5370 * Check whether we need to force recovery from WAL. If it appears to
5371 * have been a clean shutdown and we did not have a recovery.conf file,
5372 * then assume no recovery needed.
5374 if (XLByteLT(checkPoint.redo, RecPtr))
5376 if (wasShutdown)
5377 ereport(PANIC,
5378 (errmsg("invalid redo record in shutdown checkpoint")));
5379 InRecovery = true;
5381 else if (ControlFile->state != DB_SHUTDOWNED)
5382 InRecovery = true;
5383 else if (InArchiveRecovery)
5385 /* force recovery due to presence of recovery.conf */
5386 InRecovery = true;
5389 /* REDO */
5390 if (InRecovery)
5392 int rmid;
5395 * Update pg_control to show that we are recovering and to show the
5396 * selected checkpoint as the place we are starting from. We also mark
5397 * pg_control with any minimum recovery stop point obtained from a
5398 * backup history file.
5400 if (InArchiveRecovery)
5402 ereport(LOG,
5403 (errmsg("automatic recovery in progress")));
5404 ControlFile->state = DB_IN_ARCHIVE_RECOVERY;
5406 else
5408 ereport(LOG,
5409 (errmsg("database system was not properly shut down; "
5410 "automatic recovery in progress")));
5411 ControlFile->state = DB_IN_CRASH_RECOVERY;
5413 ControlFile->prevCheckPoint = ControlFile->checkPoint;
5414 ControlFile->checkPoint = checkPointLoc;
5415 ControlFile->checkPointCopy = checkPoint;
5416 if (backupStopLoc.xlogid != 0 || backupStopLoc.xrecoff != 0)
5418 if (XLByteLT(ControlFile->minRecoveryPoint, backupStopLoc))
5419 ControlFile->minRecoveryPoint = backupStopLoc;
5421 ControlFile->time = (pg_time_t) time(NULL);
5422 /* No need to hold ControlFileLock yet, we aren't up far enough */
5423 UpdateControlFile();
5425 /* initialize our local copy of minRecoveryPoint */
5426 minRecoveryPoint = ControlFile->minRecoveryPoint;
5429 * Reset pgstat data, because it may be invalid after recovery.
5431 pgstat_reset_all();
5434 * If there was a backup label file, it's done its job and the info
5435 * has now been propagated into pg_control. We must get rid of the
5436 * label file so that if we crash during recovery, we'll pick up at
5437 * the latest recovery restartpoint instead of going all the way back
5438 * to the backup start point. It seems prudent though to just rename
5439 * the file out of the way rather than delete it completely.
5441 if (haveBackupLabel)
5443 unlink(BACKUP_LABEL_OLD);
5444 if (rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD) != 0)
5445 ereport(FATAL,
5446 (errcode_for_file_access(),
5447 errmsg("could not rename file \"%s\" to \"%s\": %m",
5448 BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
5451 /* Initialize resource managers */
5452 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
5454 if (RmgrTable[rmid].rm_startup != NULL)
5455 RmgrTable[rmid].rm_startup();
5459 * Find the first record that logically follows the checkpoint --- it
5460 * might physically precede it, though.
5462 if (XLByteLT(checkPoint.redo, RecPtr))
5464 /* back up to find the record */
5465 record = ReadRecord(&(checkPoint.redo), PANIC);
5467 else
5469 /* just have to read next record after CheckPoint */
5470 record = ReadRecord(NULL, LOG);
5473 if (record != NULL)
5475 bool recoveryContinue = true;
5476 bool recoveryApply = true;
5477 bool reachedMinRecoveryPoint = false;
5478 ErrorContextCallback errcontext;
5480 /* use volatile pointer to prevent code rearrangement */
5481 volatile XLogCtlData *xlogctl = XLogCtl;
5483 /* initialize shared replayEndRecPtr */
5484 SpinLockAcquire(&xlogctl->info_lck);
5485 xlogctl->replayEndRecPtr = ReadRecPtr;
5486 SpinLockRelease(&xlogctl->info_lck);
5488 InRedo = true;
5490 if (minRecoveryPoint.xlogid == 0 && minRecoveryPoint.xrecoff == 0)
5491 ereport(LOG,
5492 (errmsg("redo starts at %X/%X",
5493 ReadRecPtr.xlogid, ReadRecPtr.xrecoff)));
5494 else
5495 ereport(LOG,
5496 (errmsg("redo starts at %X/%X, consistency will be reached at %X/%X",
5497 ReadRecPtr.xlogid, ReadRecPtr.xrecoff,
5498 minRecoveryPoint.xlogid, minRecoveryPoint.xrecoff)));
5501 * Let postmaster know we've started redo now, so that it can
5502 * launch bgwriter to perform restartpoints. We don't bother
5503 * during crash recovery as restartpoints can only be performed
5504 * during archive recovery. And we'd like to keep crash recovery
5505 * simple, to avoid introducing bugs that could you from
5506 * recovering after crash.
5508 * After this point, we can no longer assume that we're the only
5509 * process in addition to postmaster! Also, fsync requests are
5510 * subsequently to be handled by the bgwriter, not locally.
5512 if (InArchiveRecovery && IsUnderPostmaster)
5514 SetForwardFsyncRequests();
5515 SendPostmasterSignal(PMSIGNAL_RECOVERY_STARTED);
5516 bgwriterLaunched = true;
5520 * main redo apply loop
5524 #ifdef WAL_DEBUG
5525 if (XLOG_DEBUG)
5527 StringInfoData buf;
5529 initStringInfo(&buf);
5530 appendStringInfo(&buf, "REDO @ %X/%X; LSN %X/%X: ",
5531 ReadRecPtr.xlogid, ReadRecPtr.xrecoff,
5532 EndRecPtr.xlogid, EndRecPtr.xrecoff);
5533 xlog_outrec(&buf, record);
5534 appendStringInfo(&buf, " - ");
5535 RmgrTable[record->xl_rmid].rm_desc(&buf,
5536 record->xl_info,
5537 XLogRecGetData(record));
5538 elog(LOG, "%s", buf.data);
5539 pfree(buf.data);
5541 #endif
5544 * Check if we were requested to re-read config file.
5546 if (got_SIGHUP)
5548 got_SIGHUP = false;
5549 ProcessConfigFile(PGC_SIGHUP);
5553 * Check if we were requested to exit without finishing
5554 * recovery.
5556 if (shutdown_requested)
5557 proc_exit(1);
5560 * Have we passed our safe starting point? If so, we can tell
5561 * postmaster that the database is consistent now.
5563 if (!reachedMinRecoveryPoint &&
5564 XLByteLT(minRecoveryPoint, EndRecPtr))
5566 reachedMinRecoveryPoint = true;
5567 if (InArchiveRecovery)
5569 ereport(LOG,
5570 (errmsg("consistent recovery state reached")));
5571 if (IsUnderPostmaster)
5572 SendPostmasterSignal(PMSIGNAL_RECOVERY_CONSISTENT);
5577 * Have we reached our recovery target?
5579 if (recoveryStopsHere(record, &recoveryApply))
5581 reachedStopPoint = true; /* see below */
5582 recoveryContinue = false;
5583 if (!recoveryApply)
5584 break;
5587 /* Setup error traceback support for ereport() */
5588 errcontext.callback = rm_redo_error_callback;
5589 errcontext.arg = (void *) record;
5590 errcontext.previous = error_context_stack;
5591 error_context_stack = &errcontext;
5593 /* nextXid must be beyond record's xid */
5594 if (TransactionIdFollowsOrEquals(record->xl_xid,
5595 ShmemVariableCache->nextXid))
5597 ShmemVariableCache->nextXid = record->xl_xid;
5598 TransactionIdAdvance(ShmemVariableCache->nextXid);
5602 * Update shared replayEndRecPtr before replaying this record,
5603 * so that XLogFlush will update minRecoveryPoint correctly.
5605 SpinLockAcquire(&xlogctl->info_lck);
5606 xlogctl->replayEndRecPtr = EndRecPtr;
5607 SpinLockRelease(&xlogctl->info_lck);
5609 RmgrTable[record->xl_rmid].rm_redo(EndRecPtr, record);
5611 /* Pop the error context stack */
5612 error_context_stack = errcontext.previous;
5614 LastRec = ReadRecPtr;
5616 record = ReadRecord(NULL, LOG);
5617 } while (record != NULL && recoveryContinue);
5620 * end of main redo apply loop
5623 ereport(LOG,
5624 (errmsg("redo done at %X/%X",
5625 ReadRecPtr.xlogid, ReadRecPtr.xrecoff)));
5626 if (recoveryLastXTime)
5627 ereport(LOG,
5628 (errmsg("last completed transaction was at log time %s",
5629 timestamptz_to_str(recoveryLastXTime))));
5630 InRedo = false;
5632 else
5634 /* there are no WAL records following the checkpoint */
5635 ereport(LOG,
5636 (errmsg("redo is not required")));
5641 * Re-fetch the last valid or last applied record, so we can identify the
5642 * exact endpoint of what we consider the valid portion of WAL.
5644 record = ReadRecord(&LastRec, PANIC);
5645 EndOfLog = EndRecPtr;
5646 XLByteToPrevSeg(EndOfLog, endLogId, endLogSeg);
5649 * Complain if we did not roll forward far enough to render the backup
5650 * dump consistent. Note: it is indeed okay to look at the local variable
5651 * minRecoveryPoint here, even though ControlFile->minRecoveryPoint might
5652 * be further ahead --- ControlFile->minRecoveryPoint cannot have been
5653 * advanced beyond the WAL we processed.
5655 if (InRecovery && XLByteLT(EndOfLog, minRecoveryPoint))
5657 if (reachedStopPoint) /* stopped because of stop request */
5658 ereport(FATAL,
5659 (errmsg("requested recovery stop point is before consistent recovery point")));
5660 else /* ran off end of WAL */
5661 ereport(FATAL,
5662 (errmsg("WAL ends before consistent recovery point")));
5666 * Consider whether we need to assign a new timeline ID.
5668 * If we are doing an archive recovery, we always assign a new ID. This
5669 * handles a couple of issues. If we stopped short of the end of WAL
5670 * during recovery, then we are clearly generating a new timeline and must
5671 * assign it a unique new ID. Even if we ran to the end, modifying the
5672 * current last segment is problematic because it may result in trying to
5673 * overwrite an already-archived copy of that segment, and we encourage
5674 * DBAs to make their archive_commands reject that. We can dodge the
5675 * problem by making the new active segment have a new timeline ID.
5677 * In a normal crash recovery, we can just extend the timeline we were in.
5679 if (InArchiveRecovery)
5681 ThisTimeLineID = findNewestTimeLine(recoveryTargetTLI) + 1;
5682 ereport(LOG,
5683 (errmsg("selected new timeline ID: %u", ThisTimeLineID)));
5684 writeTimeLineHistory(ThisTimeLineID, recoveryTargetTLI,
5685 curFileTLI, endLogId, endLogSeg);
5688 /* Save the selected TimeLineID in shared memory, too */
5689 XLogCtl->ThisTimeLineID = ThisTimeLineID;
5692 * We are now done reading the old WAL. Turn off archive fetching if it
5693 * was active, and make a writable copy of the last WAL segment. (Note
5694 * that we also have a copy of the last block of the old WAL in readBuf;
5695 * we will use that below.)
5697 if (InArchiveRecovery)
5698 exitArchiveRecovery(curFileTLI, endLogId, endLogSeg);
5701 * Prepare to write WAL starting at EndOfLog position, and init xlog
5702 * buffer cache using the block containing the last record from the
5703 * previous incarnation.
