Fix oversight in previous error-reporting patch; mustn't pfree path string
[PostgreSQL.git] / src / backend / optimizer / path / pathkeys.c
blob9e555c9bac52fc325831e93f080fee82b7a4ad7d
1 /*-------------------------------------------------------------------------
3 * pathkeys.c
4 * Utilities for matching and building path keys
6 * See src/backend/optimizer/README for a great deal of information about
7 * the nature and use of path keys.
10 * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
11 * Portions Copyright (c) 1994, Regents of the University of California
13 * IDENTIFICATION
14 * $PostgreSQL$
16 *-------------------------------------------------------------------------
18 #include "postgres.h"
20 #include "access/skey.h"
21 #include "catalog/pg_type.h"
22 #include "nodes/makefuncs.h"
23 #include "nodes/nodeFuncs.h"
24 #include "nodes/plannodes.h"
25 #include "optimizer/clauses.h"
26 #include "optimizer/pathnode.h"
27 #include "optimizer/paths.h"
28 #include "optimizer/tlist.h"
29 #include "parser/parsetree.h"
30 #include "utils/lsyscache.h"
33 static PathKey *makePathKey(EquivalenceClass *eclass, Oid opfamily,
34 int strategy, bool nulls_first);
35 static PathKey *make_canonical_pathkey(PlannerInfo *root,
36 EquivalenceClass *eclass, Oid opfamily,
37 int strategy, bool nulls_first);
38 static bool pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys);
39 static PathKey *make_pathkey_from_sortinfo(PlannerInfo *root,
40 Expr *expr, Oid ordering_op,
41 bool nulls_first,
42 Index sortref,
43 bool canonicalize);
44 static Var *find_indexkey_var(PlannerInfo *root, RelOptInfo *rel,
45 AttrNumber varattno);
46 static bool right_merge_direction(PlannerInfo *root, PathKey *pathkey);
49 /****************************************************************************
50 * PATHKEY CONSTRUCTION AND REDUNDANCY TESTING
51 ****************************************************************************/
54 * makePathKey
55 * create a PathKey node
57 * This does not promise to create a canonical PathKey, it's merely a
58 * convenience routine to build the specified node.
60 static PathKey *
61 makePathKey(EquivalenceClass *eclass, Oid opfamily,
62 int strategy, bool nulls_first)
64 PathKey *pk = makeNode(PathKey);
66 pk->pk_eclass = eclass;
67 pk->pk_opfamily = opfamily;
68 pk->pk_strategy = strategy;
69 pk->pk_nulls_first = nulls_first;
71 return pk;
75 * make_canonical_pathkey
76 * Given the parameters for a PathKey, find any pre-existing matching
77 * pathkey in the query's list of "canonical" pathkeys. Make a new
78 * entry if there's not one already.
80 * Note that this function must not be used until after we have completed
81 * merging EquivalenceClasses.
83 static PathKey *
84 make_canonical_pathkey(PlannerInfo *root,
85 EquivalenceClass *eclass, Oid opfamily,
86 int strategy, bool nulls_first)
88 PathKey *pk;
89 ListCell *lc;
90 MemoryContext oldcontext;
92 /* The passed eclass might be non-canonical, so chase up to the top */
93 while (eclass->ec_merged)
94 eclass = eclass->ec_merged;
96 foreach(lc, root->canon_pathkeys)
98 pk = (PathKey *) lfirst(lc);
99 if (eclass == pk->pk_eclass &&
100 opfamily == pk->pk_opfamily &&
101 strategy == pk->pk_strategy &&
102 nulls_first == pk->pk_nulls_first)
103 return pk;
107 * Be sure canonical pathkeys are allocated in the main planning context.
108 * Not an issue in normal planning, but it is for GEQO.
110 oldcontext = MemoryContextSwitchTo(root->planner_cxt);
112 pk = makePathKey(eclass, opfamily, strategy, nulls_first);
113 root->canon_pathkeys = lappend(root->canon_pathkeys, pk);
115 MemoryContextSwitchTo(oldcontext);
117 return pk;
121 * pathkey_is_redundant
122 * Is a pathkey redundant with one already in the given list?
124 * Both the given pathkey and the list members must be canonical for this
125 * to work properly. We detect two cases:
127 * 1. If the new pathkey's equivalence class contains a constant, and isn't
128 * below an outer join, then we can disregard it as a sort key. An example:
129 * SELECT ... WHERE x = 42 ORDER BY x, y;
130 * We may as well just sort by y. Note that because of opfamily matching,
131 * this is semantically correct: we know that the equality constraint is one
132 * that actually binds the variable to a single value in the terms of any
133 * ordering operator that might go with the eclass. This rule not only lets
134 * us simplify (or even skip) explicit sorts, but also allows matching index
135 * sort orders to a query when there are don't-care index columns.
137 * 2. If the new pathkey's equivalence class is the same as that of any
138 * existing member of the pathkey list, then it is redundant. Some examples:
139 * SELECT ... ORDER BY x, x;
140 * SELECT ... ORDER BY x, x DESC;
141 * SELECT ... WHERE x = y ORDER BY x, y;
142 * In all these cases the second sort key cannot distinguish values that are
143 * considered equal by the first, and so there's no point in using it.
144 * Note in particular that we need not compare opfamily (all the opfamilies
145 * of the EC have the same notion of equality) nor sort direction.
147 * Because the equivclass.c machinery forms only one copy of any EC per query,
148 * pointer comparison is enough to decide whether canonical ECs are the same.
150 static bool
151 pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys)
153 EquivalenceClass *new_ec = new_pathkey->pk_eclass;
154 ListCell *lc;
156 /* Assert we've been given canonical pathkeys */
157 Assert(!new_ec->ec_merged);
159 /* Check for EC containing a constant --- unconditionally redundant */
160 if (EC_MUST_BE_REDUNDANT(new_ec))
161 return true;
163 /* If same EC already used in list, then redundant */
164 foreach(lc, pathkeys)
166 PathKey *old_pathkey = (PathKey *) lfirst(lc);
168 /* Assert we've been given canonical pathkeys */
169 Assert(!old_pathkey->pk_eclass->ec_merged);
171 if (new_ec == old_pathkey->pk_eclass)
172 return true;
175 return false;
179 * canonicalize_pathkeys
180 * Convert a not-necessarily-canonical pathkeys list to canonical form.
