1 /*-------------------------------------------------------------------------
4 * Definitions for tagged nodes.
7 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
12 *-------------------------------------------------------------------------
18 * The first field of every node is NodeTag. Each node created (with makeNode)
19 * will have one of the following tags as the value of its first field.
21 * Note that the numbers of the node tags are not contiguous. We left holes
22 * here so that we can add more tags without changing the existing enum's.
23 * (Since node tag numbers never exist outside backend memory, there's no
24 * real harm in renumbering, it just costs a full rebuild ...)
31 * TAGS FOR EXECUTOR NODES (execnodes.h)
42 * TAGS FOR PLAN NODES (plannodes.h)
74 /* this one isn't a subclass of Plan: */
78 * TAGS FOR PLAN STATE NODES (execnodes.h)
80 * These should correspond one-to-one with Plan node types.
85 T_RecursiveUnionState
,
91 T_BitmapIndexScanState
,
92 T_BitmapHeapScanState
,
114 * TAGS FOR PRIMITIVE NODES (primnodes.h)
132 T_AlternativeSubPlan
,
138 T_ConvertRowtypeExpr
,
152 T_CoerceToDomainValue
,
162 * TAGS FOR EXPRESSION STATE NODES (execnodes.h)
164 * These correspond (not always one-for-one) to primitive nodes derived
170 T_WindowFuncExprState
,
173 T_ScalarArrayOpExprState
,
176 T_AlternativeSubPlanState
,
180 T_ArrayCoerceExprState
,
181 T_ConvertRowtypeExprState
,
186 T_RowCompareExprState
,
191 T_CoerceToDomainState
,
192 T_DomainConstraintState
,
195 * TAGS FOR PLANNER NODES (relation.h)
218 T_InnerIndexscanInfo
,
226 * TAGS FOR MEMORY NODES (memnodes.h)
228 T_MemoryContext
= 600,
232 * TAGS FOR VALUE NODES (value.h)
242 * TAGS FOR LIST NODES (pg_list.h)
249 * TAGS FOR STATEMENT NODES (mostly in parsenodes.h)
273 T_CreateFunctionStmt
,
302 T_ConstraintsSetStmt
,
307 T_AlterDatabaseSetStmt
,
309 T_CreateConversionStmt
,
313 T_CreateOpFamilyStmt
,
316 T_RemoveOpFamilyStmt
,
321 T_CreateTableSpaceStmt
,
322 T_DropTableSpaceStmt
,
323 T_AlterObjectSchemaStmt
,
329 T_AlterTSDictionaryStmt
,
330 T_AlterTSConfigurationStmt
,
334 T_CreateForeignServerStmt
,
335 T_AlterForeignServerStmt
,
336 T_DropForeignServerStmt
,
337 T_CreateUserMappingStmt
,
338 T_AlterUserMappingStmt
,
339 T_DropUserMappingStmt
,
342 * TAGS FOR PARSE TREE NODES (parsenodes.h)
381 * TAGS FOR RANDOM OTHER STUFF
383 * These are objects that aren't part of parse/plan/execute node tree
384 * structures, but we give them NodeTags anyway for identification
385 * purposes (usually because they are involved in APIs where we want to
386 * pass multiple object types through the same pointer).
388 T_TriggerData
= 950, /* in commands/trigger.h */
389 T_ReturnSetInfo
, /* in nodes/execnodes.h */
390 T_WindowObjectData
, /* private in nodeWindowAgg.c */
391 T_TIDBitmap
/* in nodes/tidbitmap.h */
395 * The first field of a node of any type is guaranteed to be the NodeTag.
396 * Hence the type of any node can be gotten by casting it to Node. Declaring
397 * a variable to be of Node * (instead of void *) can also facilitate
405 #define nodeTag(nodeptr) (((Node*)(nodeptr))->type)
409 * create a new node of the specified size and tag the node with the
412 * !WARNING!: Avoid using newNode directly. You should be using the
413 * macro makeNode. eg. to create a Query node, use makeNode(Query)
415 * Note: the size argument should always be a compile-time constant, so the
416 * apparent risk of multiple evaluation doesn't matter in practice.
420 /* With GCC, we can use a compound statement within an expression */
421 #define newNode(size, tag) \
423 AssertMacro((size) >= sizeof(Node)); /* need the tag, at least */ \
424 _result = (Node *) palloc0fast(size); \
425 _result->type = (tag); \
431 * There is no way to dereference the palloc'ed pointer to assign the
432 * tag, and also return the pointer itself, so we need a holder variable.
433 * Fortunately, this macro isn't recursive so we just define
434 * a global variable for this purpose.