5705 openLogId = endLogId;
5706 openLogSeg = endLogSeg;
5707 openLogFile = XLogFileOpen(openLogId, openLogSeg);
5708 openLogOff = 0;
5709 Insert = &XLogCtl->Insert;
5710 Insert->PrevRecord = LastRec;
5711 XLogCtl->xlblocks[0].xlogid = openLogId;
5712 XLogCtl->xlblocks[0].xrecoff =
5713 ((EndOfLog.xrecoff - 1) / XLOG_BLCKSZ + 1) * XLOG_BLCKSZ;
5716 * Tricky point here: readBuf contains the *last* block that the LastRec
5717 * record spans, not the one it starts in. The last block is indeed the
5718 * one we want to use.
5720 Assert(readOff == (XLogCtl->xlblocks[0].xrecoff - XLOG_BLCKSZ) % XLogSegSize);
5721 memcpy((char *) Insert->currpage, readBuf, XLOG_BLCKSZ);
5722 Insert->currpos = (char *) Insert->currpage +
5723 (EndOfLog.xrecoff + XLOG_BLCKSZ - XLogCtl->xlblocks[0].xrecoff);
5725 LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
5727 XLogCtl->Write.LogwrtResult = LogwrtResult;
5728 Insert->LogwrtResult = LogwrtResult;
5729 XLogCtl->LogwrtResult = LogwrtResult;
5731 XLogCtl->LogwrtRqst.Write = EndOfLog;
5732 XLogCtl->LogwrtRqst.Flush = EndOfLog;
5734 freespace = INSERT_FREESPACE(Insert);
5735 if (freespace > 0)
5737 /* Make sure rest of page is zero */
5738 MemSet(Insert->currpos, 0, freespace);
5739 XLogCtl->Write.curridx = 0;
5741 else
5744 * Whenever Write.LogwrtResult points to exactly the end of a page,
5745 * Write.curridx must point to the *next* page (see XLogWrite()).
5747 * Note: it might seem we should do AdvanceXLInsertBuffer() here, but
5748 * this is sufficient. The first actual attempt to insert a log
5749 * record will advance the insert state.
5751 XLogCtl->Write.curridx = NextBufIdx(0);
5754 /* Pre-scan prepared transactions to find out the range of XIDs present */
5755 oldestActiveXID = PrescanPreparedTransactions();
5757 if (InRecovery)
5759 int rmid;
5762 * Allow resource managers to do any required cleanup.
5764 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
5766 if (RmgrTable[rmid].rm_cleanup != NULL)
5767 RmgrTable[rmid].rm_cleanup();
5771 * Check to see if the XLOG sequence contained any unresolved
5772 * references to uninitialized pages.
5774 XLogCheckInvalidPages();
5777 * Perform a checkpoint to update all our recovery activity to disk.
5779 * Note that we write a shutdown checkpoint rather than an on-line
5780 * one. This is not particularly critical, but since we may be
5781 * assigning a new TLI, using a shutdown checkpoint allows us to have
5782 * the rule that TLI only changes in shutdown checkpoints, which
5783 * allows some extra error checking in xlog_redo.
5785 if (bgwriterLaunched)
5786 RequestCheckpoint(CHECKPOINT_END_OF_RECOVERY |
5787 CHECKPOINT_IMMEDIATE |
5788 CHECKPOINT_WAIT);
5789 else
5790 CreateCheckPoint(CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IMMEDIATE);
5793 * And finally, execute the recovery_end_command, if any.
5795 if (recoveryEndCommand)
5796 ExecuteRecoveryEndCommand();
5800 * Preallocate additional log files, if wanted.
5802 PreallocXlogFiles(EndOfLog);
5805 * Okay, we're officially UP.
5807 InRecovery = false;
5809 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
5810 ControlFile->state = DB_IN_PRODUCTION;
5811 ControlFile->time = (pg_time_t) time(NULL);
5812 UpdateControlFile();
5813 LWLockRelease(ControlFileLock);
5815 /* start the archive_timeout timer running */
5816 XLogCtl->Write.lastSegSwitchTime = (pg_time_t) time(NULL);
5818 /* initialize shared-memory copy of latest checkpoint XID/epoch */
5819 XLogCtl->ckptXidEpoch = ControlFile->checkPointCopy.nextXidEpoch;
5820 XLogCtl->ckptXid = ControlFile->checkPointCopy.nextXid;
5822 /* also initialize latestCompletedXid, to nextXid - 1 */
5823 ShmemVariableCache->latestCompletedXid = ShmemVariableCache->nextXid;
5824 TransactionIdRetreat(ShmemVariableCache->latestCompletedXid);
5826 /* Start up the commit log and related stuff, too */
5827 StartupCLOG();
5828 StartupSUBTRANS(oldestActiveXID);
5829 StartupMultiXact();
5831 /* Reload shared-memory state for prepared transactions */
5832 RecoverPreparedTransactions();
5834 /* Shut down readFile facility, free space */
5835 if (readFile >= 0)
5837 close(readFile);
5838 readFile = -1;
5840 if (readBuf)
5842 free(readBuf);
5843 readBuf = NULL;
5845 if (readRecordBuf)
5847 free(readRecordBuf);
5848 readRecordBuf = NULL;
5849 readRecordBufSize = 0;
5853 * All done. Allow backends to write WAL. (Although the bool flag is
5854 * probably atomic in itself, we use the info_lck here to ensure that
5855 * there are no race conditions concerning visibility of other recent
5856 * updates to shared memory.)
5859 /* use volatile pointer to prevent code rearrangement */
5860 volatile XLogCtlData *xlogctl = XLogCtl;
5862 SpinLockAcquire(&xlogctl->info_lck);
5863 xlogctl->SharedRecoveryInProgress = false;
5864 SpinLockRelease(&xlogctl->info_lck);
5869 * Is the system still in recovery?
5871 * Unlike testing InRecovery, this works in any process that's connected to
5872 * shared memory.
5874 * As a side-effect, we initialize the local TimeLineID and RedoRecPtr
5875 * variables the first time we see that recovery is finished.
5877 bool
5878 RecoveryInProgress(void)
5881 * We check shared state each time only until we leave recovery mode.
5882 * We can't re-enter recovery, so there's no need to keep checking after
5883 * the shared variable has once been seen false.
5885 if (!LocalRecoveryInProgress)
5886 return false;
5887 else
5889 /* use volatile pointer to prevent code rearrangement */
5890 volatile XLogCtlData *xlogctl = XLogCtl;
5892 /* spinlock is essential on machines with weak memory ordering! */
5893 SpinLockAcquire(&xlogctl->info_lck);
5894 LocalRecoveryInProgress = xlogctl->SharedRecoveryInProgress;
5895 SpinLockRelease(&xlogctl->info_lck);
5898 * Initialize TimeLineID and RedoRecPtr when we discover that recovery
5899 * is finished. (If you change this, see also
5900 * LocalSetXLogInsertAllowed.)
5902 if (!LocalRecoveryInProgress)
5903 InitXLOGAccess();
5905 return LocalRecoveryInProgress;
5910 * Is this process allowed to insert new WAL records?
5912 * Ordinarily this is essentially equivalent to !RecoveryInProgress().
5913 * But we also have provisions for forcing the result "true" or "false"
5914 * within specific processes regardless of the global state.
5916 bool
5917 XLogInsertAllowed(void)
5920 * If value is "unconditionally true" or "unconditionally false",
5921 * just return it. This provides the normal fast path once recovery
5922 * is known done.
5924 if (LocalXLogInsertAllowed >= 0)
5925 return (bool) LocalXLogInsertAllowed;
5928 * Else, must check to see if we're still in recovery.
5930 if (RecoveryInProgress())
5931 return false;
5934 * On exit from recovery, reset to "unconditionally true", since there
5935 * is no need to keep checking.
5937 LocalXLogInsertAllowed = 1;
5938 return true;
5942 * Make XLogInsertAllowed() return true in the current process only.
5944 static void
5945 LocalSetXLogInsertAllowed(void)
5947 Assert(LocalXLogInsertAllowed == -1);
5948 LocalXLogInsertAllowed = 1;
5950 /* Initialize as RecoveryInProgress() would do when switching state */
5951 InitXLOGAccess();
5955 * Subroutine to try to fetch and validate a prior checkpoint record.
5957 * whichChkpt identifies the checkpoint (merely for reporting purposes).
5958 * 1 for "primary", 2 for "secondary", 0 for "other" (backup_label)
5960 static XLogRecord *
5961 ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt)
5963 XLogRecord *record;
5965 if (!XRecOffIsValid(RecPtr.xrecoff))
5967 switch (whichChkpt)
5969 case 1:
5970 ereport(LOG,
5971 (errmsg("invalid primary checkpoint link in control file")));
5972 break;
5973 case 2:
5974 ereport(LOG,
5975 (errmsg("invalid secondary checkpoint link in control file")));
5976 break;
5977 default:
5978 ereport(LOG,
5979 (errmsg("invalid checkpoint link in backup_label file")));
5980 break;
5982 return NULL;
5985 record = ReadRecord(&RecPtr, LOG);
5987 if (record == NULL)
5989 switch (whichChkpt)
5991 case 1:
5992 ereport(LOG,
5993 (errmsg("invalid primary checkpoint record")));
5994 break;
5995 case 2:
5996 ereport(LOG,
5997 (errmsg("invalid secondary checkpoint record")));
5998 break;
5999 default:
6000 ereport(LOG,
6001 (errmsg("invalid checkpoint record")));
6002 break;
6004 return NULL;
6006 if (record->xl_rmid != RM_XLOG_ID)
6008 switch (whichChkpt)
6010 case 1:
6011 ereport(LOG,
6012 (errmsg("invalid resource manager ID in primary checkpoint record")));
6013 break;
6014 case 2:
6015 ereport(LOG,
6016 (errmsg("invalid resource manager ID in secondary checkpoint record")));
6017 break;
6018 default:
6019 ereport(LOG,
6020 (errmsg("invalid resource manager ID in checkpoint record")));
6021 break;
6023 return NULL;
6025 if (record->xl_info != XLOG_CHECKPOINT_SHUTDOWN &&
6026 record->xl_info != XLOG_CHECKPOINT_ONLINE)
6028 switch (whichChkpt)
6030 case 1:
6031 ereport(LOG,
6032 (errmsg("invalid xl_info in primary checkpoint record")));
6033 break;
6034 case 2:
6035 ereport(LOG,
6036 (errmsg("invalid xl_info in secondary checkpoint record")));
6037 break;
6038 default:
6039 ereport(LOG,
6040 (errmsg("invalid xl_info in checkpoint record")));
6041 break;
6043 return NULL;
6045 if (record->xl_len != sizeof(CheckPoint) ||
6046 record->xl_tot_len != SizeOfXLogRecord + sizeof(CheckPoint))
6048 switch (whichChkpt)
6050 case 1:
6051 ereport(LOG,
6052 (errmsg("invalid length of primary checkpoint record")));
6053 break;
6054 case 2:
6055 ereport(LOG,
6056 (errmsg("invalid length of secondary checkpoint record")));
6057 break;
6058 default:
6059 ereport(LOG,
6060 (errmsg("invalid length of checkpoint record")));
6061 break;
6063 return NULL;
6065 return record;
6069 * This must be called during startup of a backend process, except that
6070 * it need not be called in a standalone backend (which does StartupXLOG
6071 * instead). We need to initialize the local copies of ThisTimeLineID and
6072 * RedoRecPtr.