182 * Note that this function must not be used until after we have completed
183 * merging EquivalenceClasses.
185 List *
186 canonicalize_pathkeys(PlannerInfo *root, List *pathkeys)
188 List *new_pathkeys = NIL;
189 ListCell *l;
191 foreach(l, pathkeys)
193 PathKey *pathkey = (PathKey *) lfirst(l);
194 EquivalenceClass *eclass;
195 PathKey *cpathkey;
197 /* Find the canonical (merged) EquivalenceClass */
198 eclass = pathkey->pk_eclass;
199 while (eclass->ec_merged)
200 eclass = eclass->ec_merged;
203 * If we can tell it's redundant just from the EC, skip.
204 * pathkey_is_redundant would notice that, but we needn't even bother
205 * constructing the node...
207 if (EC_MUST_BE_REDUNDANT(eclass))
208 continue;
210 /* OK, build a canonicalized PathKey struct */
211 cpathkey = make_canonical_pathkey(root,
212 eclass,
213 pathkey->pk_opfamily,
214 pathkey->pk_strategy,
215 pathkey->pk_nulls_first);
217 /* Add to list unless redundant */
218 if (!pathkey_is_redundant(cpathkey, new_pathkeys))
219 new_pathkeys = lappend(new_pathkeys, cpathkey);
221 return new_pathkeys;
225 * make_pathkey_from_sortinfo
226 * Given an expression, a sortop, and a nulls-first flag, create
227 * a PathKey. If canonicalize = true, the result is a "canonical"
228 * PathKey, otherwise not. (But note it might be redundant anyway.)
230 * If the PathKey is being generated from a SortGroupClause, sortref should be
231 * the SortGroupClause's SortGroupRef; otherwise zero.
233 * canonicalize should always be TRUE after EquivalenceClass merging has
234 * been performed, but FALSE if we haven't done EquivalenceClass merging yet.
236 static PathKey *
237 make_pathkey_from_sortinfo(PlannerInfo *root,
238 Expr *expr, Oid ordering_op,
239 bool nulls_first,
240 Index sortref,
241 bool canonicalize)
243 Oid opfamily,
244 opcintype;
245 int16 strategy;
246 Oid equality_op;
247 List *opfamilies;
248 EquivalenceClass *eclass;
251 * An ordering operator fully determines the behavior of its opfamily, so
252 * could only meaningfully appear in one family --- or perhaps two if one
253 * builds a reverse-sort opfamily, but there's not much point in that
254 * anymore. But EquivalenceClasses need to contain opfamily lists based
255 * on the family membership of equality operators, which could easily be
256 * bigger. So, look up the equality operator that goes with the ordering
257 * operator (this should be unique) and get its membership.
260 /* Find the operator in pg_amop --- failure shouldn't happen */
261 if (!get_ordering_op_properties(ordering_op,
262 &opfamily, &opcintype, &strategy))
263 elog(ERROR, "operator %u is not a valid ordering operator",
264 ordering_op);
265 /* Get matching equality operator */
266 equality_op = get_opfamily_member(opfamily,
267 opcintype,
268 opcintype,
269 BTEqualStrategyNumber);
270 if (!OidIsValid(equality_op)) /* shouldn't happen */
271 elog(ERROR, "could not find equality operator for ordering operator %u",
272 ordering_op);
273 opfamilies = get_mergejoin_opfamilies(equality_op);
274 if (!opfamilies) /* certainly should find some */
275 elog(ERROR, "could not find opfamilies for ordering operator %u",
276 ordering_op);
279 * When dealing with binary-compatible opclasses, we have to ensure that
280 * the exposed type of the expression tree matches the declared input type
281 * of the opclass, except when that is a polymorphic type (compare the
282 * behavior of parse_coerce.c). This ensures that we can correctly match
283 * the indexkey or sortclause expression to other expressions we find in
284 * the query, because arguments of ordinary operator expressions will be
285 * cast that way. (We have to do this for indexkeys because they are
286 * represented without any explicit relabel in pg_index, and for sort
287 * clauses because the parser is likewise cavalier about putting relabels
288 * on them.)
290 if (exprType((Node *) expr) != opcintype &&
291 !IsPolymorphicType(opcintype))
293 /* Strip any existing RelabelType, and add a new one if needed */
294 while (expr && IsA(expr, RelabelType))
295 expr = (Expr *) ((RelabelType *) expr)->arg;
296 if (exprType((Node *) expr) != opcintype)
297 expr = (Expr *) makeRelabelType(expr,
298 opcintype,
300 COERCE_DONTCARE);
303 /* Now find or create a matching EquivalenceClass */
304 eclass = get_eclass_for_sort_expr(root, expr, opcintype, opfamilies,
305 sortref);
307 /* And finally we can find or create a PathKey node */
308 if (canonicalize)
309 return make_canonical_pathkey(root, eclass, opfamily,
310 strategy, nulls_first);
311 else
312 return makePathKey(eclass, opfamily, strategy, nulls_first);
316 /****************************************************************************
317 * PATHKEY COMPARISONS
318 ****************************************************************************/
321 * compare_pathkeys
322 * Compare two pathkeys to see if they are equivalent, and if not whether
323 * one is "better" than the other.
325 * This function may only be applied to canonicalized pathkey lists.
326 * In the canonical representation, pathkeys can be checked for equality
327 * by simple pointer comparison.
329 PathKeysComparison
330 compare_pathkeys(List *keys1, List *keys2)
332 ListCell *key1,
333 *key2;
335 forboth(key1, keys1, key2, keys2)
337 PathKey *pathkey1 = (PathKey *) lfirst(key1);
338 PathKey *pathkey2 = (PathKey *) lfirst(key2);
341 * XXX would like to check that we've been given canonicalized input,
342 * but PlannerInfo not accessible here...
