1 /*-------------------------------------------------------------------------
4 * Primary include file for PostgreSQL server .c files
6 * This should be the first file included by PostgreSQL backend modules.
7 * Client-side code should include postgres_fe.h instead.
10 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
11 * Portions Copyright (c) 1995, Regents of the University of California
15 *-------------------------------------------------------------------------
18 *----------------------------------------------------------------
21 * When adding stuff to this file, please try to put stuff
22 * into the relevant section, or add new sections as appropriate.
25 * ------- ------------------------------------------------
26 * 1) variable-length datatypes (TOAST support)
27 * 2) datum type + support macros
28 * 3) exception handling definitions
32 * In general, this file should contain declarations that are widely needed
33 * in the backend environment, but are of no interest outside the backend.
35 * Simple type definitions live in c.h, where they are shared with
36 * postgres_fe.h. We do that since those type definitions are needed by
37 * frontend modules that want to deal with binary data transmission to or
38 * from the backend. Type definitions in this file should be for
39 * representations that never escape the backend, such as Datum or
40 * TOASTed varlena objects.
42 *----------------------------------------------------------------
48 #include "utils/elog.h"
49 #include "utils/palloc.h"
51 /* ----------------------------------------------------------------
52 * Section 1: variable-length datatypes (TOAST support)
53 * ----------------------------------------------------------------
57 * struct varatt_external is a "TOAST pointer", that is, the information
58 * needed to fetch a stored-out-of-line Datum. The data is compressed
59 * if and only if va_extsize < va_rawsize - VARHDRSZ. This struct must not
60 * contain any padding, because we sometimes compare pointers using memcmp.
62 * Note that this information is stored unaligned within actual tuples, so
63 * you need to memcpy from the tuple into a local struct variable before
64 * you can look at these fields! (The reason we use memcmp is to avoid
65 * having to do that just to detect equality of two TOAST pointers...)
67 struct varatt_external
69 int32 va_rawsize
; /* Original data size (includes header) */
70 int32 va_extsize
; /* External saved size (doesn't) */
71 Oid va_valueid
; /* Unique ID of value within TOAST table */
72 Oid va_toastrelid
; /* RelID of TOAST table containing it */
76 * These structs describe the header of a varlena object that may have been
77 * TOASTed. Generally, don't reference these structs directly, but use the
80 * We use separate structs for the aligned and unaligned cases because the
81 * compiler might otherwise think it could generate code that assumes
82 * alignment while touching fields of a 1-byte-header varlena.
86 struct /* Normal varlena (4-byte length) */
91 struct /* Compressed-in-line format */
94 uint32 va_rawsize
; /* Original data size (excludes header) */
95 char va_data
[1]; /* Compressed data */
102 char va_data
[1]; /* Data begins here */
107 uint8 va_header
; /* Always 0x80 or 0x01 */
108 uint8 va_len_1be
; /* Physical length of datum */
109 char va_data
[1]; /* Data (for now always a TOAST pointer) */
113 * Bit layouts for varlena headers on big-endian machines:
115 * 00xxxxxx 4-byte length word, aligned, uncompressed data (up to 1G)
116 * 01xxxxxx 4-byte length word, aligned, *compressed* data (up to 1G)
117 * 10000000 1-byte length word, unaligned, TOAST pointer
118 * 1xxxxxxx 1-byte length word, unaligned, uncompressed data (up to 126b)
120 * Bit layouts for varlena headers on little-endian machines:
122 * xxxxxx00 4-byte length word, aligned, uncompressed data (up to 1G)
123 * xxxxxx10 4-byte length word, aligned, *compressed* data (up to 1G)
124 * 00000001 1-byte length word, unaligned, TOAST pointer
125 * xxxxxxx1 1-byte length word, unaligned, uncompressed data (up to 126b)
127 * The "xxx" bits are the length field (which includes itself in all cases).
128 * In the big-endian case we mask to extract the length, in the little-endian
129 * case we shift. Note that in both cases the flag bits are in the physically
130 * first byte. Also, it is not possible for a 1-byte length word to be zero;
131 * this lets us disambiguate alignment padding bytes from the start of an
132 * unaligned datum. (We now *require* pad bytes to be filled with zero!)
136 * Endian-dependent macros. These are considered internal --- use the
137 * external macros below instead of using these directly.
139 * Note: IS_1B is true for external toast records but VARSIZE_1B will return 0
140 * for such records. Hence you should usually check for IS_EXTERNAL before
141 * checking for IS_1B.