6074 * Note: before Postgres 8.0, we went to some effort to keep the postmaster
6075 * process's copies of ThisTimeLineID and RedoRecPtr valid too. This was
6076 * unnecessary however, since the postmaster itself never touches XLOG anyway.
6078 void
6079 InitXLOGAccess(void)
6081 /* ThisTimeLineID doesn't change so we need no lock to copy it */
6082 ThisTimeLineID = XLogCtl->ThisTimeLineID;
6083 Assert(ThisTimeLineID != 0);
6085 /* Use GetRedoRecPtr to copy the RedoRecPtr safely */
6086 (void) GetRedoRecPtr();
6090 * Once spawned, a backend may update its local RedoRecPtr from
6091 * XLogCtl->Insert.RedoRecPtr; it must hold the insert lock or info_lck
6092 * to do so. This is done in XLogInsert() or GetRedoRecPtr().
6094 XLogRecPtr
6095 GetRedoRecPtr(void)
6097 /* use volatile pointer to prevent code rearrangement */
6098 volatile XLogCtlData *xlogctl = XLogCtl;
6100 SpinLockAcquire(&xlogctl->info_lck);
6101 Assert(XLByteLE(RedoRecPtr, xlogctl->Insert.RedoRecPtr));
6102 RedoRecPtr = xlogctl->Insert.RedoRecPtr;
6103 SpinLockRelease(&xlogctl->info_lck);
6105 return RedoRecPtr;
6109 * GetInsertRecPtr -- Returns the current insert position.
6111 * NOTE: The value *actually* returned is the position of the last full
6112 * xlog page. It lags behind the real insert position by at most 1 page.
6113 * For that, we don't need to acquire WALInsertLock which can be quite
6114 * heavily contended, and an approximation is enough for the current
6115 * usage of this function.
6117 XLogRecPtr
6118 GetInsertRecPtr(void)
6120 /* use volatile pointer to prevent code rearrangement */
6121 volatile XLogCtlData *xlogctl = XLogCtl;
6122 XLogRecPtr recptr;
6124 SpinLockAcquire(&xlogctl->info_lck);
6125 recptr = xlogctl->LogwrtRqst.Write;
6126 SpinLockRelease(&xlogctl->info_lck);
6128 return recptr;
6132 * Get the time of the last xlog segment switch
6134 pg_time_t
6135 GetLastSegSwitchTime(void)
6137 pg_time_t result;
6139 /* Need WALWriteLock, but shared lock is sufficient */
6140 LWLockAcquire(WALWriteLock, LW_SHARED);
6141 result = XLogCtl->Write.lastSegSwitchTime;
6142 LWLockRelease(WALWriteLock);
6144 return result;
6148 * GetNextXidAndEpoch - get the current nextXid value and associated epoch
6150 * This is exported for use by code that would like to have 64-bit XIDs.
6151 * We don't really support such things, but all XIDs within the system
6152 * can be presumed "close to" the result, and thus the epoch associated
6153 * with them can be determined.
6155 void
6156 GetNextXidAndEpoch(TransactionId *xid, uint32 *epoch)
6158 uint32 ckptXidEpoch;
6159 TransactionId ckptXid;
6160 TransactionId nextXid;
6162 /* Must read checkpoint info first, else have race condition */
6164 /* use volatile pointer to prevent code rearrangement */
6165 volatile XLogCtlData *xlogctl = XLogCtl;
6167 SpinLockAcquire(&xlogctl->info_lck);
6168 ckptXidEpoch = xlogctl->ckptXidEpoch;
6169 ckptXid = xlogctl->ckptXid;
6170 SpinLockRelease(&xlogctl->info_lck);
6173 /* Now fetch current nextXid */
6174 nextXid = ReadNewTransactionId();
6177 * nextXid is certainly logically later than ckptXid. So if it's
6178 * numerically less, it must have wrapped into the next epoch.
6180 if (nextXid < ckptXid)
6181 ckptXidEpoch++;
6183 *xid = nextXid;
6184 *epoch = ckptXidEpoch;
6188 * This must be called ONCE during postmaster or standalone-backend shutdown
6190 void
6191 ShutdownXLOG(int code, Datum arg)
6193 ereport(LOG,
6194 (errmsg("shutting down")));
6196 if (RecoveryInProgress())
6197 CreateRestartPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
6198 else
6201 * If archiving is enabled, rotate the last XLOG file so that all the
6202 * remaining records are archived (postmaster wakes up the archiver
6203 * process one more time at the end of shutdown). The checkpoint
6204 * record will go to the next XLOG file and won't be archived (yet).
6206 if (XLogArchivingActive() && XLogArchiveCommandSet())
6207 RequestXLogSwitch();
6209 CreateCheckPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
6211 ShutdownCLOG();
6212 ShutdownSUBTRANS();
6213 ShutdownMultiXact();
6215 ereport(LOG,
6216 (errmsg("database system is shut down")));
6220 * Log start of a checkpoint.
6222 static void
6223 LogCheckpointStart(int flags, bool restartpoint)
6225 const char *msg;
6228 * XXX: This is hopelessly untranslatable. We could call gettext_noop for
6229 * the main message, but what about all the flags?
6231 if (restartpoint)
6232 msg = "restartpoint starting:%s%s%s%s%s%s%s";
6233 else
6234 msg = "checkpoint starting:%s%s%s%s%s%s%s";
6236 elog(LOG, msg,
6237 (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6238 (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6239 (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6240 (flags & CHECKPOINT_FORCE) ? " force" : "",
6241 (flags & CHECKPOINT_WAIT) ? " wait" : "",
6242 (flags & CHECKPOINT_CAUSE_XLOG) ? " xlog" : "",
6243 (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "");
6247 * Log end of a checkpoint.
6249 static void
6250 LogCheckpointEnd(bool restartpoint)
6252 long write_secs,
6253 sync_secs,
6254 total_secs;
6255 int write_usecs,
6256 sync_usecs,
6257 total_usecs;
6259 CheckpointStats.ckpt_end_t = GetCurrentTimestamp();
6261 TimestampDifference(CheckpointStats.ckpt_start_t,
6262 CheckpointStats.ckpt_end_t,
6263 &total_secs, &total_usecs);
6265 TimestampDifference(CheckpointStats.ckpt_write_t,
6266 CheckpointStats.ckpt_sync_t,
6267 &write_secs, &write_usecs);
6269 TimestampDifference(CheckpointStats.ckpt_sync_t,
6270 CheckpointStats.ckpt_sync_end_t,
6271 &sync_secs, &sync_usecs);
6273 if (restartpoint)
6274 elog(LOG, "restartpoint complete: wrote %d buffers (%.1f%%); "
6275 "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s",
6276 CheckpointStats.ckpt_bufs_written,
6277 (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6278 write_secs, write_usecs / 1000,
6279 sync_secs, sync_usecs / 1000,
6280 total_secs, total_usecs / 1000);
6281 else
6282 elog(LOG, "checkpoint complete: wrote %d buffers (%.1f%%); "
6283 "%d transaction log file(s) added, %d removed, %d recycled; "
6284 "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s",
6285 CheckpointStats.ckpt_bufs_written,
6286 (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6287 CheckpointStats.ckpt_segs_added,
6288 CheckpointStats.ckpt_segs_removed,
6289 CheckpointStats.ckpt_segs_recycled,
6290 write_secs, write_usecs / 1000,
6291 sync_secs, sync_usecs / 1000,
6292 total_secs, total_usecs / 1000);
6296 * Perform a checkpoint --- either during shutdown, or on-the-fly
6298 * flags is a bitwise OR of the following:
6299 * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
6300 * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
6301 * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
6302 * ignoring checkpoint_completion_target parameter.
6303 * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occured
6304 * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
6305 * CHECKPOINT_END_OF_RECOVERY).
6307 * Note: flags contains other bits, of interest here only for logging purposes.
6308 * In particular note that this routine is synchronous and does not pay
6309 * attention to CHECKPOINT_WAIT.
6311 void
6312 CreateCheckPoint(int flags)
6314 bool shutdown;
6315 CheckPoint checkPoint;
6316 XLogRecPtr recptr;
6317 XLogCtlInsert *Insert = &XLogCtl->Insert;
6318 XLogRecData rdata;
6319 uint32 freespace;
6320 uint32 _logId;
6321 uint32 _logSeg;
6322 TransactionId *inCommitXids;
6323 int nInCommit;
6326 * An end-of-recovery checkpoint is really a shutdown checkpoint, just
6327 * issued at a different time.
6329 if (flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY))
6330 shutdown = true;
6331 else
6332 shutdown = false;
6334 /* sanity check */
6335 if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
6336 elog(ERROR, "can't create a checkpoint during recovery");
6339 * Acquire CheckpointLock to ensure only one checkpoint happens at a time.
6340 * (This is just pro forma, since in the present system structure there is
6341 * only one process that is allowed to issue checkpoints at any given
6342 * time.)
6344 LWLockAcquire(CheckpointLock, LW_EXCLUSIVE);
6347 * Prepare to accumulate statistics.
6349 * Note: because it is possible for log_checkpoints to change while a
6350 * checkpoint proceeds, we always accumulate stats, even if
6351 * log_checkpoints is currently off.
6353 MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
6354 CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
6357 * Use a critical section to force system panic if we have trouble.
6359 START_CRIT_SECTION();
6361 if (shutdown)
6363 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6364 ControlFile->state = DB_SHUTDOWNING;
6365 ControlFile->time = (pg_time_t) time(NULL);
6366 UpdateControlFile();
6367 LWLockRelease(ControlFileLock);
6371 * Let smgr prepare for checkpoint; this has to happen before we determine
6372 * the REDO pointer. Note that smgr must not do anything that'd have to
6373 * be undone if we decide no checkpoint is needed.
6375 smgrpreckpt();
6377 /* Begin filling in the checkpoint WAL record */
6378 MemSet(&checkPoint, 0, sizeof(checkPoint));
6379 checkPoint.time = (pg_time_t) time(NULL);
6382 * We must hold WALInsertLock while examining insert state to determine
6383 * the checkpoint REDO pointer.
6385 LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
6388 * If this isn't a shutdown or forced checkpoint, and we have not inserted
6389 * any XLOG records since the start of the last checkpoint, skip the
6390 * checkpoint. The idea here is to avoid inserting duplicate checkpoints
6391 * when the system is idle. That wastes log space, and more importantly it
6392 * exposes us to possible loss of both current and previous checkpoint
6393 * records if the machine crashes just as we're writing the update.
6394 * (Perhaps it'd make even more sense to checkpoint only when the previous
6395 * checkpoint record is in a different xlog page?)
6397 * We have to make two tests to determine that nothing has happened since
6398 * the start of the last checkpoint: current insertion point must match
6399 * the end of the last checkpoint record, and its redo pointer must point
6400 * to itself.
6402 if ((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY |
6403 CHECKPOINT_FORCE)) == 0)
6405 XLogRecPtr curInsert;
6407 INSERT_RECPTR(curInsert, Insert, Insert->curridx);
6408 if (curInsert.xlogid == ControlFile->checkPoint.xlogid &&
6409 curInsert.xrecoff == ControlFile->checkPoint.xrecoff +
6410 MAXALIGN(SizeOfXLogRecord + sizeof(CheckPoint)) &&
6411 ControlFile->checkPoint.xlogid ==
6412 ControlFile->checkPointCopy.redo.xlogid &&
6413 ControlFile->checkPoint.xrecoff ==
6414 ControlFile->checkPointCopy.redo.xrecoff)
6416 LWLockRelease(WALInsertLock);
6417 LWLockRelease(CheckpointLock);
6418 END_CRIT_SECTION();
6419 return;
6424 * Compute new REDO record ptr = location of next XLOG record.