344 #ifdef NOT_USED
345 Assert(list_member_ptr(root->canon_pathkeys, pathkey1));
346 Assert(list_member_ptr(root->canon_pathkeys, pathkey2));
347 #endif
349 if (pathkey1 != pathkey2)
350 return PATHKEYS_DIFFERENT; /* no need to keep looking */
354 * If we reached the end of only one list, the other is longer and
355 * therefore not a subset.
357 if (key1 == NULL && key2 == NULL)
358 return PATHKEYS_EQUAL;
359 if (key1 != NULL)
360 return PATHKEYS_BETTER1; /* key1 is longer */
361 return PATHKEYS_BETTER2; /* key2 is longer */
365 * pathkeys_contained_in
366 * Common special case of compare_pathkeys: we just want to know
367 * if keys2 are at least as well sorted as keys1.
369 bool
370 pathkeys_contained_in(List *keys1, List *keys2)
372 switch (compare_pathkeys(keys1, keys2))
374 case PATHKEYS_EQUAL:
375 case PATHKEYS_BETTER2:
376 return true;
377 default:
378 break;
380 return false;
384 * get_cheapest_path_for_pathkeys
385 * Find the cheapest path (according to the specified criterion) that
386 * satisfies the given pathkeys. Return NULL if no such path.
388 * 'paths' is a list of possible paths that all generate the same relation
389 * 'pathkeys' represents a required ordering (already canonicalized!)
390 * 'cost_criterion' is STARTUP_COST or TOTAL_COST
392 Path *
393 get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
394 CostSelector cost_criterion)
396 Path *matched_path = NULL;
397 ListCell *l;
399 foreach(l, paths)
401 Path *path = (Path *) lfirst(l);
404 * Since cost comparison is a lot cheaper than pathkey comparison, do
405 * that first. (XXX is that still true?)
407 if (matched_path != NULL &&
408 compare_path_costs(matched_path, path, cost_criterion) <= 0)
409 continue;
411 if (pathkeys_contained_in(pathkeys, path->pathkeys))
412 matched_path = path;
414 return matched_path;
418 * get_cheapest_fractional_path_for_pathkeys
419 * Find the cheapest path (for retrieving a specified fraction of all
420 * the tuples) that satisfies the given pathkeys.
421 * Return NULL if no such path.
423 * See compare_fractional_path_costs() for the interpretation of the fraction
424 * parameter.
426 * 'paths' is a list of possible paths that all generate the same relation
427 * 'pathkeys' represents a required ordering (already canonicalized!)
428 * 'fraction' is the fraction of the total tuples expected to be retrieved
430 Path *
431 get_cheapest_fractional_path_for_pathkeys(List *paths,
432 List *pathkeys,
433 double fraction)
435 Path *matched_path = NULL;
436 ListCell *l;
438 foreach(l, paths)
440 Path *path = (Path *) lfirst(l);
443 * Since cost comparison is a lot cheaper than pathkey comparison, do
444 * that first.
446 if (matched_path != NULL &&
447 compare_fractional_path_costs(matched_path, path, fraction) <= 0)
448 continue;
450 if (pathkeys_contained_in(pathkeys, path->pathkeys))
451 matched_path = path;
453 return matched_path;
456 /****************************************************************************
457 * NEW PATHKEY FORMATION
458 ****************************************************************************/
461 * build_index_pathkeys
462 * Build a pathkeys list that describes the ordering induced by an index
463 * scan using the given index. (Note that an unordered index doesn't
464 * induce any ordering; such an index will have no sortop OIDS in
465 * its sortops arrays, and we will return NIL.)
467 * If 'scandir' is BackwardScanDirection, attempt to build pathkeys
468 * representing a backwards scan of the index. Return NIL if can't do it.
470 * The result is canonical, meaning that redundant pathkeys are removed;
471 * it may therefore have fewer entries than there are index columns.
473 * We generate the full pathkeys list whether or not all are useful for the
474 * current query. Caller should do truncate_useless_pathkeys().
476 List *
477 build_index_pathkeys(PlannerInfo *root,
478 IndexOptInfo *index,
479 ScanDirection scandir)
481 List *retval = NIL;
482 ListCell *indexprs_item = list_head(index->indexprs);
483 int i;
485 for (i = 0; i < index->ncolumns; i++)
487 Oid sortop;
488 bool nulls_first;
489 int ikey;
490 Expr *indexkey;
491 PathKey *cpathkey;
493 if (ScanDirectionIsBackward(scandir))
495 sortop = index->revsortop[i];
496 nulls_first = !index->nulls_first[i];
498 else
500 sortop = index->fwdsortop[i];
501 nulls_first = index->nulls_first[i];
504 if (!OidIsValid(sortop))
505 break; /* no more orderable columns */
507 ikey = index->indexkeys[i];
508 if (ikey != 0)
510 /* simple index column */
511 indexkey = (Expr *) find_indexkey_var(root, index->rel, ikey);
513 else
515 /* expression --- assume we need not copy it */
516 if (indexprs_item == NULL)
517 elog(ERROR, "wrong number of index expressions");
518 indexkey = (Expr *) lfirst(indexprs_item);
519 indexprs_item = lnext(indexprs_item);
522 /* OK, make a canonical pathkey for this sort key */
523 cpathkey = make_pathkey_from_sortinfo(root,
524 indexkey,
525 sortop,
526 nulls_first,
528 true);
530 /* Add to list unless redundant */
531 if (!pathkey_is_redundant(cpathkey, retval))
532 retval = lappend(retval, cpathkey);
535 return retval;
539 * Find or make a Var node for the specified attribute of the rel.
541 * We first look for the var in the rel's target list, because that's
542 * easy and fast. But the var might not be there (this should normally
543 * only happen for vars that are used in WHERE restriction clauses,
544 * but not in join clauses or in the SELECT target list). In that case,
545 * gin up a Var node the hard way.
