Force a checkpoint in CREATE DATABASE before starting to copy the files,
[PostgreSQL.git] / src / backend / access / heap / heapam.c
blob1d43b0b866759ac908836a7ac9cbe8109574f1ea
1 /*-------------------------------------------------------------------------
3 * heapam.c
4 * heap access method code
6 * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * $PostgreSQL$
14 * INTERFACE ROUTINES
15 * relation_open - open any relation by relation OID
16 * relation_openrv - open any relation specified by a RangeVar
17 * relation_close - close any relation
18 * heap_open - open a heap relation by relation OID
19 * heap_openrv - open a heap relation specified by a RangeVar
20 * heap_close - (now just a macro for relation_close)
21 * heap_beginscan - begin relation scan
22 * heap_rescan - restart a relation scan
23 * heap_endscan - end relation scan
24 * heap_getnext - retrieve next tuple in scan
25 * heap_fetch - retrieve tuple with given tid
26 * heap_insert - insert tuple into a relation
27 * heap_delete - delete a tuple from a relation
28 * heap_update - replace a tuple in a relation with another tuple
29 * heap_markpos - mark scan position
30 * heap_restrpos - restore position to marked location
31 * heap_sync - sync heap, for when no WAL has been written
33 * NOTES
34 * This file contains the heap_ routines which implement
35 * the POSTGRES heap access method used for all POSTGRES
36 * relations.
38 *-------------------------------------------------------------------------
40 #include "postgres.h"
42 #include "access/heapam.h"
43 #include "access/hio.h"
44 #include "access/multixact.h"
45 #include "access/relscan.h"
46 #include "access/sysattr.h"
47 #include "access/transam.h"
48 #include "access/tuptoaster.h"
49 #include "access/valid.h"
50 #include "access/xact.h"
51 #include "access/xlogutils.h"
52 #include "catalog/catalog.h"
53 #include "catalog/namespace.h"
54 #include "miscadmin.h"
55 #include "pgstat.h"
56 #include "storage/bufmgr.h"
57 #include "storage/lmgr.h"
58 #include "storage/procarray.h"
59 #include "storage/smgr.h"
60 #include "utils/datum.h"
61 #include "utils/inval.h"
62 #include "utils/lsyscache.h"
63 #include "utils/relcache.h"
64 #include "utils/snapmgr.h"
65 #include "utils/syscache.h"
66 #include "utils/tqual.h"
69 /* GUC variable */
70 bool synchronize_seqscans = true;
73 static HeapScanDesc heap_beginscan_internal(Relation relation,
74 Snapshot snapshot,
75 int nkeys, ScanKey key,
76 bool allow_strat, bool allow_sync,
77 bool is_bitmapscan);
78 static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
79 ItemPointerData from, Buffer newbuf, HeapTuple newtup, bool move);
80 static bool HeapSatisfiesHOTUpdate(Relation relation, Bitmapset *hot_attrs,
81 HeapTuple oldtup, HeapTuple newtup);
84 /* ----------------------------------------------------------------
85 * heap support routines
86 * ----------------------------------------------------------------
89 /* ----------------
90 * initscan - scan code common to heap_beginscan and heap_rescan
91 * ----------------
93 static void
94 initscan(HeapScanDesc scan, ScanKey key)
96 bool allow_strat;
97 bool allow_sync;
100 * Determine the number of blocks we have to scan.
102 * It is sufficient to do this once at scan start, since any tuples added
103 * while the scan is in progress will be invisible to my snapshot anyway.
104 * (That is not true when using a non-MVCC snapshot. However, we couldn't
105 * guarantee to return tuples added after scan start anyway, since they
106 * might go into pages we already scanned. To guarantee consistent
107 * results for a non-MVCC snapshot, the caller must hold some higher-level
108 * lock that ensures the interesting tuple(s) won't change.)
110 scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_rd);
113 * If the table is large relative to NBuffers, use a bulk-read access
114 * strategy and enable synchronized scanning (see syncscan.c). Although
115 * the thresholds for these features could be different, we make them the
116 * same so that there are only two behaviors to tune rather than four.
117 * (However, some callers need to be able to disable one or both of
118 * these behaviors, independently of the size of the table; also there
119 * is a GUC variable that can disable synchronized scanning.)
121 * During a rescan, don't make a new strategy object if we don't have to.
123 if (!scan->rs_rd->rd_istemp &&
124 scan->rs_nblocks > NBuffers / 4)
126 allow_strat = scan->rs_allow_strat;
127 allow_sync = scan->rs_allow_sync;
129 else
130 allow_strat = allow_sync = false;
132 if (allow_strat)
134 if (scan->rs_strategy == NULL)
135 scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
137 else
139 if (scan->rs_strategy != NULL)
140 FreeAccessStrategy(scan->rs_strategy);
141 scan->rs_strategy = NULL;
144 if (allow_sync && synchronize_seqscans)
146 scan->rs_syncscan = true;
147 scan->rs_startblock = ss_get_location(scan->rs_rd, scan->rs_nblocks);
149 else
151 scan->rs_syncscan = false;
152 scan->rs_startblock = 0;
155 scan->rs_inited = false;
156 scan->rs_ctup.t_data = NULL;
157 ItemPointerSetInvalid(&scan->rs_ctup.t_self);
158 scan->rs_cbuf = InvalidBuffer;
159 scan->rs_cblock = InvalidBlockNumber;
161 /* we don't have a marked position... */
162 ItemPointerSetInvalid(&(scan->rs_mctid));
164 /* page-at-a-time fields are always invalid when not rs_inited */
167 * copy the scan key, if appropriate
169 if (key != NULL)
170 memcpy(scan->rs_key, key, scan->rs_nkeys * sizeof(ScanKeyData));
173 * Currently, we don't have a stats counter for bitmap heap scans (but the
174 * underlying bitmap index scans will be counted).