6426 * NB: this is NOT necessarily where the checkpoint record itself will be,
6427 * since other backends may insert more XLOG records while we're off doing
6428 * the buffer flush work. Those XLOG records are logically after the
6429 * checkpoint, even though physically before it. Got that?
6431 freespace = INSERT_FREESPACE(Insert);
6432 if (freespace < SizeOfXLogRecord)
6434 (void) AdvanceXLInsertBuffer(false);
6435 /* OK to ignore update return flag, since we will do flush anyway */
6436 freespace = INSERT_FREESPACE(Insert);
6438 INSERT_RECPTR(checkPoint.redo, Insert, Insert->curridx);
6441 * Here we update the shared RedoRecPtr for future XLogInsert calls; this
6442 * must be done while holding the insert lock AND the info_lck.
6444 * Note: if we fail to complete the checkpoint, RedoRecPtr will be left
6445 * pointing past where it really needs to point. This is okay; the only
6446 * consequence is that XLogInsert might back up whole buffers that it
6447 * didn't really need to. We can't postpone advancing RedoRecPtr because
6448 * XLogInserts that happen while we are dumping buffers must assume that
6449 * their buffer changes are not included in the checkpoint.
6452 /* use volatile pointer to prevent code rearrangement */
6453 volatile XLogCtlData *xlogctl = XLogCtl;
6455 SpinLockAcquire(&xlogctl->info_lck);
6456 RedoRecPtr = xlogctl->Insert.RedoRecPtr = checkPoint.redo;
6457 SpinLockRelease(&xlogctl->info_lck);
6461 * Now we can release WAL insert lock, allowing other xacts to proceed
6462 * while we are flushing disk buffers.
6464 LWLockRelease(WALInsertLock);
6467 * If enabled, log checkpoint start. We postpone this until now so as not
6468 * to log anything if we decided to skip the checkpoint.
6470 if (log_checkpoints)
6471 LogCheckpointStart(flags, false);
6473 TRACE_POSTGRESQL_CHECKPOINT_START(flags);
6476 * Before flushing data, we must wait for any transactions that are
6477 * currently in their commit critical sections. If an xact inserted its
6478 * commit record into XLOG just before the REDO point, then a crash
6479 * restart from the REDO point would not replay that record, which means
6480 * that our flushing had better include the xact's update of pg_clog. So
6481 * we wait till he's out of his commit critical section before proceeding.
6482 * See notes in RecordTransactionCommit().
6484 * Because we've already released WALInsertLock, this test is a bit fuzzy:
6485 * it is possible that we will wait for xacts we didn't really need to
6486 * wait for. But the delay should be short and it seems better to make
6487 * checkpoint take a bit longer than to hold locks longer than necessary.
6488 * (In fact, the whole reason we have this issue is that xact.c does
6489 * commit record XLOG insertion and clog update as two separate steps
6490 * protected by different locks, but again that seems best on grounds of
6491 * minimizing lock contention.)
6493 * A transaction that has not yet set inCommit when we look cannot be at
6494 * risk, since he's not inserted his commit record yet; and one that's
6495 * already cleared it is not at risk either, since he's done fixing clog
6496 * and we will correctly flush the update below. So we cannot miss any
6497 * xacts we need to wait for.
6499 nInCommit = GetTransactionsInCommit(&inCommitXids);
6500 if (nInCommit > 0)
6504 pg_usleep(10000L); /* wait for 10 msec */
6505 } while (HaveTransactionsInCommit(inCommitXids, nInCommit));
6507 pfree(inCommitXids);
6510 * Get the other info we need for the checkpoint record.
6512 LWLockAcquire(XidGenLock, LW_SHARED);
6513 checkPoint.nextXid = ShmemVariableCache->nextXid;
6514 LWLockRelease(XidGenLock);
6516 /* Increase XID epoch if we've wrapped around since last checkpoint */
6517 checkPoint.nextXidEpoch = ControlFile->checkPointCopy.nextXidEpoch;
6518 if (checkPoint.nextXid < ControlFile->checkPointCopy.nextXid)
6519 checkPoint.nextXidEpoch++;
6521 LWLockAcquire(OidGenLock, LW_SHARED);
6522 checkPoint.nextOid = ShmemVariableCache->nextOid;
6523 if (!shutdown)
6524 checkPoint.nextOid += ShmemVariableCache->oidCount;
6525 LWLockRelease(OidGenLock);
6527 MultiXactGetCheckptMulti(shutdown,
6528 &checkPoint.nextMulti,
6529 &checkPoint.nextMultiOffset);
6532 * Having constructed the checkpoint record, ensure all shmem disk buffers
6533 * and commit-log buffers are flushed to disk.
6535 * This I/O could fail for various reasons. If so, we will fail to
6536 * complete the checkpoint, but there is no reason to force a system
6537 * panic. Accordingly, exit critical section while doing it.
6539 END_CRIT_SECTION();
6541 CheckPointGuts(checkPoint.redo, flags);
6543 START_CRIT_SECTION();
6546 * An end-of-recovery checkpoint is created before anyone is allowed to
6547 * write WAL. To allow us to write the checkpoint record, temporarily
6548 * enable XLogInsertAllowed.
6550 if (flags & CHECKPOINT_END_OF_RECOVERY)
6551 LocalSetXLogInsertAllowed();
6554 * This needs to be done after LocalSetXLogInsertAllowed(), else
6555 * ThisTimeLineID might still be uninitialized.
6557 checkPoint.ThisTimeLineID = ThisTimeLineID;
6560 * Now insert the checkpoint record into XLOG.
6562 rdata.data = (char *) (&checkPoint);
6563 rdata.len = sizeof(checkPoint);
6564 rdata.buffer = InvalidBuffer;
6565 rdata.next = NULL;
6567 recptr = XLogInsert(RM_XLOG_ID,
6568 shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
6569 XLOG_CHECKPOINT_ONLINE,
6570 &rdata);
6572 XLogFlush(recptr);
6575 * We mustn't write any new WAL after a shutdown checkpoint, or it will
6576 * be overwritten at next startup. No-one should even try, this just
6577 * allows sanity-checking. In the case of an end-of-recovery checkpoint,
6578 * we want to just temporarily disable writing until the system has exited
6579 * recovery.
6581 if (shutdown)
6583 if (flags & CHECKPOINT_END_OF_RECOVERY)
6584 LocalXLogInsertAllowed = -1; /* return to "check" state */
6585 else
6586 LocalXLogInsertAllowed = 0; /* never again write WAL */
6590 * We now have ProcLastRecPtr = start of actual checkpoint record, recptr
6591 * = end of actual checkpoint record.
6593 if (shutdown && !XLByteEQ(checkPoint.redo, ProcLastRecPtr))
6594 ereport(PANIC,
6595 (errmsg("concurrent transaction log activity while database system is shutting down")));
6598 * Select point at which we can truncate the log, which we base on the
6599 * prior checkpoint's earliest info.
6601 XLByteToSeg(ControlFile->checkPointCopy.redo, _logId, _logSeg);
6604 * Update the control file.
6606 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6607 if (shutdown)
6608 ControlFile->state = DB_SHUTDOWNED;
6609 ControlFile->prevCheckPoint = ControlFile->checkPoint;
6610 ControlFile->checkPoint = ProcLastRecPtr;
6611 ControlFile->checkPointCopy = checkPoint;
6612 ControlFile->time = (pg_time_t) time(NULL);
6613 UpdateControlFile();
6614 LWLockRelease(ControlFileLock);
6616 /* Update shared-memory copy of checkpoint XID/epoch */
6618 /* use volatile pointer to prevent code rearrangement */
6619 volatile XLogCtlData *xlogctl = XLogCtl;
6621 SpinLockAcquire(&xlogctl->info_lck);
6622 xlogctl->ckptXidEpoch = checkPoint.nextXidEpoch;
6623 xlogctl->ckptXid = checkPoint.nextXid;
6624 SpinLockRelease(&xlogctl->info_lck);
6628 * We are now done with critical updates; no need for system panic if we
6629 * have trouble while fooling with old log segments.
6631 END_CRIT_SECTION();
6634 * Let smgr do post-checkpoint cleanup (eg, deleting old files).
6636 smgrpostckpt();
6639 * Delete old log files (those no longer needed even for previous
6640 * checkpoint).
6642 if (_logId || _logSeg)
6644 PrevLogSeg(_logId, _logSeg);
6645 RemoveOldXlogFiles(_logId, _logSeg, recptr);
6649 * Make more log segments if needed. (Do this after recycling old log
6650 * segments, since that may supply some of the needed files.)
6652 if (!shutdown)
6653 PreallocXlogFiles(recptr);
6656 * Truncate pg_subtrans if possible. We can throw away all data before
6657 * the oldest XMIN of any running transaction. No future transaction will
6658 * attempt to reference any pg_subtrans entry older than that (see Asserts
6659 * in subtrans.c). During recovery, though, we mustn't do this because
6660 * StartupSUBTRANS hasn't been called yet.
6662 if (!RecoveryInProgress())
6663 TruncateSUBTRANS(GetOldestXmin(true, false));
6665 /* All real work is done, but log before releasing lock. */
6666 if (log_checkpoints)
6667 LogCheckpointEnd(false);
6669 TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
6670 NBuffers,
6671 CheckpointStats.ckpt_segs_added,
6672 CheckpointStats.ckpt_segs_removed,
6673 CheckpointStats.ckpt_segs_recycled);
6675 LWLockRelease(CheckpointLock);
6679 * Flush all data in shared memory to disk, and fsync
6681 * This is the common code shared between regular checkpoints and
6682 * recovery restartpoints.
6684 static void
6685 CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
6687 CheckPointCLOG();
6688 CheckPointSUBTRANS();
6689 CheckPointMultiXact();
6690 CheckPointBuffers(flags); /* performs all required fsyncs */
6691 /* We deliberately delay 2PC checkpointing as long as possible */
6692 CheckPointTwoPhase(checkPointRedo);
6696 * Save a checkpoint for recovery restart if appropriate
6698 * This function is called each time a checkpoint record is read from XLOG.
6699 * It must determine whether the checkpoint represents a safe restartpoint or
6700 * not. If so, the checkpoint record is stashed in shared memory so that
6701 * CreateRestartPoint can consult it. (Note that the latter function is
6702 * executed by the bgwriter, while this one will be executed by the startup
6703 * process.)
6705 static void
6706 RecoveryRestartPoint(const CheckPoint *checkPoint)
6708 int rmid;
6710 /* use volatile pointer to prevent code rearrangement */
6711 volatile XLogCtlData *xlogctl = XLogCtl;
6714 * Is it safe to checkpoint? We must ask each of the resource managers
6715 * whether they have any partial state information that might prevent a
6716 * correct restart from this point. If so, we skip this opportunity, but
6717 * return at the next checkpoint record for another try.
6719 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
6721 if (RmgrTable[rmid].rm_safe_restartpoint != NULL)
6722 if (!(RmgrTable[rmid].rm_safe_restartpoint()))
6724 elog(DEBUG2, "RM %d not safe to record restart point at %X/%X",
6725 rmid,
6726 checkPoint->redo.xlogid,
6727 checkPoint->redo.xrecoff);
6728 return;
6733 * Copy the checkpoint record to shared memory, so that bgwriter can use
6734 * it the next time it wants to perform a restartpoint.