144 #ifdef WORDS_BIGENDIAN
146 #define VARATT_IS_4B(PTR) \
147 ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x00)
148 #define VARATT_IS_4B_U(PTR) \
149 ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x00)
150 #define VARATT_IS_4B_C(PTR) \
151 ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x40)
152 #define VARATT_IS_1B(PTR) \
153 ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x80)
154 #define VARATT_IS_1B_E(PTR) \
155 ((((varattrib_1b *) (PTR))->va_header) == 0x80)
156 #define VARATT_NOT_PAD_BYTE(PTR) \
157 (*((uint8 *) (PTR)) != 0)
159 /* VARSIZE_4B() should only be used on known-aligned data */
160 #define VARSIZE_4B(PTR) \
161 (((varattrib_4b *) (PTR))->va_4byte.va_header & 0x3FFFFFFF)
162 #define VARSIZE_1B(PTR) \
163 (((varattrib_1b *) (PTR))->va_header & 0x7F)
164 #define VARSIZE_1B_E(PTR) \
165 (((varattrib_1b_e *) (PTR))->va_len_1be)
167 #define SET_VARSIZE_4B(PTR,len) \
168 (((varattrib_4b *) (PTR))->va_4byte.va_header = (len) & 0x3FFFFFFF)
169 #define SET_VARSIZE_4B_C(PTR,len) \
170 (((varattrib_4b *) (PTR))->va_4byte.va_header = ((len) & 0x3FFFFFFF) | 0x40000000)
171 #define SET_VARSIZE_1B(PTR,len) \
172 (((varattrib_1b *) (PTR))->va_header = (len) | 0x80)
173 #define SET_VARSIZE_1B_E(PTR,len) \
174 (((varattrib_1b_e *) (PTR))->va_header = 0x80, \
175 ((varattrib_1b_e *) (PTR))->va_len_1be = (len))
176 #else /* !WORDS_BIGENDIAN */
178 #define VARATT_IS_4B(PTR) \
179 ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x00)
180 #define VARATT_IS_4B_U(PTR) \
181 ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x00)
182 #define VARATT_IS_4B_C(PTR) \
183 ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x02)
184 #define VARATT_IS_1B(PTR) \
185 ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x01)
186 #define VARATT_IS_1B_E(PTR) \
187 ((((varattrib_1b *) (PTR))->va_header) == 0x01)
188 #define VARATT_NOT_PAD_BYTE(PTR) \
189 (*((uint8 *) (PTR)) != 0)
191 /* VARSIZE_4B() should only be used on known-aligned data */
192 #define VARSIZE_4B(PTR) \
193 ((((varattrib_4b *) (PTR))->va_4byte.va_header >> 2) & 0x3FFFFFFF)
194 #define VARSIZE_1B(PTR) \
195 ((((varattrib_1b *) (PTR))->va_header >> 1) & 0x7F)
196 #define VARSIZE_1B_E(PTR) \
197 (((varattrib_1b_e *) (PTR))->va_len_1be)
199 #define SET_VARSIZE_4B(PTR,len) \
200 (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2))
201 #define SET_VARSIZE_4B_C(PTR,len) \
202 (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2) | 0x02)
203 #define SET_VARSIZE_1B(PTR,len) \
204 (((varattrib_1b *) (PTR))->va_header = (((uint8) (len)) << 1) | 0x01)
205 #define SET_VARSIZE_1B_E(PTR,len) \
206 (((varattrib_1b_e *) (PTR))->va_header = 0x01, \
207 ((varattrib_1b_e *) (PTR))->va_len_1be = (len))
208 #endif /* WORDS_BIGENDIAN */
210 #define VARHDRSZ_SHORT 1
211 #define VARATT_SHORT_MAX 0x7F
212 #define VARATT_CAN_MAKE_SHORT(PTR) \
213 (VARATT_IS_4B_U(PTR) && \
214 (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) <= VARATT_SHORT_MAX)
215 #define VARATT_CONVERTED_SHORT_SIZE(PTR) \
216 (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT)
218 #define VARHDRSZ_EXTERNAL 2
220 #define VARDATA_4B(PTR) (((varattrib_4b *) (PTR))->va_4byte.va_data)
221 #define VARDATA_4B_C(PTR) (((varattrib_4b *) (PTR))->va_compressed.va_data)
222 #define VARDATA_1B(PTR) (((varattrib_1b *) (PTR))->va_data)
223 #define VARDATA_1B_E(PTR) (((varattrib_1b_e *) (PTR))->va_data)
225 #define VARRAWSIZE_4B_C(PTR) \
226 (((varattrib_4b *) (PTR))->va_compressed.va_rawsize)
228 /* Externally visible macros */
231 * VARDATA, VARSIZE, and SET_VARSIZE are the recommended API for most code
232 * for varlena datatypes. Note that they only work on untoasted,
233 * 4-byte-header Datums!