547 static Var *
548 find_indexkey_var(PlannerInfo *root, RelOptInfo *rel, AttrNumber varattno)
550 ListCell *temp;
551 Index relid;
552 Oid reloid,
553 vartypeid;
554 int32 type_mod;
556 foreach(temp, rel->reltargetlist)
558 Var *var = (Var *) lfirst(temp);
560 if (IsA(var, Var) &&
561 var->varattno == varattno)
562 return var;
565 relid = rel->relid;
566 reloid = getrelid(relid, root->parse->rtable);
567 get_atttypetypmod(reloid, varattno, &vartypeid, &type_mod);
569 return makeVar(relid, varattno, vartypeid, type_mod, 0);
573 * convert_subquery_pathkeys
574 * Build a pathkeys list that describes the ordering of a subquery's
575 * result, in the terms of the outer query. This is essentially a
576 * task of conversion.
578 * 'rel': outer query's RelOptInfo for the subquery relation.
579 * 'subquery_pathkeys': the subquery's output pathkeys, in its terms.
581 * It is not necessary for caller to do truncate_useless_pathkeys(),
582 * because we select keys in a way that takes usefulness of the keys into
583 * account.
585 List *
586 convert_subquery_pathkeys(PlannerInfo *root, RelOptInfo *rel,
587 List *subquery_pathkeys)
589 List *retval = NIL;
590 int retvallen = 0;
591 int outer_query_keys = list_length(root->query_pathkeys);
592 List *sub_tlist = rel->subplan->targetlist;
593 ListCell *i;
595 foreach(i, subquery_pathkeys)
597 PathKey *sub_pathkey = (PathKey *) lfirst(i);
598 EquivalenceClass *sub_eclass = sub_pathkey->pk_eclass;
599 PathKey *best_pathkey = NULL;
601 if (sub_eclass->ec_has_volatile)
604 * If the sub_pathkey's EquivalenceClass is volatile, then it must
605 * have come from an ORDER BY clause, and we have to match it to
606 * that same targetlist entry.
608 TargetEntry *tle;
610 if (sub_eclass->ec_sortref == 0) /* can't happen */
611 elog(ERROR, "volatile EquivalenceClass has no sortref");
612 tle = get_sortgroupref_tle(sub_eclass->ec_sortref, sub_tlist);
613 Assert(tle);
614 /* resjunk items aren't visible to outer query */
615 if (!tle->resjunk)
617 /* We can represent this sub_pathkey */
618 EquivalenceMember *sub_member;
619 Expr *outer_expr;
620 EquivalenceClass *outer_ec;
622 Assert(list_length(sub_eclass->ec_members) == 1);
623 sub_member = (EquivalenceMember *) linitial(sub_eclass->ec_members);
624 outer_expr = (Expr *)
625 makeVar(rel->relid,
626 tle->resno,
627 exprType((Node *) tle->expr),
628 exprTypmod((Node *) tle->expr),
630 outer_ec =
631 get_eclass_for_sort_expr(root,
632 outer_expr,
633 sub_member->em_datatype,
634 sub_eclass->ec_opfamilies,
636 best_pathkey =
637 make_canonical_pathkey(root,
638 outer_ec,
639 sub_pathkey->pk_opfamily,
640 sub_pathkey->pk_strategy,
641 sub_pathkey->pk_nulls_first);
644 else
647 * Otherwise, the sub_pathkey's EquivalenceClass could contain
648 * multiple elements (representing knowledge that multiple items
649 * are effectively equal). Each element might match none, one, or
650 * more of the output columns that are visible to the outer query.
651 * This means we may have multiple possible representations of the
652 * sub_pathkey in the context of the outer query. Ideally we
653 * would generate them all and put them all into an EC of the
654 * outer query, thereby propagating equality knowledge up to the
655 * outer query. Right now we cannot do so, because the outer
656 * query's EquivalenceClasses are already frozen when this is
657 * called. Instead we prefer the one that has the highest "score"
658 * (number of EC peers, plus one if it matches the outer
659 * query_pathkeys). This is the most likely to be useful in the
660 * outer query.
662 int best_score = -1;
663 ListCell *j;
665 foreach(j, sub_eclass->ec_members)
667 EquivalenceMember *sub_member = (EquivalenceMember *) lfirst(j);
668 Expr *sub_expr = sub_member->em_expr;
669 Expr *sub_stripped;
670 ListCell *k;
673 * We handle two cases: the sub_pathkey key can be either an
674 * exact match for a targetlist entry, or it could match after
675 * stripping RelabelType nodes. (We need that case since
676 * make_pathkey_from_sortinfo could add or remove
677 * RelabelType.)
679 sub_stripped = sub_expr;
680 while (sub_stripped && IsA(sub_stripped, RelabelType))
681 sub_stripped = ((RelabelType *) sub_stripped)->arg;
683 foreach(k, sub_tlist)
685 TargetEntry *tle = (TargetEntry *) lfirst(k);
686 Expr *outer_expr;
687 EquivalenceClass *outer_ec;
688 PathKey *outer_pk;
689 int score;
691 /* resjunk items aren't visible to outer query */
692 if (tle->resjunk)
693 continue;
695 if (equal(tle->expr, sub_expr))
697 /* Exact match */
698 outer_expr = (Expr *)
699 makeVar(rel->relid,
700 tle->resno,
701 exprType((Node *) tle->expr),
702 exprTypmod((Node *) tle->expr),
705 else
707 Expr *tle_stripped;
709 tle_stripped = tle->expr;
710 while (tle_stripped && IsA(tle_stripped, RelabelType))
711 tle_stripped = ((RelabelType *) tle_stripped)->arg;
713 if (equal(tle_stripped, sub_stripped))
715 /* Match after discarding RelabelType */
716 outer_expr = (Expr *)
717 makeVar(rel->relid,
718 tle->resno,
719 exprType((Node *) tle->expr),
720 exprTypmod((Node *) tle->expr),
722 if (exprType((Node *) outer_expr) !=
723 exprType((Node *) sub_expr))
724 outer_expr = (Expr *)
725 makeRelabelType(outer_expr,
726 exprType((Node *) sub_expr),
728 COERCE_DONTCARE);
730 else
731 continue;
734 /* Found a representation for this sub_pathkey */
735 outer_ec = get_eclass_for_sort_expr(root,
736 outer_expr,
737 sub_member->em_datatype,
738 sub_eclass->ec_opfamilies,
740 outer_pk = make_canonical_pathkey(root,
741 outer_ec,
742 sub_pathkey->pk_opfamily,
743 sub_pathkey->pk_strategy,
744 sub_pathkey->pk_nulls_first);
745 /* score = # of equivalence peers */
746 score = list_length(outer_ec->ec_members) - 1;
747 /* +1 if it matches the proper query_pathkeys item */
748 if (retvallen < outer_query_keys &&
749 list_nth(root->query_pathkeys, retvallen) == outer_pk)
750 score++;
751 if (score > best_score)
753 best_pathkey = outer_pk;
754 best_score = score;
761 * If we couldn't find a representation of this sub_pathkey, we're
762 * done (we can't use the ones to its right, either).