6736 SpinLockAcquire(&xlogctl->info_lck);
6737 XLogCtl->lastCheckPointRecPtr = ReadRecPtr;
6738 memcpy(&XLogCtl->lastCheckPoint, checkPoint, sizeof(CheckPoint));
6739 SpinLockRelease(&xlogctl->info_lck);
6743 * Establish a restartpoint if possible.
6745 * This is similar to CreateCheckPoint, but is used during WAL recovery
6746 * to establish a point from which recovery can roll forward without
6747 * replaying the entire recovery log.
6749 * Returns true if a new restartpoint was established. We can only establish
6750 * a restartpoint if we have replayed a safe checkpoint record since last
6751 * restartpoint.
6753 bool
6754 CreateRestartPoint(int flags)
6756 XLogRecPtr lastCheckPointRecPtr;
6757 CheckPoint lastCheckPoint;
6759 /* use volatile pointer to prevent code rearrangement */
6760 volatile XLogCtlData *xlogctl = XLogCtl;
6763 * Acquire CheckpointLock to ensure only one restartpoint or checkpoint
6764 * happens at a time.
6766 LWLockAcquire(CheckpointLock, LW_EXCLUSIVE);
6768 /* Get a local copy of the last safe checkpoint record. */
6769 SpinLockAcquire(&xlogctl->info_lck);
6770 lastCheckPointRecPtr = xlogctl->lastCheckPointRecPtr;
6771 memcpy(&lastCheckPoint, &XLogCtl->lastCheckPoint, sizeof(CheckPoint));
6772 SpinLockRelease(&xlogctl->info_lck);
6775 * Check that we're still in recovery mode. It's ok if we exit recovery
6776 * mode after this check, the restart point is valid anyway.
6778 if (!RecoveryInProgress())
6780 ereport(DEBUG2,
6781 (errmsg("skipping restartpoint, recovery has already ended")));
6782 LWLockRelease(CheckpointLock);
6783 return false;
6787 * If the last checkpoint record we've replayed is already our last
6788 * restartpoint, we can't perform a new restart point. We still update
6789 * minRecoveryPoint in that case, so that if this is a shutdown restart
6790 * point, we won't start up earlier than before. That's not strictly
6791 * necessary, but when we get hot standby capability, it would be rather
6792 * weird if the database opened up for read-only connections at a
6793 * point-in-time before the last shutdown. Such time travel is still
6794 * possible in case of immediate shutdown, though.
6796 * We don't explicitly advance minRecoveryPoint when we do create a
6797 * restartpoint. It's assumed that flushing the buffers will do that as a
6798 * side-effect.
6800 if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
6801 XLByteLE(lastCheckPoint.redo, ControlFile->checkPointCopy.redo))
6803 XLogRecPtr InvalidXLogRecPtr = {0, 0};
6805 ereport(DEBUG2,
6806 (errmsg("skipping restartpoint, already performed at %X/%X",
6807 lastCheckPoint.redo.xlogid, lastCheckPoint.redo.xrecoff)));
6809 UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
6810 LWLockRelease(CheckpointLock);
6811 return false;
6814 if (log_checkpoints)
6817 * Prepare to accumulate statistics.
6819 MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
6820 CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
6822 LogCheckpointStart(flags, true);
6825 CheckPointGuts(lastCheckPoint.redo, flags);
6828 * Update pg_control, using current time. Check that it still shows
6829 * IN_ARCHIVE_RECOVERY state and an older checkpoint, else do nothing;
6830 * this is a quick hack to make sure nothing really bad happens if
6831 * somehow we get here after the end-of-recovery checkpoint.
6833 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6834 if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY &&
6835 XLByteLT(ControlFile->checkPointCopy.redo, lastCheckPoint.redo))
6837 ControlFile->prevCheckPoint = ControlFile->checkPoint;
6838 ControlFile->checkPoint = lastCheckPointRecPtr;
6839 ControlFile->checkPointCopy = lastCheckPoint;
6840 ControlFile->time = (pg_time_t) time(NULL);
6841 UpdateControlFile();
6843 LWLockRelease(ControlFileLock);
6846 * Currently, there is no need to truncate pg_subtrans during recovery. If
6847 * we did do that, we will need to have called StartupSUBTRANS() already
6848 * and then TruncateSUBTRANS() would go here.
6851 /* All real work is done, but log before releasing lock. */
6852 if (log_checkpoints)
6853 LogCheckpointEnd(true);
6855 ereport((log_checkpoints ? LOG : DEBUG2),
6856 (errmsg("recovery restart point at %X/%X",
6857 lastCheckPoint.redo.xlogid, lastCheckPoint.redo.xrecoff)));
6859 /* XXX this is currently BROKEN because we are in the wrong process */
6860 if (recoveryLastXTime)
6861 ereport((log_checkpoints ? LOG : DEBUG2),
6862 (errmsg("last completed transaction was at log time %s",
6863 timestamptz_to_str(recoveryLastXTime))));
6865 LWLockRelease(CheckpointLock);
6866 return true;
6870 * Write a NEXTOID log record
6872 void
6873 XLogPutNextOid(Oid nextOid)
6875 XLogRecData rdata;
6877 rdata.data = (char *) (&nextOid);
6878 rdata.len = sizeof(Oid);
6879 rdata.buffer = InvalidBuffer;
6880 rdata.next = NULL;
6881 (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID, &rdata);
6884 * We need not flush the NEXTOID record immediately, because any of the
6885 * just-allocated OIDs could only reach disk as part of a tuple insert or
6886 * update that would have its own XLOG record that must follow the NEXTOID
6887 * record. Therefore, the standard buffer LSN interlock applied to those
6888 * records will ensure no such OID reaches disk before the NEXTOID record
6889 * does.
6891 * Note, however, that the above statement only covers state "within" the
6892 * database. When we use a generated OID as a file or directory name, we
6893 * are in a sense violating the basic WAL rule, because that filesystem
6894 * change may reach disk before the NEXTOID WAL record does. The impact
6895 * of this is that if a database crash occurs immediately afterward, we
6896 * might after restart re-generate the same OID and find that it conflicts
6897 * with the leftover file or directory. But since for safety's sake we
6898 * always loop until finding a nonconflicting filename, this poses no real
6899 * problem in practice. See pgsql-hackers discussion 27-Sep-2006.
6904 * Write an XLOG SWITCH record.
6906 * Here we just blindly issue an XLogInsert request for the record.
6907 * All the magic happens inside XLogInsert.
6909 * The return value is either the end+1 address of the switch record,
6910 * or the end+1 address of the prior segment if we did not need to
6911 * write a switch record because we are already at segment start.
6913 XLogRecPtr
6914 RequestXLogSwitch(void)
6916 XLogRecPtr RecPtr;
6917 XLogRecData rdata;
6919 /* XLOG SWITCH, alone among xlog record types, has no data */
6920 rdata.buffer = InvalidBuffer;
6921 rdata.data = NULL;
6922 rdata.len = 0;
6923 rdata.next = NULL;
6925 RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH, &rdata);
6927 return RecPtr;
6931 * XLOG resource manager's routines
6933 * Definitions of info values are in include/catalog/pg_control.h, though
6934 * not all record types are related to control file updates.
6936 void
6937 xlog_redo(XLogRecPtr lsn, XLogRecord *record)
6939 uint8 info = record->xl_info & ~XLR_INFO_MASK;
6941 /* Backup blocks are not used in xlog records */
6942 Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
6944 if (info == XLOG_NEXTOID)
6946 Oid nextOid;
6948 memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
6949 if (ShmemVariableCache->nextOid < nextOid)
6951 ShmemVariableCache->nextOid = nextOid;
6952 ShmemVariableCache->oidCount = 0;
6955 else if (info == XLOG_CHECKPOINT_SHUTDOWN)
6957 CheckPoint checkPoint;
6959 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
6960 /* In a SHUTDOWN checkpoint, believe the counters exactly */
6961 ShmemVariableCache->nextXid = checkPoint.nextXid;
6962 ShmemVariableCache->nextOid = checkPoint.nextOid;
6963 ShmemVariableCache->oidCount = 0;
6964 MultiXactSetNextMXact(checkPoint.nextMulti,
6965 checkPoint.nextMultiOffset);
6967 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
6968 ControlFile->checkPointCopy.nextXidEpoch = checkPoint.nextXidEpoch;
6969 ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
6972 * TLI may change in a shutdown checkpoint, but it shouldn't decrease
6974 if (checkPoint.ThisTimeLineID != ThisTimeLineID)
6976 if (checkPoint.ThisTimeLineID < ThisTimeLineID ||
6977 !list_member_int(expectedTLIs,
6978 (int) checkPoint.ThisTimeLineID))
6979 ereport(PANIC,
6980 (errmsg("unexpected timeline ID %u (after %u) in checkpoint record",
6981 checkPoint.ThisTimeLineID, ThisTimeLineID)));
6982 /* Following WAL records should be run with new TLI */
6983 ThisTimeLineID = checkPoint.ThisTimeLineID;
6986 RecoveryRestartPoint(&checkPoint);
6988 else if (info == XLOG_CHECKPOINT_ONLINE)
6990 CheckPoint checkPoint;
6992 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
6993 /* In an ONLINE checkpoint, treat the counters like NEXTOID */
6994 if (TransactionIdPrecedes(ShmemVariableCache->nextXid,
6995 checkPoint.nextXid))
6996 ShmemVariableCache->nextXid = checkPoint.nextXid;
6997 if (ShmemVariableCache->nextOid < checkPoint.nextOid)
6999 ShmemVariableCache->nextOid = checkPoint.nextOid;
7000 ShmemVariableCache->oidCount = 0;
7002 MultiXactAdvanceNextMXact(checkPoint.nextMulti,
7003 checkPoint.nextMultiOffset);
7005 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
7006 ControlFile->checkPointCopy.nextXidEpoch = checkPoint.nextXidEpoch;
7007 ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
7009 /* TLI should not change in an on-line checkpoint */
7010 if (checkPoint.ThisTimeLineID != ThisTimeLineID)
7011 ereport(PANIC,
7012 (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record",
7013 checkPoint.ThisTimeLineID, ThisTimeLineID)));
7015 RecoveryRestartPoint(&checkPoint);
7017 else if (info == XLOG_NOOP)
7019 /* nothing to do here */
7021 else if (info == XLOG_SWITCH)
7023 /* nothing to do here */
7027 void
7028 xlog_desc(StringInfo buf, uint8 xl_info, char *rec)
7030 uint8 info = xl_info & ~XLR_INFO_MASK;
7032 if (info == XLOG_CHECKPOINT_SHUTDOWN ||
7033 info == XLOG_CHECKPOINT_ONLINE)
7035 CheckPoint *checkpoint = (CheckPoint *) rec;
7037 appendStringInfo(buf, "checkpoint: redo %X/%X; "
7038 "tli %u; xid %u/%u; oid %u; multi %u; offset %u; %s",
7039 checkpoint->redo.xlogid, checkpoint->redo.xrecoff,
7040 checkpoint->ThisTimeLineID,
7041 checkpoint->nextXidEpoch, checkpoint->nextXid,
7042 checkpoint->nextOid,
7043 checkpoint->nextMulti,
7044 checkpoint->nextMultiOffset,
7045 (info == XLOG_CHECKPOINT_SHUTDOWN) ? "shutdown" : "online");
7047 else if (info == XLOG_NOOP)
7049 appendStringInfo(buf, "xlog no-op");
7051 else if (info == XLOG_NEXTOID)
7053 Oid nextOid;
7055 memcpy(&nextOid, rec, sizeof(Oid));
7056 appendStringInfo(buf, "nextOid: %u", nextOid);
7058 else if (info == XLOG_SWITCH)
7060 appendStringInfo(buf, "xlog switch");
7062 else
7063 appendStringInfo(buf, "UNKNOWN");
7066 #ifdef WAL_DEBUG
7068 static void
7069 xlog_outrec(StringInfo buf, XLogRecord *record)
7071 int i;
7073 appendStringInfo(buf, "prev %X/%X; xid %u",
7074 record->xl_prev.xlogid, record->xl_prev.xrecoff,
7075 record->xl_xid);
7077 for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
7079 if (record->xl_info & XLR_SET_BKP_BLOCK(i))
7080 appendStringInfo(buf, "; bkpb%d", i + 1);
7083 appendStringInfo(buf, ": %s", RmgrTable[record->xl_rmid].rm_name);
7085 #endif /* WAL_DEBUG */
7089 * Return the (possible) sync flag used for opening a file, depending on the
7090 * value of the GUC wal_sync_method.