176 if (!scan->rs_bitmapscan)
177 pgstat_count_heap_scan(scan->rs_rd);
181 * heapgetpage - subroutine for heapgettup()
183 * This routine reads and pins the specified page of the relation.
184 * In page-at-a-time mode it performs additional work, namely determining
185 * which tuples on the page are visible.
187 static void
188 heapgetpage(HeapScanDesc scan, BlockNumber page)
190 Buffer buffer;
191 Snapshot snapshot;
192 Page dp;
193 int lines;
194 int ntup;
195 OffsetNumber lineoff;
196 ItemId lpp;
198 Assert(page < scan->rs_nblocks);
200 /* release previous scan buffer, if any */
201 if (BufferIsValid(scan->rs_cbuf))
203 ReleaseBuffer(scan->rs_cbuf);
204 scan->rs_cbuf = InvalidBuffer;
207 /* read page using selected strategy */
208 scan->rs_cbuf = ReadBufferWithStrategy(scan->rs_rd,
209 page,
210 scan->rs_strategy);
211 scan->rs_cblock = page;
213 if (!scan->rs_pageatatime)
214 return;
216 buffer = scan->rs_cbuf;
217 snapshot = scan->rs_snapshot;
220 * Prune and repair fragmentation for the whole page, if possible.
222 Assert(TransactionIdIsValid(RecentGlobalXmin));
223 heap_page_prune_opt(scan->rs_rd, buffer, RecentGlobalXmin);
226 * We must hold share lock on the buffer content while examining tuple
227 * visibility. Afterwards, however, the tuples we have found to be
228 * visible are guaranteed good as long as we hold the buffer pin.
230 LockBuffer(buffer, BUFFER_LOCK_SHARE);
232 dp = (Page) BufferGetPage(buffer);
233 lines = PageGetMaxOffsetNumber(dp);
234 ntup = 0;
236 for (lineoff = FirstOffsetNumber, lpp = PageGetItemId(dp, lineoff);
237 lineoff <= lines;
238 lineoff++, lpp++)
240 if (ItemIdIsNormal(lpp))
242 HeapTupleData loctup;
243 bool valid;
245 loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
246 loctup.t_len = ItemIdGetLength(lpp);
247 ItemPointerSet(&(loctup.t_self), page, lineoff);
249 valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
250 if (valid)
251 scan->rs_vistuples[ntup++] = lineoff;
255 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
257 Assert(ntup <= MaxHeapTuplesPerPage);
258 scan->rs_ntuples = ntup;
261 /* ----------------
262 * heapgettup - fetch next heap tuple
264 * Initialize the scan if not already done; then advance to the next
265 * tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
266 * or set scan->rs_ctup.t_data = NULL if no more tuples.
268 * dir == NoMovementScanDirection means "re-fetch the tuple indicated
269 * by scan->rs_ctup".
271 * Note: the reason nkeys/key are passed separately, even though they are
272 * kept in the scan descriptor, is that the caller may not want us to check
273 * the scankeys.
275 * Note: when we fall off the end of the scan in either direction, we
276 * reset rs_inited. This means that a further request with the same
277 * scan direction will restart the scan, which is a bit odd, but a
278 * request with the opposite scan direction will start a fresh scan
279 * in the proper direction. The latter is required behavior for cursors,
280 * while the former case is generally undefined behavior in Postgres
281 * so we don't care too much.
282 * ----------------
284 static void
285 heapgettup(HeapScanDesc scan,
286 ScanDirection dir,
287 int nkeys,
288 ScanKey key)
290 HeapTuple tuple = &(scan->rs_ctup);
291 Snapshot snapshot = scan->rs_snapshot;
292 bool backward = ScanDirectionIsBackward(dir);
293 BlockNumber page;
294 bool finished;
295 Page dp;
296 int lines;
297 OffsetNumber lineoff;
298 int linesleft;
299 ItemId lpp;
302 * calculate next starting lineoff, given scan direction
304 if (ScanDirectionIsForward(dir))
306 if (!scan->rs_inited)
309 * return null immediately if relation is empty
311 if (scan->rs_nblocks == 0)
313 Assert(!BufferIsValid(scan->rs_cbuf));
314 tuple->t_data = NULL;
315 return;
317 page = scan->rs_startblock; /* first page */
318 heapgetpage(scan, page);
319 lineoff = FirstOffsetNumber; /* first offnum */
320 scan->rs_inited = true;
322 else
324 /* continue from previously returned page/tuple */
325 page = scan->rs_cblock; /* current page */
326 lineoff = /* next offnum */
327 OffsetNumberNext(ItemPointerGetOffsetNumber(&(tuple->t_self)));
330 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
332 dp = (Page) BufferGetPage(scan->rs_cbuf);
333 lines = PageGetMaxOffsetNumber(dp);
334 /* page and lineoff now reference the physically next tid */
336 linesleft = lines - lineoff + 1;
338 else if (backward)
340 if (!scan->rs_inited)
343 * return null immediately if relation is empty
345 if (scan->rs_nblocks == 0)
347 Assert(!BufferIsValid(scan->rs_cbuf));
348 tuple->t_data = NULL;
349 return;
353 * Disable reporting to syncscan logic in a backwards scan; it's
354 * not very likely anyone else is doing the same thing at the same
355 * time, and much more likely that we'll just bollix things for
356 * forward scanners.