764 if (!best_pathkey)
765 break;
768 * Eliminate redundant ordering info; could happen if outer query
769 * equivalences subquery keys...
771 if (!pathkey_is_redundant(best_pathkey, retval))
773 retval = lappend(retval, best_pathkey);
774 retvallen++;
778 return retval;
782 * build_join_pathkeys
783 * Build the path keys for a join relation constructed by mergejoin or
784 * nestloop join. This is normally the same as the outer path's keys.
786 * EXCEPTION: in a FULL or RIGHT join, we cannot treat the result as
787 * having the outer path's path keys, because null lefthand rows may be
788 * inserted at random points. It must be treated as unsorted.
790 * We truncate away any pathkeys that are uninteresting for higher joins.
792 * 'joinrel' is the join relation that paths are being formed for
793 * 'jointype' is the join type (inner, left, full, etc)
794 * 'outer_pathkeys' is the list of the current outer path's path keys
796 * Returns the list of new path keys.
798 List *
799 build_join_pathkeys(PlannerInfo *root,
800 RelOptInfo *joinrel,
801 JoinType jointype,
802 List *outer_pathkeys)
804 if (jointype == JOIN_FULL || jointype == JOIN_RIGHT)
805 return NIL;
808 * This used to be quite a complex bit of code, but now that all pathkey
809 * sublists start out life canonicalized, we don't have to do a darn thing
810 * here!
812 * We do, however, need to truncate the pathkeys list, since it may
813 * contain pathkeys that were useful for forming this joinrel but are
814 * uninteresting to higher levels.
816 return truncate_useless_pathkeys(root, joinrel, outer_pathkeys);
819 /****************************************************************************
820 * PATHKEYS AND SORT CLAUSES
821 ****************************************************************************/
824 * make_pathkeys_for_sortclauses
825 * Generate a pathkeys list that represents the sort order specified
826 * by a list of SortGroupClauses
828 * If canonicalize is TRUE, the resulting PathKeys are all in canonical form;
829 * otherwise not. canonicalize should always be TRUE after EquivalenceClass
830 * merging has been performed, but FALSE if we haven't done EquivalenceClass
831 * merging yet. (We provide this option because grouping_planner() needs to
832 * be able to represent requested pathkeys before the equivalence classes have
833 * been created for the query.)
835 * 'sortclauses' is a list of SortGroupClause nodes
836 * 'tlist' is the targetlist to find the referenced tlist entries in
838 List *
839 make_pathkeys_for_sortclauses(PlannerInfo *root,
840 List *sortclauses,
841 List *tlist,
842 bool canonicalize)
844 List *pathkeys = NIL;
845 ListCell *l;
847 foreach(l, sortclauses)
849 SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
850 Expr *sortkey;
851 PathKey *pathkey;
853 sortkey = (Expr *) get_sortgroupclause_expr(sortcl, tlist);
854 Assert(OidIsValid(sortcl->sortop));
855 pathkey = make_pathkey_from_sortinfo(root,
856 sortkey,
857 sortcl->sortop,
858 sortcl->nulls_first,
859 sortcl->tleSortGroupRef,
860 canonicalize);
862 /* Canonical form eliminates redundant ordering keys */
863 if (canonicalize)
865 if (!pathkey_is_redundant(pathkey, pathkeys))
866 pathkeys = lappend(pathkeys, pathkey);
868 else
869 pathkeys = lappend(pathkeys, pathkey);
871 return pathkeys;
874 /****************************************************************************
875 * PATHKEYS AND MERGECLAUSES
876 ****************************************************************************/
879 * cache_mergeclause_eclasses
880 * Make the cached EquivalenceClass links valid in a mergeclause
881 * restrictinfo.
883 * RestrictInfo contains fields in which we may cache pointers to
884 * EquivalenceClasses for the left and right inputs of the mergeclause.
885 * (If the mergeclause is a true equivalence clause these will be the
886 * same EquivalenceClass, otherwise not.)
888 void
889 cache_mergeclause_eclasses(PlannerInfo *root, RestrictInfo *restrictinfo)
891 Assert(restrictinfo->mergeopfamilies != NIL);
893 /* the cached values should be either both set or both not */
894 if (restrictinfo->left_ec == NULL)
896 Expr *clause = restrictinfo->clause;
897 Oid lefttype,
898 righttype;
900 /* Need the declared input types of the operator */
901 op_input_types(((OpExpr *) clause)->opno, &lefttype, &righttype);
903 /* Find or create a matching EquivalenceClass for each side */
904 restrictinfo->left_ec =
905 get_eclass_for_sort_expr(root,
906 (Expr *) get_leftop(clause),
907 lefttype,
908 restrictinfo->mergeopfamilies,
910 restrictinfo->right_ec =
911 get_eclass_for_sort_expr(root,
912 (Expr *) get_rightop(clause),
913 righttype,
914 restrictinfo->mergeopfamilies,
917 else
918 Assert(restrictinfo->right_ec != NULL);
922 * find_mergeclauses_for_pathkeys
923 * This routine attempts to find a set of mergeclauses that can be
924 * used with a specified ordering for one of the input relations.
925 * If successful, it returns a list of mergeclauses.
927 * 'pathkeys' is a pathkeys list showing the ordering of an input path.