7092 static int
7093 get_sync_bit(int method)
7095 /* If fsync is disabled, never open in sync mode */
7096 if (!enableFsync)
7097 return 0;
7099 switch (method)
7102 * enum values for all sync options are defined even if they are
7103 * not supported on the current platform. But if not, they are
7104 * not included in the enum option array, and therefore will never
7105 * be seen here.
7107 case SYNC_METHOD_FSYNC:
7108 case SYNC_METHOD_FSYNC_WRITETHROUGH:
7109 case SYNC_METHOD_FDATASYNC:
7110 return 0;
7111 #ifdef OPEN_SYNC_FLAG
7112 case SYNC_METHOD_OPEN:
7113 return OPEN_SYNC_FLAG;
7114 #endif
7115 #ifdef OPEN_DATASYNC_FLAG
7116 case SYNC_METHOD_OPEN_DSYNC:
7117 return OPEN_DATASYNC_FLAG;
7118 #endif
7119 default:
7120 /* can't happen (unless we are out of sync with option array) */
7121 elog(ERROR, "unrecognized wal_sync_method: %d", method);
7122 return 0; /* silence warning */
7127 * GUC support
7129 bool
7130 assign_xlog_sync_method(int new_sync_method, bool doit, GucSource source)
7132 if (!doit)
7133 return true;
7135 if (sync_method != new_sync_method)
7138 * To ensure that no blocks escape unsynced, force an fsync on the
7139 * currently open log segment (if any). Also, if the open flag is
7140 * changing, close the log file so it will be reopened (with new flag
7141 * bit) at next use.
7143 if (openLogFile >= 0)
7145 if (pg_fsync(openLogFile) != 0)
7146 ereport(PANIC,
7147 (errcode_for_file_access(),
7148 errmsg("could not fsync log file %u, segment %u: %m",
7149 openLogId, openLogSeg)));
7150 if (get_sync_bit(sync_method) != get_sync_bit(new_sync_method))
7151 XLogFileClose();
7155 return true;
7160 * Issue appropriate kind of fsync (if any) on the current XLOG output file
7162 static void
7163 issue_xlog_fsync(void)
7165 switch (sync_method)
7167 case SYNC_METHOD_FSYNC:
7168 if (pg_fsync_no_writethrough(openLogFile) != 0)
7169 ereport(PANIC,
7170 (errcode_for_file_access(),
7171 errmsg("could not fsync log file %u, segment %u: %m",
7172 openLogId, openLogSeg)));
7173 break;
7174 #ifdef HAVE_FSYNC_WRITETHROUGH
7175 case SYNC_METHOD_FSYNC_WRITETHROUGH:
7176 if (pg_fsync_writethrough(openLogFile) != 0)
7177 ereport(PANIC,
7178 (errcode_for_file_access(),
7179 errmsg("could not fsync write-through log file %u, segment %u: %m",
7180 openLogId, openLogSeg)));
7181 break;
7182 #endif
7183 #ifdef HAVE_FDATASYNC
7184 case SYNC_METHOD_FDATASYNC:
7185 if (pg_fdatasync(openLogFile) != 0)
7186 ereport(PANIC,
7187 (errcode_for_file_access(),
7188 errmsg("could not fdatasync log file %u, segment %u: %m",
7189 openLogId, openLogSeg)));
7190 break;
7191 #endif
7192 case SYNC_METHOD_OPEN:
7193 case SYNC_METHOD_OPEN_DSYNC:
7194 /* write synced it already */
7195 break;
7196 default:
7197 elog(PANIC, "unrecognized wal_sync_method: %d", sync_method);
7198 break;
7204 * pg_start_backup: set up for taking an on-line backup dump
7206 * Essentially what this does is to create a backup label file in $PGDATA,
7207 * where it will be archived as part of the backup dump. The label file
7208 * contains the user-supplied label string (typically this would be used
7209 * to tell where the backup dump will be stored) and the starting time and
7210 * starting WAL location for the dump.
7212 Datum
7213 pg_start_backup(PG_FUNCTION_ARGS)
7215 text *backupid = PG_GETARG_TEXT_P(0);
7216 bool fast = PG_GETARG_BOOL(1);
7217 char *backupidstr;
7218 XLogRecPtr checkpointloc;
7219 XLogRecPtr startpoint;
7220 pg_time_t stamp_time;
7221 char strfbuf[128];
7222 char xlogfilename[MAXFNAMELEN];
7223 uint32 _logId;
7224 uint32 _logSeg;
7225 struct stat stat_buf;
7226 FILE *fp;
7228 if (!superuser())
7229 ereport(ERROR,
7230 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
7231 errmsg("must be superuser to run a backup")));
7233 if (!XLogArchivingActive())
7234 ereport(ERROR,
7235 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7236 errmsg("WAL archiving is not active"),
7237 errhint("archive_mode must be enabled at server start.")));
7239 if (!XLogArchiveCommandSet())
7240 ereport(ERROR,
7241 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7242 errmsg("WAL archiving is not active"),
7243 errhint("archive_command must be defined before "
7244 "online backups can be made safely.")));
7246 backupidstr = text_to_cstring(backupid);
7249 * Mark backup active in shared memory. We must do full-page WAL writes
7250 * during an on-line backup even if not doing so at other times, because
7251 * it's quite possible for the backup dump to obtain a "torn" (partially
7252 * written) copy of a database page if it reads the page concurrently with
7253 * our write to the same page. This can be fixed as long as the first
7254 * write to the page in the WAL sequence is a full-page write. Hence, we
7255 * turn on forcePageWrites and then force a CHECKPOINT, to ensure there
7256 * are no dirty pages in shared memory that might get dumped while the
7257 * backup is in progress without having a corresponding WAL record. (Once
7258 * the backup is complete, we need not force full-page writes anymore,
7259 * since we expect that any pages not modified during the backup interval
7260 * must have been correctly captured by the backup.)
7262 * We must hold WALInsertLock to change the value of forcePageWrites, to
7263 * ensure adequate interlocking against XLogInsert().
7265 LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
7266 if (XLogCtl->Insert.forcePageWrites)
7268 LWLockRelease(WALInsertLock);
7269 ereport(ERROR,
7270 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7271 errmsg("a backup is already in progress"),
7272 errhint("Run pg_stop_backup() and try again.")));
7274 XLogCtl->Insert.forcePageWrites = true;
7275 LWLockRelease(WALInsertLock);
7278 * Force an XLOG file switch before the checkpoint, to ensure that the WAL
7279 * segment the checkpoint is written to doesn't contain pages with old
7280 * timeline IDs. That would otherwise happen if you called
7281 * pg_start_backup() right after restoring from a PITR archive: the first
7282 * WAL segment containing the startup checkpoint has pages in the
7283 * beginning with the old timeline ID. That can cause trouble at recovery:
7284 * we won't have a history file covering the old timeline if pg_xlog
7285 * directory was not included in the base backup and the WAL archive was
7286 * cleared too before starting the backup.
7288 RequestXLogSwitch();
7290 /* Ensure we release forcePageWrites if fail below */
7291 PG_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) 0);
7294 * Force a CHECKPOINT. Aside from being necessary to prevent torn
7295 * page problems, this guarantees that two successive backup runs will
7296 * have different checkpoint positions and hence different history
7297 * file names, even if nothing happened in between.
7299 * We use CHECKPOINT_IMMEDIATE only if requested by user (via passing
7300 * fast = true). Otherwise this can take awhile.
7302 RequestCheckpoint(CHECKPOINT_FORCE | CHECKPOINT_WAIT |
7303 (fast ? CHECKPOINT_IMMEDIATE : 0));
7306 * Now we need to fetch the checkpoint record location, and also its
7307 * REDO pointer. The oldest point in WAL that would be needed to
7308 * restore starting from the checkpoint is precisely the REDO pointer.
7310 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7311 checkpointloc = ControlFile->checkPoint;
7312 startpoint = ControlFile->checkPointCopy.redo;
7313 LWLockRelease(ControlFileLock);
7315 XLByteToSeg(startpoint, _logId, _logSeg);
7316 XLogFileName(xlogfilename, ThisTimeLineID, _logId, _logSeg);
7318 /* Use the log timezone here, not the session timezone */
7319 stamp_time = (pg_time_t) time(NULL);
7320 pg_strftime(strfbuf, sizeof(strfbuf),
7321 "%Y-%m-%d %H:%M:%S %Z",
7322 pg_localtime(&stamp_time, log_timezone));
7325 * Check for existing backup label --- implies a backup is already
7326 * running. (XXX given that we checked forcePageWrites above, maybe
7327 * it would be OK to just unlink any such label file?)
7329 if (stat(BACKUP_LABEL_FILE, &stat_buf) != 0)
7331 if (errno != ENOENT)
7332 ereport(ERROR,
7333 (errcode_for_file_access(),
7334 errmsg("could not stat file \"%s\": %m",
7335 BACKUP_LABEL_FILE)));
7337 else
7338 ereport(ERROR,
7339 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7340 errmsg("a backup is already in progress"),
7341 errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again.",
7342 BACKUP_LABEL_FILE)));
7345 * Okay, write the file
7347 fp = AllocateFile(BACKUP_LABEL_FILE, "w");
7348 if (!fp)
7349 ereport(ERROR,
7350 (errcode_for_file_access(),
7351 errmsg("could not create file \"%s\": %m",
7352 BACKUP_LABEL_FILE)));
7353 fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n",
7354 startpoint.xlogid, startpoint.xrecoff, xlogfilename);
7355 fprintf(fp, "CHECKPOINT LOCATION: %X/%X\n",
7356 checkpointloc.xlogid, checkpointloc.xrecoff);
7357 fprintf(fp, "START TIME: %s\n", strfbuf);
7358 fprintf(fp, "LABEL: %s\n", backupidstr);
7359 if (fflush(fp) || ferror(fp) || FreeFile(fp))
7360 ereport(ERROR,
7361 (errcode_for_file_access(),
7362 errmsg("could not write file \"%s\": %m",
7363 BACKUP_LABEL_FILE)));
7365 PG_END_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) 0);
7368 * We're done. As a convenience, return the starting WAL location.