358 scan->rs_syncscan = false;
359 /* start from last page of the scan */
360 if (scan->rs_startblock > 0)
361 page = scan->rs_startblock - 1;
362 else
363 page = scan->rs_nblocks - 1;
364 heapgetpage(scan, page);
366 else
368 /* continue from previously returned page/tuple */
369 page = scan->rs_cblock; /* current page */
372 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
374 dp = (Page) BufferGetPage(scan->rs_cbuf);
375 lines = PageGetMaxOffsetNumber(dp);
377 if (!scan->rs_inited)
379 lineoff = lines; /* final offnum */
380 scan->rs_inited = true;
382 else
384 lineoff = /* previous offnum */
385 OffsetNumberPrev(ItemPointerGetOffsetNumber(&(tuple->t_self)));
387 /* page and lineoff now reference the physically previous tid */
389 linesleft = lineoff;
391 else
394 * ``no movement'' scan direction: refetch prior tuple
396 if (!scan->rs_inited)
398 Assert(!BufferIsValid(scan->rs_cbuf));
399 tuple->t_data = NULL;
400 return;
403 page = ItemPointerGetBlockNumber(&(tuple->t_self));
404 if (page != scan->rs_cblock)
405 heapgetpage(scan, page);
407 /* Since the tuple was previously fetched, needn't lock page here */
408 dp = (Page) BufferGetPage(scan->rs_cbuf);
409 lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self));
410 lpp = PageGetItemId(dp, lineoff);
411 Assert(ItemIdIsNormal(lpp));
413 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
414 tuple->t_len = ItemIdGetLength(lpp);
416 return;
420 * advance the scan until we find a qualifying tuple or run out of stuff
421 * to scan
423 lpp = PageGetItemId(dp, lineoff);
424 for (;;)
426 while (linesleft > 0)
428 if (ItemIdIsNormal(lpp))
430 bool valid;
432 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
433 tuple->t_len = ItemIdGetLength(lpp);
434 ItemPointerSet(&(tuple->t_self), page, lineoff);
437 * if current tuple qualifies, return it.
439 valid = HeapTupleSatisfiesVisibility(tuple,
440 snapshot,
441 scan->rs_cbuf);
443 if (valid && key != NULL)
444 HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd),
445 nkeys, key, valid);
447 if (valid)
449 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
450 return;
455 * otherwise move to the next item on the page
457 --linesleft;
458 if (backward)
460 --lpp; /* move back in this page's ItemId array */
461 --lineoff;
463 else
465 ++lpp; /* move forward in this page's ItemId array */
466 ++lineoff;
471 * if we get here, it means we've exhausted the items on this page and
472 * it's time to move to the next.
474 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
477 * advance to next/prior page and detect end of scan
479 if (backward)
481 finished = (page == scan->rs_startblock);
482 if (page == 0)
483 page = scan->rs_nblocks;
484 page--;
486 else
488 page++;
489 if (page >= scan->rs_nblocks)
490 page = 0;
491 finished = (page == scan->rs_startblock);
494 * Report our new scan position for synchronization purposes. We
495 * don't do that when moving backwards, however. That would just
496 * mess up any other forward-moving scanners.
498 * Note: we do this before checking for end of scan so that the
499 * final state of the position hint is back at the start of the
500 * rel. That's not strictly necessary, but otherwise when you run
501 * the same query multiple times the starting position would shift
502 * a little bit backwards on every invocation, which is confusing.
503 * We don't guarantee any specific ordering in general, though.
505 if (scan->rs_syncscan)
506 ss_report_location(scan->rs_rd, page);
510 * return NULL if we've exhausted all the pages
512 if (finished)
514 if (BufferIsValid(scan->rs_cbuf))
515 ReleaseBuffer(scan->rs_cbuf);
516 scan->rs_cbuf = InvalidBuffer;
517 scan->rs_cblock = InvalidBlockNumber;
518 tuple->t_data = NULL;
519 scan->rs_inited = false;
520 return;
523 heapgetpage(scan, page);
525 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
527 dp = (Page) BufferGetPage(scan->rs_cbuf);
528 lines = PageGetMaxOffsetNumber((Page) dp);
529 linesleft = lines;
530 if (backward)
532 lineoff = lines;
533 lpp = PageGetItemId(dp, lines);
535 else
537 lineoff = FirstOffsetNumber;
538 lpp = PageGetItemId(dp, FirstOffsetNumber);
543 /* ----------------
544 * heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
546 * Same API as heapgettup, but used in page-at-a-time mode
548 * The internal logic is much the same as heapgettup's too, but there are some
549 * differences: we do not take the buffer content lock (that only needs to
550 * happen inside heapgetpage), and we iterate through just the tuples listed
551 * in rs_vistuples[] rather than all tuples on the page. Notice that
552 * lineindex is 0-based, where the corresponding loop variable lineoff in
553 * heapgettup is 1-based.
554 * ----------------
556 static void
557 heapgettup_pagemode(HeapScanDesc scan,
558 ScanDirection dir,
559 int nkeys,
560 ScanKey key)
562 HeapTuple tuple = &(scan->rs_ctup);
563 bool backward = ScanDirectionIsBackward(dir);
564 BlockNumber page;
565 bool finished;
566 Page dp;
567 int lines;
568 int lineindex;
569 OffsetNumber lineoff;
570 int linesleft;
571 ItemId lpp;
574 * calculate next starting lineindex, given scan direction
576 if (ScanDirectionIsForward(dir))
578 if (!scan->rs_inited)
581 * return null immediately if relation is empty
583 if (scan->rs_nblocks == 0)
585 Assert(!BufferIsValid(scan->rs_cbuf));
586 tuple->t_data = NULL;
587 return;
589 page = scan->rs_startblock; /* first page */
590 heapgetpage(scan, page);
591 lineindex = 0;
592 scan->rs_inited = true;
594 else
596 /* continue from previously returned page/tuple */
597 page = scan->rs_cblock; /* current page */
598 lineindex = scan->rs_cindex + 1;
601 dp = (Page) BufferGetPage(scan->rs_cbuf);
602 lines = scan->rs_ntuples;
603 /* page and lineindex now reference the next visible tid */
605 linesleft = lines - lineindex;
607 else if (backward)
609 if (!scan->rs_inited)
612 * return null immediately if relation is empty
614 if (scan->rs_nblocks == 0)
616 Assert(!BufferIsValid(scan->rs_cbuf));
617 tuple->t_data = NULL;
618 return;
622 * Disable reporting to syncscan logic in a backwards scan; it's
623 * not very likely anyone else is doing the same thing at the same
624 * time, and much more likely that we'll just bollix things for
625 * forward scanners.