235 * Code that wants to use 1-byte-header values without detoasting should
236 * use VARSIZE_ANY/VARSIZE_ANY_EXHDR/VARDATA_ANY. The other macros here
237 * should usually be used only by tuple assembly/disassembly code and
238 * code that specifically wants to work with still-toasted Datums.
240 * WARNING: It is only safe to use VARDATA_ANY() -- typically with
241 * PG_DETOAST_DATUM_PACKED() -- if you really don't care about the alignment.
242 * Either because you're working with something like text where the alignment
243 * doesn't matter or because you're not going to access its constituent parts
244 * and just use things like memcpy on it anyways.
246 #define VARDATA(PTR) VARDATA_4B(PTR)
247 #define VARSIZE(PTR) VARSIZE_4B(PTR)
249 #define VARSIZE_SHORT(PTR) VARSIZE_1B(PTR)
250 #define VARDATA_SHORT(PTR) VARDATA_1B(PTR)
252 #define VARSIZE_EXTERNAL(PTR) VARSIZE_1B_E(PTR)
253 #define VARDATA_EXTERNAL(PTR) VARDATA_1B_E(PTR)
255 #define VARATT_IS_COMPRESSED(PTR) VARATT_IS_4B_C(PTR)
256 #define VARATT_IS_EXTERNAL(PTR) VARATT_IS_1B_E(PTR)
257 #define VARATT_IS_SHORT(PTR) VARATT_IS_1B(PTR)
258 #define VARATT_IS_EXTENDED(PTR) (!VARATT_IS_4B_U(PTR))
260 #define SET_VARSIZE(PTR, len) SET_VARSIZE_4B(PTR, len)
261 #define SET_VARSIZE_SHORT(PTR, len) SET_VARSIZE_1B(PTR, len)
262 #define SET_VARSIZE_COMPRESSED(PTR, len) SET_VARSIZE_4B_C(PTR, len)
263 #define SET_VARSIZE_EXTERNAL(PTR, len) SET_VARSIZE_1B_E(PTR, len)
265 #define VARSIZE_ANY(PTR) \
266 (VARATT_IS_1B_E(PTR) ? VARSIZE_1B_E(PTR) : \
267 (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR) : \
270 #define VARSIZE_ANY_EXHDR(PTR) \
271 (VARATT_IS_1B_E(PTR) ? VARSIZE_1B_E(PTR)-VARHDRSZ_EXTERNAL : \
272 (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR)-VARHDRSZ_SHORT : \
273 VARSIZE_4B(PTR)-VARHDRSZ))
275 /* caution: this will not work on an external or compressed-in-line Datum */
276 /* caution: this will return a possibly unaligned pointer */
277 #define VARDATA_ANY(PTR) \
278 (VARATT_IS_1B(PTR) ? VARDATA_1B(PTR) : VARDATA_4B(PTR))
281 /* ----------------------------------------------------------------
282 * Section 2: datum type + support macros
283 * ----------------------------------------------------------------
288 * Postgres makes the following assumption about machines:
290 * sizeof(Datum) == sizeof(long) >= sizeof(void *) >= 4
292 * Postgres also assumes that
300 * When a type narrower than Datum is stored in a Datum, we place it in the
301 * low-order bits and are careful that the DatumGetXXX macro for it discards
302 * the unused high-order bits (as opposed to, say, assuming they are zero).
303 * This is needed to support old-style user-defined functions, since depending
304 * on architecture and compiler, the return value of a function returning char
305 * or short may contain garbage when called as if it returned Datum.
308 typedef unsigned long Datum
; /* XXX sizeof(long) >= sizeof(void *) */
310 #define SIZEOF_DATUM SIZEOF_UNSIGNED_LONG
312 typedef Datum
*DatumPtr
;
314 #define GET_1_BYTE(datum) (((Datum) (datum)) & 0x000000ff)
315 #define GET_2_BYTES(datum) (((Datum) (datum)) & 0x0000ffff)
316 #define GET_4_BYTES(datum) (((Datum) (datum)) & 0xffffffff)
317 #if SIZEOF_DATUM == 8
318 #define GET_8_BYTES(datum) ((Datum) (datum))
320 #define SET_1_BYTE(value) (((Datum) (value)) & 0x000000ff)
321 #define SET_2_BYTES(value) (((Datum) (value)) & 0x0000ffff)
322 #define SET_4_BYTES(value) (((Datum) (value)) & 0xffffffff)
323 #if SIZEOF_DATUM == 8
324 #define SET_8_BYTES(value) ((Datum) (value))
329 * Returns boolean value of a datum.