928 * 'outer_keys' is TRUE if these keys are for the outer input path,
929 * FALSE if for inner.
930 * 'restrictinfos' is a list of mergejoinable restriction clauses for the
931 * join relation being formed.
933 * The restrictinfos must be marked (via outer_is_left) to show which side
934 * of each clause is associated with the current outer path. (See
935 * select_mergejoin_clauses())
937 * The result is NIL if no merge can be done, else a maximal list of
938 * usable mergeclauses (represented as a list of their restrictinfo nodes).
940 List *
941 find_mergeclauses_for_pathkeys(PlannerInfo *root,
942 List *pathkeys,
943 bool outer_keys,
944 List *restrictinfos)
946 List *mergeclauses = NIL;
947 ListCell *i;
949 /* make sure we have eclasses cached in the clauses */
950 foreach(i, restrictinfos)
952 RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
954 cache_mergeclause_eclasses(root, rinfo);
957 foreach(i, pathkeys)
959 PathKey *pathkey = (PathKey *) lfirst(i);
960 EquivalenceClass *pathkey_ec = pathkey->pk_eclass;
961 List *matched_restrictinfos = NIL;
962 ListCell *j;
964 /*----------
965 * A mergejoin clause matches a pathkey if it has the same EC.
966 * If there are multiple matching clauses, take them all. In plain
967 * inner-join scenarios we expect only one match, because
968 * equivalence-class processing will have removed any redundant
969 * mergeclauses. However, in outer-join scenarios there might be
970 * multiple matches. An example is
972 * select * from a full join b
973 * on a.v1 = b.v1 and a.v2 = b.v2 and a.v1 = b.v2;
975 * Given the pathkeys ({a.v1}, {a.v2}) it is okay to return all three
976 * clauses (in the order a.v1=b.v1, a.v1=b.v2, a.v2=b.v2) and indeed
977 * we *must* do so or we will be unable to form a valid plan.
979 * We expect that the given pathkeys list is canonical, which means
980 * no two members have the same EC, so it's not possible for this
981 * code to enter the same mergeclause into the result list twice.
983 * XXX it's possible that multiple matching clauses might have
984 * different ECs on the other side, in which case the order we put
985 * them into our result makes a difference in the pathkeys required
986 * for the other input path. However this routine hasn't got any info
987 * about which order would be best, so for now we disregard that case
988 * (which is probably a corner case anyway).
989 *----------
991 foreach(j, restrictinfos)
993 RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
994 EquivalenceClass *clause_ec;
996 if (outer_keys)
997 clause_ec = rinfo->outer_is_left ?
998 rinfo->left_ec : rinfo->right_ec;
999 else
1000 clause_ec = rinfo->outer_is_left ?
1001 rinfo->right_ec : rinfo->left_ec;
1002 if (clause_ec == pathkey_ec)
1003 matched_restrictinfos = lappend(matched_restrictinfos, rinfo);
1007 * If we didn't find a mergeclause, we're done --- any additional
1008 * sort-key positions in the pathkeys are useless. (But we can still
1009 * mergejoin if we found at least one mergeclause.)
1011 if (matched_restrictinfos == NIL)
1012 break;
1015 * If we did find usable mergeclause(s) for this sort-key position,
1016 * add them to result list.
1018 mergeclauses = list_concat(mergeclauses, matched_restrictinfos);
1021 return mergeclauses;
1025 * select_outer_pathkeys_for_merge
1026 * Builds a pathkey list representing a possible sort ordering
1027 * that can be used with the given mergeclauses.
1029 * 'mergeclauses' is a list of RestrictInfos for mergejoin clauses
1030 * that will be used in a merge join.
1031 * 'joinrel' is the join relation we are trying to construct.
1033 * The restrictinfos must be marked (via outer_is_left) to show which side
1034 * of each clause is associated with the current outer path. (See
1035 * select_mergejoin_clauses())
1037 * Returns a pathkeys list that can be applied to the outer relation.
1039 * Since we assume here that a sort is required, there is no particular use
1040 * in matching any available ordering of the outerrel. (joinpath.c has an
1041 * entirely separate code path for considering sort-free mergejoins.) Rather,
1042 * it's interesting to try to match the requested query_pathkeys so that a
1043 * second output sort may be avoided; and failing that, we try to list "more
1044 * popular" keys (those with the most unmatched EquivalenceClass peers)
1045 * earlier, in hopes of making the resulting ordering useful for as many
1046 * higher-level mergejoins as possible.
1048 List *
1049 select_outer_pathkeys_for_merge(PlannerInfo *root,
1050 List *mergeclauses,
1051 RelOptInfo *joinrel)
1053 List *pathkeys = NIL;
1054 int nClauses = list_length(mergeclauses);
1055 EquivalenceClass **ecs;
1056 int *scores;
1057 int necs;
1058 ListCell *lc;
1059 int j;
1061 /* Might have no mergeclauses */
1062 if (nClauses == 0)
1063 return NIL;
1066 * Make arrays of the ECs used by the mergeclauses (dropping any
1067 * duplicates) and their "popularity" scores.
1069 ecs = (EquivalenceClass **) palloc(nClauses * sizeof(EquivalenceClass *));
1070 scores = (int *) palloc(nClauses * sizeof(int));
1071 necs = 0;
1073 foreach(lc, mergeclauses)
1075 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1076 EquivalenceClass *oeclass;
1077 int score;
1078 ListCell *lc2;
1080 /* get the outer eclass */
1081 cache_mergeclause_eclasses(root, rinfo);
1083 if (rinfo->outer_is_left)
1084 oeclass = rinfo->left_ec;
1085 else
1086 oeclass = rinfo->right_ec;
1088 /* reject duplicates */
1089 for (j = 0; j < necs; j++)
1091 if (ecs[j] == oeclass)
1092 break;
1094 if (j < necs)
1095 continue;
1097 /* compute score */
1098 score = 0;
1099 foreach(lc2, oeclass->ec_members)
1101 EquivalenceMember *em = (EquivalenceMember *) lfirst(lc2);
1103 /* Potential future join partner? */
1104 if (!em->em_is_const && !em->em_is_child &&
1105 !bms_overlap(em->em_relids, joinrel->relids))
1106 score++;
1109 ecs[necs] = oeclass;
1110 scores[necs] = score;
1111 necs++;
1115 * Find out if we have all the ECs mentioned in query_pathkeys; if so we
1116 * can generate a sort order that's also useful for final output. There is
1117 * no percentage in a partial match, though, so we have to have 'em all.