627 scan->rs_syncscan = false;
628 /* start from last page of the scan */
629 if (scan->rs_startblock > 0)
630 page = scan->rs_startblock - 1;
631 else
632 page = scan->rs_nblocks - 1;
633 heapgetpage(scan, page);
635 else
637 /* continue from previously returned page/tuple */
638 page = scan->rs_cblock; /* current page */
641 dp = (Page) BufferGetPage(scan->rs_cbuf);
642 lines = scan->rs_ntuples;
644 if (!scan->rs_inited)
646 lineindex = lines - 1;
647 scan->rs_inited = true;
649 else
651 lineindex = scan->rs_cindex - 1;
653 /* page and lineindex now reference the previous visible tid */
655 linesleft = lineindex + 1;
657 else
660 * ``no movement'' scan direction: refetch prior tuple
662 if (!scan->rs_inited)
664 Assert(!BufferIsValid(scan->rs_cbuf));
665 tuple->t_data = NULL;
666 return;
669 page = ItemPointerGetBlockNumber(&(tuple->t_self));
670 if (page != scan->rs_cblock)
671 heapgetpage(scan, page);
673 /* Since the tuple was previously fetched, needn't lock page here */
674 dp = (Page) BufferGetPage(scan->rs_cbuf);
675 lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self));
676 lpp = PageGetItemId(dp, lineoff);
677 Assert(ItemIdIsNormal(lpp));
679 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
680 tuple->t_len = ItemIdGetLength(lpp);
682 /* check that rs_cindex is in sync */
683 Assert(scan->rs_cindex < scan->rs_ntuples);
684 Assert(lineoff == scan->rs_vistuples[scan->rs_cindex]);
686 return;
690 * advance the scan until we find a qualifying tuple or run out of stuff
691 * to scan
693 for (;;)
695 while (linesleft > 0)
697 lineoff = scan->rs_vistuples[lineindex];
698 lpp = PageGetItemId(dp, lineoff);
699 Assert(ItemIdIsNormal(lpp));
701 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
702 tuple->t_len = ItemIdGetLength(lpp);
703 ItemPointerSet(&(tuple->t_self), page, lineoff);
706 * if current tuple qualifies, return it.
708 if (key != NULL)
710 bool valid;
712 HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd),
713 nkeys, key, valid);
714 if (valid)
716 scan->rs_cindex = lineindex;
717 return;
720 else
722 scan->rs_cindex = lineindex;
723 return;
727 * otherwise move to the next item on the page
729 --linesleft;
730 if (backward)
731 --lineindex;
732 else
733 ++lineindex;
737 * if we get here, it means we've exhausted the items on this page and
738 * it's time to move to the next.
740 if (backward)
742 finished = (page == scan->rs_startblock);
743 if (page == 0)
744 page = scan->rs_nblocks;
745 page--;
747 else
749 page++;
750 if (page >= scan->rs_nblocks)
751 page = 0;
752 finished = (page == scan->rs_startblock);
755 * Report our new scan position for synchronization purposes. We
756 * don't do that when moving backwards, however. That would just
757 * mess up any other forward-moving scanners.
759 * Note: we do this before checking for end of scan so that the
760 * final state of the position hint is back at the start of the
761 * rel. That's not strictly necessary, but otherwise when you run
762 * the same query multiple times the starting position would shift
763 * a little bit backwards on every invocation, which is confusing.
764 * We don't guarantee any specific ordering in general, though.
766 if (scan->rs_syncscan)
767 ss_report_location(scan->rs_rd, page);
771 * return NULL if we've exhausted all the pages
773 if (finished)
775 if (BufferIsValid(scan->rs_cbuf))
776 ReleaseBuffer(scan->rs_cbuf);
777 scan->rs_cbuf = InvalidBuffer;
778 scan->rs_cblock = InvalidBlockNumber;
779 tuple->t_data = NULL;
780 scan->rs_inited = false;
781 return;
784 heapgetpage(scan, page);
786 dp = (Page) BufferGetPage(scan->rs_cbuf);
787 lines = scan->rs_ntuples;
788 linesleft = lines;
789 if (backward)
790 lineindex = lines - 1;
791 else
792 lineindex = 0;
797 #if defined(DISABLE_COMPLEX_MACRO)
799 * This is formatted so oddly so that the correspondence to the macro
800 * definition in access/heapam.h is maintained.
802 Datum
803 fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
804 bool *isnull)
806 return (
807 (attnum) > 0 ?
809 ((isnull) ? (*(isnull) = false) : (dummyret) NULL),
810 HeapTupleNoNulls(tup) ?
812 (tupleDesc)->attrs[(attnum) - 1]->attcacheoff >= 0 ?
814 fetchatt((tupleDesc)->attrs[(attnum) - 1],
815 (char *) (tup)->t_data + (tup)->t_data->t_hoff +
816 (tupleDesc)->attrs[(attnum) - 1]->attcacheoff)
819 nocachegetattr((tup), (attnum), (tupleDesc), (isnull))
823 att_isnull((attnum) - 1, (tup)->t_data->t_bits) ?