331 * Note: any nonzero value will be considered TRUE, but we ignore bits to
332 * the left of the width of bool, per comment above.
335 #define DatumGetBool(X) ((bool) (((bool) (X)) != 0))
339 * Returns datum representation for a boolean.
341 * Note: any nonzero value will be considered TRUE.
344 #define BoolGetDatum(X) ((Datum) ((X) ? 1 : 0))
348 * Returns character value of a datum.
351 #define DatumGetChar(X) ((char) GET_1_BYTE(X))
355 * Returns datum representation for a character.
358 #define CharGetDatum(X) ((Datum) SET_1_BYTE(X))
362 * Returns datum representation for an 8-bit integer.
365 #define Int8GetDatum(X) ((Datum) SET_1_BYTE(X))
369 * Returns 8-bit unsigned integer value of a datum.
372 #define DatumGetUInt8(X) ((uint8) GET_1_BYTE(X))
376 * Returns datum representation for an 8-bit unsigned integer.
379 #define UInt8GetDatum(X) ((Datum) SET_1_BYTE(X))
383 * Returns 16-bit integer value of a datum.
386 #define DatumGetInt16(X) ((int16) GET_2_BYTES(X))
390 * Returns datum representation for a 16-bit integer.
393 #define Int16GetDatum(X) ((Datum) SET_2_BYTES(X))
397 * Returns 16-bit unsigned integer value of a datum.
400 #define DatumGetUInt16(X) ((uint16) GET_2_BYTES(X))
404 * Returns datum representation for a 16-bit unsigned integer.
407 #define UInt16GetDatum(X) ((Datum) SET_2_BYTES(X))
411 * Returns 32-bit integer value of a datum.
414 #define DatumGetInt32(X) ((int32) GET_4_BYTES(X))
418 * Returns datum representation for a 32-bit integer.
421 #define Int32GetDatum(X) ((Datum) SET_4_BYTES(X))
425 * Returns 32-bit unsigned integer value of a datum.
428 #define DatumGetUInt32(X) ((uint32) GET_4_BYTES(X))
432 * Returns datum representation for a 32-bit unsigned integer.
435 #define UInt32GetDatum(X) ((Datum) SET_4_BYTES(X))
439 * Returns object identifier value of a datum.
442 #define DatumGetObjectId(X) ((Oid) GET_4_BYTES(X))
446 * Returns datum representation for an object identifier.
449 #define ObjectIdGetDatum(X) ((Datum) SET_4_BYTES(X))
452 * DatumGetTransactionId
453 * Returns transaction identifier value of a datum.
456 #define DatumGetTransactionId(X) ((TransactionId) GET_4_BYTES(X))
459 * TransactionIdGetDatum
460 * Returns datum representation for a transaction identifier.
463 #define TransactionIdGetDatum(X) ((Datum) SET_4_BYTES((X)))
467 * Returns command identifier value of a datum.
470 #define DatumGetCommandId(X) ((CommandId) GET_4_BYTES(X))
474 * Returns datum representation for a command identifier.
477 #define CommandIdGetDatum(X) ((Datum) SET_4_BYTES(X))
481 * Returns pointer value of a datum.
484 #define DatumGetPointer(X) ((Pointer) (X))
488 * Returns datum representation for a pointer.
491 #define PointerGetDatum(X) ((Datum) (X))
495 * Returns C string (null-terminated string) value of a datum.
497 * Note: C string is not a full-fledged Postgres type at present,
498 * but type input functions use this conversion for their inputs.
501 #define DatumGetCString(X) ((char *) DatumGetPointer(X))
505 * Returns datum representation for a C string (null-terminated string).
507 * Note: C string is not a full-fledged Postgres type at present,
508 * but type output functions use this conversion for their outputs.
509 * Note: CString is pass-by-reference; caller must ensure the pointed-to
510 * value has adequate lifetime.
513 #define CStringGetDatum(X) PointerGetDatum(X)
517 * Returns name value of a datum.
520 #define DatumGetName(X) ((Name) DatumGetPointer(X))
524 * Returns datum representation for a name.
526 * Note: Name is pass-by-reference; caller must ensure the pointed-to
527 * value has adequate lifetime.