1119 if (root->query_pathkeys)
1121 foreach(lc, root->query_pathkeys)
1123 PathKey *query_pathkey = (PathKey *) lfirst(lc);
1124 EquivalenceClass *query_ec = query_pathkey->pk_eclass;
1126 for (j = 0; j < necs; j++)
1128 if (ecs[j] == query_ec)
1129 break; /* found match */
1131 if (j >= necs)
1132 break; /* didn't find match */
1134 /* if we got to the end of the list, we have them all */
1135 if (lc == NULL)
1137 /* copy query_pathkeys as starting point for our output */
1138 pathkeys = list_copy(root->query_pathkeys);
1139 /* mark their ECs as already-emitted */
1140 foreach(lc, root->query_pathkeys)
1142 PathKey *query_pathkey = (PathKey *) lfirst(lc);
1143 EquivalenceClass *query_ec = query_pathkey->pk_eclass;
1145 for (j = 0; j < necs; j++)
1147 if (ecs[j] == query_ec)
1149 scores[j] = -1;
1150 break;
1158 * Add remaining ECs to the list in popularity order, using a default sort
1159 * ordering. (We could use qsort() here, but the list length is usually
1160 * so small it's not worth it.)
1162 for (;;)
1164 int best_j;
1165 int best_score;
1166 EquivalenceClass *ec;
1167 PathKey *pathkey;
1169 best_j = 0;
1170 best_score = scores[0];
1171 for (j = 1; j < necs; j++)
1173 if (scores[j] > best_score)
1175 best_j = j;
1176 best_score = scores[j];
1179 if (best_score < 0)
1180 break; /* all done */
1181 ec = ecs[best_j];
1182 scores[best_j] = -1;
1183 pathkey = make_canonical_pathkey(root,
1185 linitial_oid(ec->ec_opfamilies),
1186 BTLessStrategyNumber,
1187 false);
1188 /* can't be redundant because no duplicate ECs */
1189 Assert(!pathkey_is_redundant(pathkey, pathkeys));
1190 pathkeys = lappend(pathkeys, pathkey);
1193 pfree(ecs);
1194 pfree(scores);
1196 return pathkeys;
1200 * make_inner_pathkeys_for_merge
1201 * Builds a pathkey list representing the explicit sort order that
1202 * must be applied to an inner path to make it usable with the
1203 * given mergeclauses.
1205 * 'mergeclauses' is a list of RestrictInfos for mergejoin clauses
1206 * that will be used in a merge join.
1207 * 'outer_pathkeys' are the already-known canonical pathkeys for the outer
1208 * side of the join.
1210 * The restrictinfos must be marked (via outer_is_left) to show which side
1211 * of each clause is associated with the current outer path. (See
1212 * select_mergejoin_clauses())
1214 * Returns a pathkeys list that can be applied to the inner relation.
1216 * Note that it is not this routine's job to decide whether sorting is
1217 * actually needed for a particular input path. Assume a sort is necessary;
1218 * just make the keys, eh?
1220 List *
1221 make_inner_pathkeys_for_merge(PlannerInfo *root,
1222 List *mergeclauses,
1223 List *outer_pathkeys)
1225 List *pathkeys = NIL;
1226 EquivalenceClass *lastoeclass;
1227 PathKey *opathkey;
1228 ListCell *lc;
1229 ListCell *lop;
1231 lastoeclass = NULL;
1232 opathkey = NULL;
1233 lop = list_head(outer_pathkeys);
1235 foreach(lc, mergeclauses)
1237 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1238 EquivalenceClass *oeclass;
1239 EquivalenceClass *ieclass;
1240 PathKey *pathkey;
1242 cache_mergeclause_eclasses(root, rinfo);
1244 if (rinfo->outer_is_left)
1246 oeclass = rinfo->left_ec;
1247 ieclass = rinfo->right_ec;
1249 else
1251 oeclass = rinfo->right_ec;
1252 ieclass = rinfo->left_ec;
1255 /* outer eclass should match current or next pathkeys */
1256 /* we check this carefully for debugging reasons */
1257 if (oeclass != lastoeclass)
1259 if (!lop)
1260 elog(ERROR, "too few pathkeys for mergeclauses");
1261 opathkey = (PathKey *) lfirst(lop);
1262 lop = lnext(lop);
1263 lastoeclass = opathkey->pk_eclass;
1264 if (oeclass != lastoeclass)
1265 elog(ERROR, "outer pathkeys do not match mergeclause");
1269 * Often, we'll have same EC on both sides, in which case the outer
1270 * pathkey is also canonical for the inner side, and we can skip a
1271 * useless search.
1273 if (ieclass == oeclass)
1274 pathkey = opathkey;
1275 else
1276 pathkey = make_canonical_pathkey(root,
1277 ieclass,
1278 opathkey->pk_opfamily,
1279 opathkey->pk_strategy,
1280 opathkey->pk_nulls_first);
1283 * Don't generate redundant pathkeys (can happen if multiple
1284 * mergeclauses refer to same EC).
1286 if (!pathkey_is_redundant(pathkey, pathkeys))
1287 pathkeys = lappend(pathkeys, pathkey);
1290 return pathkeys;
1293 /****************************************************************************
1294 * PATHKEY USEFULNESS CHECKS
1296 * We only want to remember as many of the pathkeys of a path as have some
1297 * potential use, either for subsequent mergejoins or for meeting the query's
1298 * requested output ordering. This ensures that add_path() won't consider
1299 * a path to have a usefully different ordering unless it really is useful.
1300 * These routines check for usefulness of given pathkeys.
1301 ****************************************************************************/
1304 * pathkeys_useful_for_merging
1305 * Count the number of pathkeys that may be useful for mergejoins
1306 * above the given relation.