825 ((isnull) ? (*(isnull) = true) : (dummyret) NULL),
826 (Datum) NULL
830 nocachegetattr((tup), (attnum), (tupleDesc), (isnull))
836 (Datum) NULL
840 #endif /* defined(DISABLE_COMPLEX_MACRO) */
843 /* ----------------------------------------------------------------
844 * heap access method interface
845 * ----------------------------------------------------------------
848 /* ----------------
849 * relation_open - open any relation by relation OID
851 * If lockmode is not "NoLock", the specified kind of lock is
852 * obtained on the relation. (Generally, NoLock should only be
853 * used if the caller knows it has some appropriate lock on the
854 * relation already.)
856 * An error is raised if the relation does not exist.
858 * NB: a "relation" is anything with a pg_class entry. The caller is
859 * expected to check whether the relkind is something it can handle.
860 * ----------------
862 Relation
863 relation_open(Oid relationId, LOCKMODE lockmode)
865 Relation r;
867 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
869 /* Get the lock before trying to open the relcache entry */
870 if (lockmode != NoLock)
871 LockRelationOid(relationId, lockmode);
873 /* The relcache does all the real work... */
874 r = RelationIdGetRelation(relationId);
876 if (!RelationIsValid(r))
877 elog(ERROR, "could not open relation with OID %u", relationId);
879 /* Make note that we've accessed a temporary relation */
880 if (r->rd_istemp)
881 MyXactAccessedTempRel = true;
883 pgstat_initstats(r);
885 return r;
888 /* ----------------
889 * try_relation_open - open any relation by relation OID
891 * Same as relation_open, except return NULL instead of failing
892 * if the relation does not exist.
893 * ----------------
895 Relation
896 try_relation_open(Oid relationId, LOCKMODE lockmode)
898 Relation r;
900 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
902 /* Get the lock first */
903 if (lockmode != NoLock)
904 LockRelationOid(relationId, lockmode);
907 * Now that we have the lock, probe to see if the relation really exists
908 * or not.
910 if (!SearchSysCacheExists(RELOID,
911 ObjectIdGetDatum(relationId),
912 0, 0, 0))
914 /* Release useless lock */
915 if (lockmode != NoLock)
916 UnlockRelationOid(relationId, lockmode);
918 return NULL;
921 /* Should be safe to do a relcache load */
922 r = RelationIdGetRelation(relationId);
924 if (!RelationIsValid(r))
925 elog(ERROR, "could not open relation with OID %u", relationId);
927 /* Make note that we've accessed a temporary relation */
928 if (r->rd_istemp)
929 MyXactAccessedTempRel = true;
931 pgstat_initstats(r);
933 return r;
936 /* ----------------
937 * relation_open_nowait - open but don't wait for lock
939 * Same as relation_open, except throw an error instead of waiting
940 * when the requested lock is not immediately obtainable.
941 * ----------------
943 Relation
944 relation_open_nowait(Oid relationId, LOCKMODE lockmode)
946 Relation r;
948 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
950 /* Get the lock before trying to open the relcache entry */
951 if (lockmode != NoLock)
953 if (!ConditionalLockRelationOid(relationId, lockmode))
955 /* try to throw error by name; relation could be deleted... */
956 char *relname = get_rel_name(relationId);
958 if (relname)
959 ereport(ERROR,
960 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
961 errmsg("could not obtain lock on relation \"%s\"",
962 relname)));
963 else
964 ereport(ERROR,
965 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
966 errmsg("could not obtain lock on relation with OID %u",
967 relationId)));
971 /* The relcache does all the real work... */
972 r = RelationIdGetRelation(relationId);
974 if (!RelationIsValid(r))
975 elog(ERROR, "could not open relation with OID %u", relationId);
977 /* Make note that we've accessed a temporary relation */
978 if (r->rd_istemp)
979 MyXactAccessedTempRel = true;
981 pgstat_initstats(r);
983 return r;
986 /* ----------------
987 * relation_openrv - open any relation specified by a RangeVar
989 * Same as relation_open, but the relation is specified by a RangeVar.
990 * ----------------
992 Relation
993 relation_openrv(const RangeVar *relation, LOCKMODE lockmode)
995 Oid relOid;
998 * Check for shared-cache-inval messages before trying to open the
999 * relation. This is needed to cover the case where the name identifies a
1000 * rel that has been dropped and recreated since the start of our
1001 * transaction: if we don't flush the old syscache entry then we'll latch
1002 * onto that entry and suffer an error when we do RelationIdGetRelation.
1003 * Note that relation_open does not need to do this, since a relation's
1004 * OID never changes.
1006 * We skip this if asked for NoLock, on the assumption that the caller has
1007 * already ensured some appropriate lock is held.
1009 if (lockmode != NoLock)
1010 AcceptInvalidationMessages();
1012 /* Look up the appropriate relation using namespace search */
1013 relOid = RangeVarGetRelid(relation, false);
1015 /* Let relation_open do the rest */
1016 return relation_open(relOid, lockmode);
1019 /* ----------------
1020 * try_relation_openrv - open any relation specified by a RangeVar
1022 * Same as relation_openrv, but return NULL instead of failing for
1023 * relation-not-found. (Note that some other causes, such as
1024 * permissions problems, will still result in an ereport.)
1025 * ----------------
1027 Relation
1028 try_relation_openrv(const RangeVar *relation, LOCKMODE lockmode)
1030 Oid relOid;
1033 * Check for shared-cache-inval messages before trying to open the
1034 * relation. This is needed to cover the case where the name identifies a
1035 * rel that has been dropped and recreated since the start of our
1036 * transaction: if we don't flush the old syscache entry then we'll latch
1037 * onto that entry and suffer an error when we do RelationIdGetRelation.
1038 * Note that relation_open does not need to do this, since a relation's
1039 * OID never changes.
1041 * We skip this if asked for NoLock, on the assumption that the caller has
1042 * already ensured some appropriate lock is held.