436 extern PGDLLIMPORT Node
*newNodeMacroHolder
;
438 #define newNode(size, tag) \
440 AssertMacro((size) >= sizeof(Node)), /* need the tag, at least */ \
441 newNodeMacroHolder = (Node *) palloc0fast(size), \
442 newNodeMacroHolder->type = (tag), \
445 #endif /* __GNUC__ */
448 #define makeNode(_type_) ((_type_ *) newNode(sizeof(_type_),T_##_type_))
449 #define NodeSetTag(nodeptr,t) (((Node*)(nodeptr))->type = (t))
451 #define IsA(nodeptr,_type_) (nodeTag(nodeptr) == T_##_type_)
453 /* ----------------------------------------------------------------
454 * extern declarations follow
455 * ----------------------------------------------------------------
459 * nodes/{outfuncs.c,print.c}
461 extern char *nodeToString(void *obj
);
464 * nodes/{readfuncs.c,read.c}
466 extern void *stringToNode(char *str
);
471 extern void *copyObject(void *obj
);
476 extern bool equal(void *a
, void *b
);
480 * Typedefs for identifying qualifier selectivities and plan costs as such.
481 * These are just plain "double"s, but declaring a variable as Selectivity
482 * or Cost makes the intent more obvious.
484 * These could have gone into plannodes.h or some such, but many files
487 typedef double Selectivity
; /* fraction of tuples a qualifier will pass */
488 typedef double Cost
; /* execution cost (in page-access units) */
493 * enums for type of operation represented by a Query or PlannedStmt
495 * This is needed in both parsenodes.h and plannodes.h, so put it here...
500 CMD_SELECT
, /* select stmt */
501 CMD_UPDATE
, /* update stmt */
502 CMD_INSERT
, /* insert stmt */
504 CMD_UTILITY
, /* cmds like create, destroy, copy, vacuum,
506 CMD_NOTHING
/* dummy command for instead nothing rules
513 * enums for types of relation joins
515 * JoinType determines the exact semantics of joining two relations using
516 * a matching qualification. For example, it tells what to do with a tuple
517 * that has no match in the other relation.
519 * This is needed in both parsenodes.h and plannodes.h, so put it here...
521 typedef enum JoinType
524 * The canonical kinds of joins according to the SQL JOIN syntax. Only
525 * these codes can appear in parser output (e.g., JoinExpr nodes).
527 JOIN_INNER
, /* matching tuple pairs only */
528 JOIN_LEFT
, /* pairs + unmatched LHS tuples */
529 JOIN_FULL
, /* pairs + unmatched LHS + unmatched RHS */
530 JOIN_RIGHT
, /* pairs + unmatched RHS tuples */
533 * Semijoins and anti-semijoins (as defined in relational theory) do not
534 * appear in the SQL JOIN syntax, but there are standard idioms for
535 * representing them (e.g., using EXISTS). The planner recognizes these
536 * cases and converts them to joins. So the planner and executor must
537 * support these codes. NOTE: in JOIN_SEMI output, it is unspecified
538 * which matching RHS row is joined to. In JOIN_ANTI output, the row is
539 * guaranteed to be null-extended.
541 JOIN_SEMI
, /* 1 copy of each LHS row that has match(es) */
542 JOIN_ANTI
, /* 1 copy of each LHS row that has no match */
545 * These codes are used internally in the planner, but are not supported
546 * by the executor (nor, indeed, by most of the planner).
548 JOIN_UNIQUE_OUTER
, /* LHS path must be made unique */
549 JOIN_UNIQUE_INNER
/* RHS path must be made unique */
552 * We might need additional join types someday.
557 * OUTER joins are those for which pushed-down quals must behave differently
558 * from the join's own quals. This is in fact everything except INNER and
559 * SEMI joins. However, this macro must also exclude the JOIN_UNIQUE symbols
560 * since those are temporary proxies for what will eventually be an INNER
563 * Note: semijoins are a hybrid case, but we choose to treat them as not
564 * being outer joins. This is okay principally because the SQL syntax makes
565 * it impossible to have a pushed-down qual that refers to the inner relation
566 * of a semijoin; so there is no strong need to distinguish join quals from
567 * pushed-down quals. This is convenient because for almost all purposes,
568 * quals attached to a semijoin can be treated the same as innerjoin quals.
570 #define IS_OUTER_JOIN(jointype) \
571 (((1 << (jointype)) & \
572 ((1 << JOIN_LEFT) | \
574 (1 << JOIN_RIGHT) | \
575 (1 << JOIN_ANTI))) != 0)