7370 snprintf(xlogfilename, sizeof(xlogfilename), "%X/%X",
7371 startpoint.xlogid, startpoint.xrecoff);
7372 PG_RETURN_TEXT_P(cstring_to_text(xlogfilename));
7375 /* Error cleanup callback for pg_start_backup */
7376 static void
7377 pg_start_backup_callback(int code, Datum arg)
7379 /* Turn off forcePageWrites on failure */
7380 LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
7381 XLogCtl->Insert.forcePageWrites = false;
7382 LWLockRelease(WALInsertLock);
7386 * pg_stop_backup: finish taking an on-line backup dump
7388 * We remove the backup label file created by pg_start_backup, and instead
7389 * create a backup history file in pg_xlog (whence it will immediately be
7390 * archived). The backup history file contains the same info found in
7391 * the label file, plus the backup-end time and WAL location.
7392 * Note: different from CancelBackup which just cancels online backup mode.
7394 Datum
7395 pg_stop_backup(PG_FUNCTION_ARGS)
7397 XLogRecPtr startpoint;
7398 XLogRecPtr stoppoint;
7399 pg_time_t stamp_time;
7400 char strfbuf[128];
7401 char histfilepath[MAXPGPATH];
7402 char startxlogfilename[MAXFNAMELEN];
7403 char stopxlogfilename[MAXFNAMELEN];
7404 char lastxlogfilename[MAXFNAMELEN];
7405 char histfilename[MAXFNAMELEN];
7406 uint32 _logId;
7407 uint32 _logSeg;
7408 FILE *lfp;
7409 FILE *fp;
7410 char ch;
7411 int ich;
7412 int seconds_before_warning;
7413 int waits = 0;
7415 if (!superuser())
7416 ereport(ERROR,
7417 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
7418 (errmsg("must be superuser to run a backup"))));
7420 if (!XLogArchivingActive())
7421 ereport(ERROR,
7422 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7423 errmsg("WAL archiving is not active"),
7424 errhint("archive_mode must be enabled at server start.")));
7427 * OK to clear forcePageWrites
7429 LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
7430 XLogCtl->Insert.forcePageWrites = false;
7431 LWLockRelease(WALInsertLock);
7434 * Force a switch to a new xlog segment file, so that the backup is valid
7435 * as soon as archiver moves out the current segment file. We'll report
7436 * the end address of the XLOG SWITCH record as the backup stopping point.
7438 stoppoint = RequestXLogSwitch();
7440 XLByteToSeg(stoppoint, _logId, _logSeg);
7441 XLogFileName(stopxlogfilename, ThisTimeLineID, _logId, _logSeg);
7443 /* Use the log timezone here, not the session timezone */
7444 stamp_time = (pg_time_t) time(NULL);
7445 pg_strftime(strfbuf, sizeof(strfbuf),
7446 "%Y-%m-%d %H:%M:%S %Z",
7447 pg_localtime(&stamp_time, log_timezone));
7450 * Open the existing label file
7452 lfp = AllocateFile(BACKUP_LABEL_FILE, "r");
7453 if (!lfp)
7455 if (errno != ENOENT)
7456 ereport(ERROR,
7457 (errcode_for_file_access(),
7458 errmsg("could not read file \"%s\": %m",
7459 BACKUP_LABEL_FILE)));
7460 ereport(ERROR,
7461 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7462 errmsg("a backup is not in progress")));
7466 * Read and parse the START WAL LOCATION line (this code is pretty crude,
7467 * but we are not expecting any variability in the file format).
7469 if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %24s)%c",
7470 &startpoint.xlogid, &startpoint.xrecoff, startxlogfilename,
7471 &ch) != 4 || ch != '\n')
7472 ereport(ERROR,
7473 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7474 errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
7477 * Write the backup history file
7479 XLByteToSeg(startpoint, _logId, _logSeg);
7480 BackupHistoryFilePath(histfilepath, ThisTimeLineID, _logId, _logSeg,
7481 startpoint.xrecoff % XLogSegSize);
7482 fp = AllocateFile(histfilepath, "w");
7483 if (!fp)
7484 ereport(ERROR,
7485 (errcode_for_file_access(),
7486 errmsg("could not create file \"%s\": %m",
7487 histfilepath)));
7488 fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n",
7489 startpoint.xlogid, startpoint.xrecoff, startxlogfilename);
7490 fprintf(fp, "STOP WAL LOCATION: %X/%X (file %s)\n",
7491 stoppoint.xlogid, stoppoint.xrecoff, stopxlogfilename);
7492 /* transfer remaining lines from label to history file */
7493 while ((ich = fgetc(lfp)) != EOF)
7494 fputc(ich, fp);
7495 fprintf(fp, "STOP TIME: %s\n", strfbuf);
7496 if (fflush(fp) || ferror(fp) || FreeFile(fp))
7497 ereport(ERROR,
7498 (errcode_for_file_access(),
7499 errmsg("could not write file \"%s\": %m",
7500 histfilepath)));
7503 * Close and remove the backup label file
7505 if (ferror(lfp) || FreeFile(lfp))
7506 ereport(ERROR,
7507 (errcode_for_file_access(),
7508 errmsg("could not read file \"%s\": %m",
7509 BACKUP_LABEL_FILE)));
7510 if (unlink(BACKUP_LABEL_FILE) != 0)
7511 ereport(ERROR,
7512 (errcode_for_file_access(),
7513 errmsg("could not remove file \"%s\": %m",
7514 BACKUP_LABEL_FILE)));
7517 * Clean out any no-longer-needed history files. As a side effect, this
7518 * will post a .ready file for the newly created history file, notifying
7519 * the archiver that history file may be archived immediately.
7521 CleanupBackupHistory();
7524 * Wait until both the last WAL file filled during backup and the history
7525 * file have been archived. We assume that the alphabetic sorting
7526 * property of the WAL files ensures any earlier WAL files are safely
7527 * archived as well.
7529 * We wait forever, since archive_command is supposed to work and we
7530 * assume the admin wanted his backup to work completely. If you don't
7531 * wish to wait, you can set statement_timeout.
7533 XLByteToPrevSeg(stoppoint, _logId, _logSeg);
7534 XLogFileName(lastxlogfilename, ThisTimeLineID, _logId, _logSeg);
7536 XLByteToSeg(startpoint, _logId, _logSeg);
7537 BackupHistoryFileName(histfilename, ThisTimeLineID, _logId, _logSeg,
7538 startpoint.xrecoff % XLogSegSize);
7540 seconds_before_warning = 60;
7541 waits = 0;
7543 while (XLogArchiveIsBusy(lastxlogfilename) ||
7544 XLogArchiveIsBusy(histfilename))
7546 CHECK_FOR_INTERRUPTS();
7548 pg_usleep(1000000L);
7550 if (++waits >= seconds_before_warning)
7552 seconds_before_warning *= 2; /* This wraps in >10 years... */
7553 ereport(WARNING,
7554 (errmsg("pg_stop_backup still waiting for archive to complete (%d seconds elapsed)",
7555 waits)));
7560 * We're done. As a convenience, return the ending WAL location.
7562 snprintf(stopxlogfilename, sizeof(stopxlogfilename), "%X/%X",
7563 stoppoint.xlogid, stoppoint.xrecoff);
7564 PG_RETURN_TEXT_P(cstring_to_text(stopxlogfilename));
7568 * pg_switch_xlog: switch to next xlog file
7570 Datum
7571 pg_switch_xlog(PG_FUNCTION_ARGS)
7573 XLogRecPtr switchpoint;
7574 char location[MAXFNAMELEN];
7576 if (!superuser())
7577 ereport(ERROR,
7578 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
7579 (errmsg("must be superuser to switch transaction log files"))));
7581 switchpoint = RequestXLogSwitch();
7584 * As a convenience, return the WAL location of the switch record
7586 snprintf(location, sizeof(location), "%X/%X",
7587 switchpoint.xlogid, switchpoint.xrecoff);
7588 PG_RETURN_TEXT_P(cstring_to_text(location));
7592 * Report the current WAL write location (same format as pg_start_backup etc)
7594 * This is useful for determining how much of WAL is visible to an external
7595 * archiving process. Note that the data before this point is written out
7596 * to the kernel, but is not necessarily synced to disk.
7598 Datum
7599 pg_current_xlog_location(PG_FUNCTION_ARGS)
7601 char location[MAXFNAMELEN];
7603 /* Make sure we have an up-to-date local LogwrtResult */
7605 /* use volatile pointer to prevent code rearrangement */
7606 volatile XLogCtlData *xlogctl = XLogCtl;
7608 SpinLockAcquire(&xlogctl->info_lck);
7609 LogwrtResult = xlogctl->LogwrtResult;
7610 SpinLockRelease(&xlogctl->info_lck);
7613 snprintf(location, sizeof(location), "%X/%X",
7614 LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff);
7615 PG_RETURN_TEXT_P(cstring_to_text(location));
7619 * Report the current WAL insert location (same format as pg_start_backup etc)
7621 * This function is mostly for debugging purposes.
7623 Datum
7624 pg_current_xlog_insert_location(PG_FUNCTION_ARGS)
7626 XLogCtlInsert *Insert = &XLogCtl->Insert;
7627 XLogRecPtr current_recptr;
7628 char location[MAXFNAMELEN];
7631 * Get the current end-of-WAL position ... shared lock is sufficient
7633 LWLockAcquire(WALInsertLock, LW_SHARED);
7634 INSERT_RECPTR(current_recptr, Insert, Insert->curridx);
7635 LWLockRelease(WALInsertLock);
7637 snprintf(location, sizeof(location), "%X/%X",
7638 current_recptr.xlogid, current_recptr.xrecoff);
7639 PG_RETURN_TEXT_P(cstring_to_text(location));
7643 * Compute an xlog file name and decimal byte offset given a WAL location,
7644 * such as is returned by pg_stop_backup() or pg_xlog_switch().
7646 * Note that a location exactly at a segment boundary is taken to be in
7647 * the previous segment. This is usually the right thing, since the
7648 * expected usage is to determine which xlog file(s) are ready to archive.
7650 Datum
7651 pg_xlogfile_name_offset(PG_FUNCTION_ARGS)
7653 text *location = PG_GETARG_TEXT_P(0);
7654 char *locationstr;
7655 unsigned int uxlogid;
7656 unsigned int uxrecoff;
7657 uint32 xlogid;
7658 uint32 xlogseg;
7659 uint32 xrecoff;
7660 XLogRecPtr locationpoint;
7661 char xlogfilename[MAXFNAMELEN];
7662 Datum values[2];
7663 bool isnull[2];
7664 TupleDesc resultTupleDesc;
7665 HeapTuple resultHeapTuple;
7666 Datum result;
7669 * Read input and parse
7671 locationstr = text_to_cstring(location);
7673 if (sscanf(locationstr, "%X/%X", &uxlogid, &uxrecoff) != 2)
7674 ereport(ERROR,
7675 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
7676 errmsg("could not parse transaction log location \"%s\"",
7677 locationstr)));
7679 locationpoint.xlogid = uxlogid;
7680 locationpoint.xrecoff = uxrecoff;
7683 * Construct a tuple descriptor for the result row. This must match this
7684 * function's pg_proc entry!