1044 if (lockmode != NoLock)
1045 AcceptInvalidationMessages();
1047 /* Look up the appropriate relation using namespace search */
1048 relOid = RangeVarGetRelid(relation, true);
1050 /* Return NULL on not-found */
1051 if (!OidIsValid(relOid))
1052 return NULL;
1054 /* Let relation_open do the rest */
1055 return relation_open(relOid, lockmode);
1058 /* ----------------
1059 * relation_close - close any relation
1061 * If lockmode is not "NoLock", we then release the specified lock.
1063 * Note that it is often sensible to hold a lock beyond relation_close;
1064 * in that case, the lock is released automatically at xact end.
1065 * ----------------
1067 void
1068 relation_close(Relation relation, LOCKMODE lockmode)
1070 LockRelId relid = relation->rd_lockInfo.lockRelId;
1072 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
1074 /* The relcache does the real work... */
1075 RelationClose(relation);
1077 if (lockmode != NoLock)
1078 UnlockRelationId(&relid, lockmode);
1082 /* ----------------
1083 * heap_open - open a heap relation by relation OID
1085 * This is essentially relation_open plus check that the relation
1086 * is not an index nor a composite type. (The caller should also
1087 * check that it's not a view before assuming it has storage.)
1088 * ----------------
1090 Relation
1091 heap_open(Oid relationId, LOCKMODE lockmode)
1093 Relation r;
1095 r = relation_open(relationId, lockmode);
1097 if (r->rd_rel->relkind == RELKIND_INDEX)
1098 ereport(ERROR,
1099 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1100 errmsg("\"%s\" is an index",
1101 RelationGetRelationName(r))));
1102 else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE)
1103 ereport(ERROR,
1104 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1105 errmsg("\"%s\" is a composite type",
1106 RelationGetRelationName(r))));
1108 return r;
1111 /* ----------------
1112 * heap_openrv - open a heap relation specified
1113 * by a RangeVar node
1115 * As above, but relation is specified by a RangeVar.
1116 * ----------------
1118 Relation
1119 heap_openrv(const RangeVar *relation, LOCKMODE lockmode)
1121 Relation r;
1123 r = relation_openrv(relation, lockmode);
1125 if (r->rd_rel->relkind == RELKIND_INDEX)
1126 ereport(ERROR,
1127 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1128 errmsg("\"%s\" is an index",
1129 RelationGetRelationName(r))));
1130 else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE)
1131 ereport(ERROR,
1132 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1133 errmsg("\"%s\" is a composite type",
1134 RelationGetRelationName(r))));
1136 return r;
1139 /* ----------------
1140 * try_heap_openrv - open a heap relation specified
1141 * by a RangeVar node
1143 * As above, but return NULL instead of failing for relation-not-found.
1144 * ----------------
1146 Relation
1147 try_heap_openrv(const RangeVar *relation, LOCKMODE lockmode)
1149 Relation r;
1151 r = try_relation_openrv(relation, lockmode);
1153 if (r)
1155 if (r->rd_rel->relkind == RELKIND_INDEX)
1156 ereport(ERROR,
1157 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1158 errmsg("\"%s\" is an index",
1159 RelationGetRelationName(r))));
1160 else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE)
1161 ereport(ERROR,
1162 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1163 errmsg("\"%s\" is a composite type",
1164 RelationGetRelationName(r))));
1167 return r;
1171 /* ----------------
1172 * heap_beginscan - begin relation scan
1174 * heap_beginscan_strat offers an extended API that lets the caller control
1175 * whether a nondefault buffer access strategy can be used, and whether
1176 * syncscan can be chosen (possibly resulting in the scan not starting from
1177 * block zero). Both of these default to TRUE with plain heap_beginscan.
1179 * heap_beginscan_bm is an alternative entry point for setting up a
1180 * HeapScanDesc for a bitmap heap scan. Although that scan technology is
1181 * really quite unlike a standard seqscan, there is just enough commonality
1182 * to make it worth using the same data structure.
1183 * ----------------
1185 HeapScanDesc
1186 heap_beginscan(Relation relation, Snapshot snapshot,
1187 int nkeys, ScanKey key)
1189 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1190 true, true, false);
1193 HeapScanDesc
1194 heap_beginscan_strat(Relation relation, Snapshot snapshot,
1195 int nkeys, ScanKey key,
1196 bool allow_strat, bool allow_sync)
1198 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1199 allow_strat, allow_sync, false);
1202 HeapScanDesc
1203 heap_beginscan_bm(Relation relation, Snapshot snapshot,
1204 int nkeys, ScanKey key)
1206 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1207 false, false, true);
1210 static HeapScanDesc
1211 heap_beginscan_internal(Relation relation, Snapshot snapshot,
1212 int nkeys, ScanKey key,
1213 bool allow_strat, bool allow_sync,
1214 bool is_bitmapscan)
1216 HeapScanDesc scan;
1219 * increment relation ref count while scanning relation
1221 * This is just to make really sure the relcache entry won't go away while
1222 * the scan has a pointer to it. Caller should be holding the rel open
1223 * anyway, so this is redundant in all normal scenarios...