1308 * We consider a pathkey potentially useful if it corresponds to the merge
1309 * ordering of either side of any joinclause for the rel. This might be
1310 * overoptimistic, since joinclauses that require different other relations
1311 * might never be usable at the same time, but trying to be exact is likely
1312 * to be more trouble than it's worth.
1314 * To avoid doubling the number of mergejoin paths considered, we would like
1315 * to consider only one of the two scan directions (ASC or DESC) as useful
1316 * for merging for any given target column. The choice is arbitrary unless
1317 * one of the directions happens to match an ORDER BY key, in which case
1318 * that direction should be preferred, in hopes of avoiding a final sort step.
1319 * right_merge_direction() implements this heuristic.
1322 pathkeys_useful_for_merging(PlannerInfo *root, RelOptInfo *rel, List *pathkeys)
1324 int useful = 0;
1325 ListCell *i;
1327 foreach(i, pathkeys)
1329 PathKey *pathkey = (PathKey *) lfirst(i);
1330 bool matched = false;
1331 ListCell *j;
1333 /* If "wrong" direction, not useful for merging */
1334 if (!right_merge_direction(root, pathkey))
1335 break;
1338 * First look into the EquivalenceClass of the pathkey, to see if
1339 * there are any members not yet joined to the rel. If so, it's
1340 * surely possible to generate a mergejoin clause using them.
1342 if (rel->has_eclass_joins &&
1343 eclass_useful_for_merging(pathkey->pk_eclass, rel))
1344 matched = true;
1345 else
1348 * Otherwise search the rel's joininfo list, which contains
1349 * non-EquivalenceClass-derivable join clauses that might
1350 * nonetheless be mergejoinable.
1352 foreach(j, rel->joininfo)
1354 RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j);
1356 if (restrictinfo->mergeopfamilies == NIL)
1357 continue;
1358 cache_mergeclause_eclasses(root, restrictinfo);
1360 if (pathkey->pk_eclass == restrictinfo->left_ec ||
1361 pathkey->pk_eclass == restrictinfo->right_ec)
1363 matched = true;
1364 break;
1370 * If we didn't find a mergeclause, we're done --- any additional
1371 * sort-key positions in the pathkeys are useless. (But we can still
1372 * mergejoin if we found at least one mergeclause.)
1374 if (matched)
1375 useful++;
1376 else
1377 break;
1380 return useful;
1384 * right_merge_direction
1385 * Check whether the pathkey embodies the preferred sort direction
1386 * for merging its target column.
1388 static bool
1389 right_merge_direction(PlannerInfo *root, PathKey *pathkey)
1391 ListCell *l;
1393 foreach(l, root->query_pathkeys)
1395 PathKey *query_pathkey = (PathKey *) lfirst(l);
1397 if (pathkey->pk_eclass == query_pathkey->pk_eclass &&
1398 pathkey->pk_opfamily == query_pathkey->pk_opfamily)
1401 * Found a matching query sort column. Prefer this pathkey's
1402 * direction iff it matches. Note that we ignore pk_nulls_first,
1403 * which means that a sort might be needed anyway ... but we still
1404 * want to prefer only one of the two possible directions, and we
1405 * might as well use this one.
1407 return (pathkey->pk_strategy == query_pathkey->pk_strategy);
1411 /* If no matching ORDER BY request, prefer the ASC direction */
1412 return (pathkey->pk_strategy == BTLessStrategyNumber);
1416 * pathkeys_useful_for_ordering
1417 * Count the number of pathkeys that are useful for meeting the
1418 * query's requested output ordering.
1420 * Unlike merge pathkeys, this is an all-or-nothing affair: it does us
1421 * no good to order by just the first key(s) of the requested ordering.
1422 * So the result is always either 0 or list_length(root->query_pathkeys).
1425 pathkeys_useful_for_ordering(PlannerInfo *root, List *pathkeys)
1427 if (root->query_pathkeys == NIL)
1428 return 0; /* no special ordering requested */
1430 if (pathkeys == NIL)
1431 return 0; /* unordered path */
1433 if (pathkeys_contained_in(root->query_pathkeys, pathkeys))
1435 /* It's useful ... or at least the first N keys are */
1436 return list_length(root->query_pathkeys);
1439 return 0; /* path ordering not useful */
1443 * truncate_useless_pathkeys
1444 * Shorten the given pathkey list to just the useful pathkeys.
1446 List *
1447 truncate_useless_pathkeys(PlannerInfo *root,
1448 RelOptInfo *rel,
1449 List *pathkeys)
1451 int nuseful;
1452 int nuseful2;
1454 nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
1455 nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
1456 if (nuseful2 > nuseful)
1457 nuseful = nuseful2;
1460 * Note: not safe to modify input list destructively, but we can avoid
1461 * copying the list if we're not actually going to change it
1463 if (nuseful == 0)
1464 return NIL;
1465 else if (nuseful == list_length(pathkeys))
1466 return pathkeys;
1467 else
1468 return list_truncate(list_copy(pathkeys), nuseful);
1472 * has_useful_pathkeys
1473 * Detect whether the specified rel could have any pathkeys that are
1474 * useful according to truncate_useless_pathkeys().
1476 * This is a cheap test that lets us skip building pathkeys at all in very
1477 * simple queries. It's OK to err in the direction of returning "true" when
1478 * there really aren't any usable pathkeys, but erring in the other direction
1479 * is bad --- so keep this in sync with the routines above!
1481 * We could make the test more complex, for example checking to see if any of
1482 * the joinclauses are really mergejoinable, but that likely wouldn't win
1483 * often enough to repay the extra cycles. Queries with neither a join nor
1484 * a sort are reasonably common, though, so this much work seems worthwhile.
1486 bool
1487 has_useful_pathkeys(PlannerInfo *root, RelOptInfo *rel)
1489 if (rel->joininfo != NIL || rel->has_eclass_joins)
1490 return true; /* might be able to use pathkeys for merging */
1491 if (root->query_pathkeys != NIL)
1492 return true; /* might be able to use them for ordering */
1493 return false; /* definitely useless */