7686 resultTupleDesc = CreateTemplateTupleDesc(2, false);
7687 TupleDescInitEntry(resultTupleDesc, (AttrNumber) 1, "file_name",
7688 TEXTOID, -1, 0);
7689 TupleDescInitEntry(resultTupleDesc, (AttrNumber) 2, "file_offset",
7690 INT4OID, -1, 0);
7692 resultTupleDesc = BlessTupleDesc(resultTupleDesc);
7695 * xlogfilename
7697 XLByteToPrevSeg(locationpoint, xlogid, xlogseg);
7698 XLogFileName(xlogfilename, ThisTimeLineID, xlogid, xlogseg);
7700 values[0] = CStringGetTextDatum(xlogfilename);
7701 isnull[0] = false;
7704 * offset
7706 xrecoff = locationpoint.xrecoff - xlogseg * XLogSegSize;
7708 values[1] = UInt32GetDatum(xrecoff);
7709 isnull[1] = false;
7712 * Tuple jam: Having first prepared your Datums, then squash together
7714 resultHeapTuple = heap_form_tuple(resultTupleDesc, values, isnull);
7716 result = HeapTupleGetDatum(resultHeapTuple);
7718 PG_RETURN_DATUM(result);
7722 * Compute an xlog file name given a WAL location,
7723 * such as is returned by pg_stop_backup() or pg_xlog_switch().
7725 Datum
7726 pg_xlogfile_name(PG_FUNCTION_ARGS)
7728 text *location = PG_GETARG_TEXT_P(0);
7729 char *locationstr;
7730 unsigned int uxlogid;
7731 unsigned int uxrecoff;
7732 uint32 xlogid;
7733 uint32 xlogseg;
7734 XLogRecPtr locationpoint;
7735 char xlogfilename[MAXFNAMELEN];
7737 locationstr = text_to_cstring(location);
7739 if (sscanf(locationstr, "%X/%X", &uxlogid, &uxrecoff) != 2)
7740 ereport(ERROR,
7741 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
7742 errmsg("could not parse transaction log location \"%s\"",
7743 locationstr)));
7745 locationpoint.xlogid = uxlogid;
7746 locationpoint.xrecoff = uxrecoff;
7748 XLByteToPrevSeg(locationpoint, xlogid, xlogseg);
7749 XLogFileName(xlogfilename, ThisTimeLineID, xlogid, xlogseg);
7751 PG_RETURN_TEXT_P(cstring_to_text(xlogfilename));
7755 * read_backup_label: check to see if a backup_label file is present
7757 * If we see a backup_label during recovery, we assume that we are recovering
7758 * from a backup dump file, and we therefore roll forward from the checkpoint
7759 * identified by the label file, NOT what pg_control says. This avoids the
7760 * problem that pg_control might have been archived one or more checkpoints
7761 * later than the start of the dump, and so if we rely on it as the start
7762 * point, we will fail to restore a consistent database state.
7764 * We also attempt to retrieve the corresponding backup history file.
7765 * If successful, set *minRecoveryLoc to constrain valid PITR stopping
7766 * points.
7768 * Returns TRUE if a backup_label was found (and fills the checkpoint
7769 * location into *checkPointLoc); returns FALSE if not.
7771 static bool
7772 read_backup_label(XLogRecPtr *checkPointLoc, XLogRecPtr *minRecoveryLoc)
7774 XLogRecPtr startpoint;
7775 XLogRecPtr stoppoint;
7776 char histfilename[MAXFNAMELEN];
7777 char histfilepath[MAXPGPATH];
7778 char startxlogfilename[MAXFNAMELEN];
7779 char stopxlogfilename[MAXFNAMELEN];
7780 TimeLineID tli;
7781 uint32 _logId;
7782 uint32 _logSeg;
7783 FILE *lfp;
7784 FILE *fp;
7785 char ch;
7787 /* Default is to not constrain recovery stop point */
7788 minRecoveryLoc->xlogid = 0;
7789 minRecoveryLoc->xrecoff = 0;
7792 * See if label file is present
7794 lfp = AllocateFile(BACKUP_LABEL_FILE, "r");
7795 if (!lfp)
7797 if (errno != ENOENT)
7798 ereport(FATAL,
7799 (errcode_for_file_access(),
7800 errmsg("could not read file \"%s\": %m",
7801 BACKUP_LABEL_FILE)));
7802 return false; /* it's not there, all is fine */
7806 * Read and parse the START WAL LOCATION and CHECKPOINT lines (this code
7807 * is pretty crude, but we are not expecting any variability in the file
7808 * format).
7810 if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %08X%16s)%c",
7811 &startpoint.xlogid, &startpoint.xrecoff, &tli,
7812 startxlogfilename, &ch) != 5 || ch != '\n')
7813 ereport(FATAL,
7814 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7815 errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
7816 if (fscanf(lfp, "CHECKPOINT LOCATION: %X/%X%c",
7817 &checkPointLoc->xlogid, &checkPointLoc->xrecoff,
7818 &ch) != 3 || ch != '\n')
7819 ereport(FATAL,
7820 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7821 errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
7822 if (ferror(lfp) || FreeFile(lfp))
7823 ereport(FATAL,
7824 (errcode_for_file_access(),
7825 errmsg("could not read file \"%s\": %m",
7826 BACKUP_LABEL_FILE)));
7829 * Try to retrieve the backup history file (no error if we can't)
7831 XLByteToSeg(startpoint, _logId, _logSeg);
7832 BackupHistoryFileName(histfilename, tli, _logId, _logSeg,
7833 startpoint.xrecoff % XLogSegSize);
7835 if (InArchiveRecovery)
7836 RestoreArchivedFile(histfilepath, histfilename, "RECOVERYHISTORY", 0);
7837 else
7838 BackupHistoryFilePath(histfilepath, tli, _logId, _logSeg,
7839 startpoint.xrecoff % XLogSegSize);
7841 fp = AllocateFile(histfilepath, "r");
7842 if (fp)
7845 * Parse history file to identify stop point.
7847 if (fscanf(fp, "START WAL LOCATION: %X/%X (file %24s)%c",
7848 &startpoint.xlogid, &startpoint.xrecoff, startxlogfilename,
7849 &ch) != 4 || ch != '\n')
7850 ereport(FATAL,
7851 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7852 errmsg("invalid data in file \"%s\"", histfilename)));
7853 if (fscanf(fp, "STOP WAL LOCATION: %X/%X (file %24s)%c",
7854 &stoppoint.xlogid, &stoppoint.xrecoff, stopxlogfilename,
7855 &ch) != 4 || ch != '\n')
7856 ereport(FATAL,
7857 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7858 errmsg("invalid data in file \"%s\"", histfilename)));
7859 *minRecoveryLoc = stoppoint;
7860 if (ferror(fp) || FreeFile(fp))
7861 ereport(FATAL,
7862 (errcode_for_file_access(),
7863 errmsg("could not read file \"%s\": %m",
7864 histfilepath)));
7867 return true;
7871 * Error context callback for errors occurring during rm_redo().
7873 static void
7874 rm_redo_error_callback(void *arg)
7876 XLogRecord *record = (XLogRecord *) arg;
7877 StringInfoData buf;
7879 initStringInfo(&buf);
7880 RmgrTable[record->xl_rmid].rm_desc(&buf,
7881 record->xl_info,
7882 XLogRecGetData(record));
7884 /* don't bother emitting empty description */
7885 if (buf.len > 0)
7886 errcontext("xlog redo %s", buf.data);
7888 pfree(buf.data);
7892 * BackupInProgress: check if online backup mode is active
7894 * This is done by checking for existence of the "backup_label" file.
7896 bool
7897 BackupInProgress(void)
7899 struct stat stat_buf;
7901 return (stat(BACKUP_LABEL_FILE, &stat_buf) == 0);
7905 * CancelBackup: rename the "backup_label" file to cancel backup mode
7907 * If the "backup_label" file exists, it will be renamed to "backup_label.old".
7908 * Note that this will render an online backup in progress useless.
7909 * To correctly finish an online backup, pg_stop_backup must be called.
7911 void
7912 CancelBackup(void)
7914 struct stat stat_buf;
7916 /* if the file is not there, return */
7917 if (stat(BACKUP_LABEL_FILE, &stat_buf) < 0)
7918 return;
7920 /* remove leftover file from previously cancelled backup if it exists */
7921 unlink(BACKUP_LABEL_OLD);
7923 if (rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD) == 0)
7925 ereport(LOG,
7926 (errmsg("online backup mode cancelled"),
7927 errdetail("\"%s\" was renamed to \"%s\".",
7928 BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
7930 else
7932 ereport(WARNING,
7933 (errcode_for_file_access(),
7934 errmsg("online backup mode was not cancelled"),
7935 errdetail("Could not rename \"%s\" to \"%s\": %m.",
7936 BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
7940 /* ------------------------------------------------------
7941 * Startup Process main entry point and signal handlers
7942 * ------------------------------------------------------
7946 * startupproc_quickdie() occurs when signalled SIGQUIT by the postmaster.
7948 * Some backend has bought the farm,
7949 * so we need to stop what we're doing and exit.
7951 static void
7952 startupproc_quickdie(SIGNAL_ARGS)
7954 PG_SETMASK(&BlockSig);
7957 * We DO NOT want to run proc_exit() callbacks -- we're here because
7958 * shared memory may be corrupted, so we don't want to try to clean up our
7959 * transaction. Just nail the windows shut and get out of town. Now that
7960 * there's an atexit callback to prevent third-party code from breaking
7961 * things by calling exit() directly, we have to reset the callbacks
7962 * explicitly to make this work as intended.
7964 on_exit_reset();
7967 * Note we do exit(2) not exit(0). This is to force the postmaster into a
7968 * system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
7969 * backend. This is necessary precisely because we don't clean up our
7970 * shared memory state. (The "dead man switch" mechanism in pmsignal.c
7971 * should ensure the postmaster sees this as a crash, too, but no harm in
7972 * being doubly sure.)
7974 exit(2);
7978 /* SIGHUP: set flag to re-read config file at next convenient time */
7979 static void
7980 StartupProcSigHupHandler(SIGNAL_ARGS)
7982 got_SIGHUP = true;
7985 /* SIGTERM: set flag to abort redo and exit */
7986 static void
7987 StartupProcShutdownHandler(SIGNAL_ARGS)
7989 if (in_restore_command)
7990 proc_exit(1);
7991 else
7992 shutdown_requested = true;
7995 /* Main entry point for startup process */
7996 void
7997 StartupProcessMain(void)
8000 * If possible, make this process a group leader, so that the postmaster
8001 * can signal any child processes too.
8003 #ifdef HAVE_SETSID
8004 if (setsid() < 0)
8005 elog(FATAL, "setsid() failed: %m");
8006 #endif
8009 * Properly accept or ignore signals the postmaster might send us
8011 pqsignal(SIGHUP, StartupProcSigHupHandler); /* reload config file */
8012 pqsignal(SIGINT, SIG_IGN); /* ignore query cancel */
8013 pqsignal(SIGTERM, StartupProcShutdownHandler); /* request shutdown */
8014 pqsignal(SIGQUIT, startupproc_quickdie); /* hard crash time */
8015 pqsignal(SIGALRM, SIG_IGN);
8016 pqsignal(SIGPIPE, SIG_IGN);
8017 pqsignal(SIGUSR1, SIG_IGN);
8018 pqsignal(SIGUSR2, SIG_IGN);
8021 * Reset some signals that are accepted by postmaster but not here
8023 pqsignal(SIGCHLD, SIG_DFL);
8024 pqsignal(SIGTTIN, SIG_DFL);
8025 pqsignal(SIGTTOU, SIG_DFL);
8026 pqsignal(SIGCONT, SIG_DFL);
8027 pqsignal(SIGWINCH, SIG_DFL);
8030 * Unblock signals (they were blocked when the postmaster forked us)
8032 PG_SETMASK(&UnBlockSig);
8034 StartupXLOG();
8036 BuildFlatFiles(false);
8039 * Exit normally. Exit code 0 tells postmaster that we completed recovery
8040 * successfully.
8042 proc_exit(0);