1225 RelationIncrementReferenceCount(relation);
1228 * allocate and initialize scan descriptor
1230 scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
1232 scan->rs_rd = relation;
1233 scan->rs_snapshot = snapshot;
1234 scan->rs_nkeys = nkeys;
1235 scan->rs_bitmapscan = is_bitmapscan;
1236 scan->rs_strategy = NULL; /* set in initscan */
1237 scan->rs_allow_strat = allow_strat;
1238 scan->rs_allow_sync = allow_sync;
1241 * we can use page-at-a-time mode if it's an MVCC-safe snapshot
1243 scan->rs_pageatatime = IsMVCCSnapshot(snapshot);
1245 /* we only need to set this up once */
1246 scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
1249 * we do this here instead of in initscan() because heap_rescan also calls
1250 * initscan() and we don't want to allocate memory again
1252 if (nkeys > 0)
1253 scan->rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
1254 else
1255 scan->rs_key = NULL;
1257 initscan(scan, key);
1259 return scan;
1262 /* ----------------
1263 * heap_rescan - restart a relation scan
1264 * ----------------
1266 void
1267 heap_rescan(HeapScanDesc scan,
1268 ScanKey key)
1271 * unpin scan buffers
1273 if (BufferIsValid(scan->rs_cbuf))
1274 ReleaseBuffer(scan->rs_cbuf);
1277 * reinitialize scan descriptor
1279 initscan(scan, key);
1282 /* ----------------
1283 * heap_endscan - end relation scan
1285 * See how to integrate with index scans.
1286 * Check handling if reldesc caching.
1287 * ----------------
1289 void
1290 heap_endscan(HeapScanDesc scan)
1292 /* Note: no locking manipulations needed */
1295 * unpin scan buffers
1297 if (BufferIsValid(scan->rs_cbuf))
1298 ReleaseBuffer(scan->rs_cbuf);
1301 * decrement relation reference count and free scan descriptor storage
1303 RelationDecrementReferenceCount(scan->rs_rd);
1305 if (scan->rs_key)
1306 pfree(scan->rs_key);
1308 if (scan->rs_strategy != NULL)
1309 FreeAccessStrategy(scan->rs_strategy);
1311 pfree(scan);
1314 /* ----------------
1315 * heap_getnext - retrieve next tuple in scan
1317 * Fix to work with index relations.
1318 * We don't return the buffer anymore, but you can get it from the
1319 * returned HeapTuple.
1320 * ----------------
1323 #ifdef HEAPDEBUGALL
1324 #define HEAPDEBUG_1 \
1325 elog(DEBUG2, "heap_getnext([%s,nkeys=%d],dir=%d) called", \
1326 RelationGetRelationName(scan->rs_rd), scan->rs_nkeys, (int) direction)
1327 #define HEAPDEBUG_2 \
1328 elog(DEBUG2, "heap_getnext returning EOS")
1329 #define HEAPDEBUG_3 \
1330 elog(DEBUG2, "heap_getnext returning tuple")
1331 #else
1332 #define HEAPDEBUG_1
1333 #define HEAPDEBUG_2
1334 #define HEAPDEBUG_3
1335 #endif /* !defined(HEAPDEBUGALL) */
1338 HeapTuple
1339 heap_getnext(HeapScanDesc scan, ScanDirection direction)
1341 /* Note: no locking manipulations needed */
1343 HEAPDEBUG_1; /* heap_getnext( info ) */
1345 if (scan->rs_pageatatime)
1346 heapgettup_pagemode(scan, direction,
1347 scan->rs_nkeys, scan->rs_key);
1348 else
1349 heapgettup(scan, direction, scan->rs_nkeys, scan->rs_key);
1351 if (scan->rs_ctup.t_data == NULL)
1353 HEAPDEBUG_2; /* heap_getnext returning EOS */
1354 return NULL;
1358 * if we get here it means we have a new current scan tuple, so point to
1359 * the proper return buffer and return the tuple.
1361 HEAPDEBUG_3; /* heap_getnext returning tuple */
1363 pgstat_count_heap_getnext(scan->rs_rd);
1365 return &(scan->rs_ctup);
1369 * heap_fetch - retrieve tuple with given tid
1371 * On entry, tuple->t_self is the TID to fetch. We pin the buffer holding
1372 * the tuple, fill in the remaining fields of *tuple, and check the tuple
1373 * against the specified snapshot.
1375 * If successful (tuple found and passes snapshot time qual), then *userbuf
1376 * is set to the buffer holding the tuple and TRUE is returned. The caller
1377 * must unpin the buffer when done with the tuple.
1379 * If the tuple is not found (ie, item number references a deleted slot),
1380 * then tuple->t_data is set to NULL and FALSE is returned.
1382 * If the tuple is found but fails the time qual check, then FALSE is returned
1383 * but tuple->t_data is left pointing to the tuple.
1385 * keep_buf determines what is done with the buffer in the FALSE-result cases.
1386 * When the caller specifies keep_buf = true, we retain the pin on the buffer
1387 * and return it in *userbuf (so the caller must eventually unpin it); when
1388 * keep_buf = false, the pin is released and *userbuf is set to InvalidBuffer.
1390 * stats_relation is the relation to charge the heap_fetch operation against
1391 * for statistical purposes. (This could be the heap rel itself, an
1392 * associated index, or NULL to not count the fetch at all.)
1394 * heap_fetch does not follow HOT chains: only the exact TID requested will
1395 * be fetched.
1397 * It is somewhat inconsistent that we ereport() on invalid block number but
1398 * return false on invalid item number. There are a couple of reasons though.
1399 * One is that the caller can relatively easily check the block number for
1400 * validity, but cannot check the item number without reading the page
1401 * himself. Another is that when we are following a t_ctid link, we can be
1402 * reasonably confident that the page number is valid (since VACUUM shouldn't
1403 * truncate off the destination page without having killed the referencing
1404 * tuple first), but the item number might well not be good.
1406 bool
1407 heap_fetch(Relation relation,
1408 Snapshot snapshot,
1409 HeapTuple tuple,
1410 Buffer *userbuf,
1411 bool keep_buf,
1412 Relation stats_relation)
1414 ItemPointer tid = &(tuple->t_self);
1415 ItemId lp;
1416 Buffer buffer;
1417 Page page;
1418 OffsetNumber offnum;
1419 bool valid;
1422 * Fetch and pin the appropriate page of the relation.