530 #define NameGetDatum(X) PointerGetDatum(X)
534 * Returns 64-bit integer value of a datum.
536 * Note: this macro hides whether int64 is pass by value or by reference.
539 #ifdef USE_FLOAT8_BYVAL
540 #define DatumGetInt64(X) ((int64) GET_8_BYTES(X))
542 #define DatumGetInt64(X) (* ((int64 *) DatumGetPointer(X)))
547 * Returns datum representation for a 64-bit integer.
549 * Note: if int64 is pass by reference, this function returns a reference
553 #ifdef USE_FLOAT8_BYVAL
554 #define Int64GetDatum(X) ((Datum) SET_8_BYTES(X))
556 extern Datum
Int64GetDatum(int64 X
);
561 * Returns 4-byte floating point value of a datum.
563 * Note: this macro hides whether float4 is pass by value or by reference.
566 #ifdef USE_FLOAT4_BYVAL
567 extern float4
DatumGetFloat4(Datum X
);
569 #define DatumGetFloat4(X) (* ((float4 *) DatumGetPointer(X)))
574 * Returns datum representation for a 4-byte floating point number.
576 * Note: if float4 is pass by reference, this function returns a reference
580 extern Datum
Float4GetDatum(float4 X
);
584 * Returns 8-byte floating point value of a datum.
586 * Note: this macro hides whether float8 is pass by value or by reference.
589 #ifdef USE_FLOAT8_BYVAL
590 extern float8
DatumGetFloat8(Datum X
);
592 #define DatumGetFloat8(X) (* ((float8 *) DatumGetPointer(X)))
597 * Returns datum representation for an 8-byte floating point number.
599 * Note: if float8 is pass by reference, this function returns a reference
603 extern Datum
Float8GetDatum(float8 X
);
611 * These macros are intended to allow writing code that does not depend on
612 * whether int64, float8, float4 are pass-by-reference types, while not
613 * sacrificing performance when they are. The argument must be a variable
614 * that will exist and have the same value for as long as the Datum is needed.
615 * In the pass-by-ref case, the address of the variable is taken to use as
616 * the Datum. In the pass-by-val case, these will be the same as the non-Fast
620 #ifdef USE_FLOAT8_BYVAL
621 #define Int64GetDatumFast(X) Int64GetDatum(X)
622 #define Float8GetDatumFast(X) Float8GetDatum(X)
624 #define Int64GetDatumFast(X) PointerGetDatum(&(X))
625 #define Float8GetDatumFast(X) PointerGetDatum(&(X))
628 #ifdef USE_FLOAT4_BYVAL
629 #define Float4GetDatumFast(X) Float4GetDatum(X)
631 #define Float4GetDatumFast(X) PointerGetDatum(&(X))
635 /* ----------------------------------------------------------------
636 * Section 3: exception handling definitions
637 * Assert, Trap, etc macros
638 * ----------------------------------------------------------------
641 extern PGDLLIMPORT
bool assert_enabled
;
644 * USE_ASSERT_CHECKING, if defined, turns on all the assertions.
647 * It should _NOT_ be defined in releases or in benchmark copies
652 * Generates an exception if the given condition is true.
654 #define Trap(condition, errorType) \
656 if ((assert_enabled) && (condition)) \
657 ExceptionalCondition(CppAsString(condition), (errorType), \
658 __FILE__, __LINE__); \
662 * TrapMacro is the same as Trap but it's intended for use in macros:
664 * #define foo(x) (AssertMacro(x != 0) && bar(x))
668 #define TrapMacro(condition, errorType) \
669 ((bool) ((! assert_enabled) || ! (condition) || \
670 (ExceptionalCondition(CppAsString(condition), (errorType), \
671 __FILE__, __LINE__))))
673 #ifndef USE_ASSERT_CHECKING
674 #define Assert(condition)
675 #define AssertMacro(condition) ((void)true)
676 #define AssertArg(condition)
677 #define AssertState(condition)
679 #define Assert(condition) \
680 Trap(!(condition), "FailedAssertion")
682 #define AssertMacro(condition) \
683 ((void) TrapMacro(!(condition), "FailedAssertion"))
685 #define AssertArg(condition) \
686 Trap(!(condition), "BadArgument")
688 #define AssertState(condition) \
689 Trap(!(condition), "BadState")
690 #endif /* USE_ASSERT_CHECKING */
692 extern int ExceptionalCondition(const char *conditionName
,
693 const char *errorType
,
694 const char *fileName
, int lineNumber
);
696 #endif /* POSTGRES_H */