1424 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
1427 * Need share lock on buffer to examine tuple commit status.
1429 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1430 page = BufferGetPage(buffer);
1433 * We'd better check for out-of-range offnum in case of VACUUM since the
1434 * TID was obtained.
1436 offnum = ItemPointerGetOffsetNumber(tid);
1437 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
1439 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1440 if (keep_buf)
1441 *userbuf = buffer;
1442 else
1444 ReleaseBuffer(buffer);
1445 *userbuf = InvalidBuffer;
1447 tuple->t_data = NULL;
1448 return false;
1452 * get the item line pointer corresponding to the requested tid
1454 lp = PageGetItemId(page, offnum);
1457 * Must check for deleted tuple.
1459 if (!ItemIdIsNormal(lp))
1461 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1462 if (keep_buf)
1463 *userbuf = buffer;
1464 else
1466 ReleaseBuffer(buffer);
1467 *userbuf = InvalidBuffer;
1469 tuple->t_data = NULL;
1470 return false;
1474 * fill in *tuple fields
1476 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
1477 tuple->t_len = ItemIdGetLength(lp);
1478 tuple->t_tableOid = RelationGetRelid(relation);
1481 * check time qualification of tuple, then release lock
1483 valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
1485 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1487 if (valid)
1490 * All checks passed, so return the tuple as valid. Caller is now
1491 * responsible for releasing the buffer.
1493 *userbuf = buffer;
1495 /* Count the successful fetch against appropriate rel, if any */
1496 if (stats_relation != NULL)
1497 pgstat_count_heap_fetch(stats_relation);
1499 return true;
1502 /* Tuple failed time qual, but maybe caller wants to see it anyway. */
1503 if (keep_buf)
1504 *userbuf = buffer;
1505 else
1507 ReleaseBuffer(buffer);
1508 *userbuf = InvalidBuffer;
1511 return false;
1515 * heap_hot_search_buffer - search HOT chain for tuple satisfying snapshot
1517 * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
1518 * of a HOT chain), and buffer is the buffer holding this tuple. We search
1519 * for the first chain member satisfying the given snapshot. If one is
1520 * found, we update *tid to reference that tuple's offset number, and
1521 * return TRUE. If no match, return FALSE without modifying *tid.
1523 * If all_dead is not NULL, we check non-visible tuples to see if they are
1524 * globally dead; *all_dead is set TRUE if all members of the HOT chain
1525 * are vacuumable, FALSE if not.
1527 * Unlike heap_fetch, the caller must already have pin and (at least) share
1528 * lock on the buffer; it is still pinned/locked at exit. Also unlike
1529 * heap_fetch, we do not report any pgstats count; caller may do so if wanted.
1531 bool
1532 heap_hot_search_buffer(ItemPointer tid, Buffer buffer, Snapshot snapshot,
1533 bool *all_dead)
1535 Page dp = (Page) BufferGetPage(buffer);
1536 TransactionId prev_xmax = InvalidTransactionId;
1537 OffsetNumber offnum;
1538 bool at_chain_start;
1540 if (all_dead)
1541 *all_dead = true;
1543 Assert(TransactionIdIsValid(RecentGlobalXmin));
1545 Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(buffer));
1546 offnum = ItemPointerGetOffsetNumber(tid);
1547 at_chain_start = true;
1549 /* Scan through possible multiple members of HOT-chain */
1550 for (;;)
1552 ItemId lp;
1553 HeapTupleData heapTuple;
1555 /* check for bogus TID */
1556 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp))
1557 break;
1559 lp = PageGetItemId(dp, offnum);
1561 /* check for unused, dead, or redirected items */
1562 if (!ItemIdIsNormal(lp))
1564 /* We should only see a redirect at start of chain */
1565 if (ItemIdIsRedirected(lp) && at_chain_start)
1567 /* Follow the redirect */
1568 offnum = ItemIdGetRedirect(lp);
1569 at_chain_start = false;
1570 continue;
1572 /* else must be end of chain */
1573 break;
1576 heapTuple.t_data = (HeapTupleHeader) PageGetItem(dp, lp);
1577 heapTuple.t_len = ItemIdGetLength(lp);
1580 * Shouldn't see a HEAP_ONLY tuple at chain start.
1582 if (at_chain_start && HeapTupleIsHeapOnly(&heapTuple))
1583 break;
1586 * The xmin should match the previous xmax value, else chain is
1587 * broken.
1589 if (TransactionIdIsValid(prev_xmax) &&
1590 !TransactionIdEquals(prev_xmax,
1591 HeapTupleHeaderGetXmin(heapTuple.t_data)))
1592 break;
1594 /* If it's visible per the snapshot, we must return it */
1595 if (HeapTupleSatisfiesVisibility(&heapTuple, snapshot, buffer))
1597 ItemPointerSetOffsetNumber(tid, offnum);
1598 if (all_dead)
1599 *all_dead = false;
1600 return true;
1604 * If we can't see it, maybe no one else can either. At caller
1605 * request, check whether all chain members are dead to all
1606 * transactions.
1608 if (all_dead && *all_dead &&
1609 HeapTupleSatisfiesVacuum(heapTuple.t_data, RecentGlobalXmin,
1610 buffer) != HEAPTUPLE_DEAD)
1611 *all_dead = false;
1614 * Check to see if HOT chain continues past this tuple; if so fetch
1615 * the next offnum and loop around.
1617 if (HeapTupleIsHotUpdated(&heapTuple))
1619 Assert(ItemPointerGetBlockNumber(&heapTuple.t_data->t_ctid) ==
1620 ItemPointerGetBlockNumber(tid));
1621 offnum = ItemPointerGetOffsetNumber(&heapTuple.t_data->t_ctid);
1622 at_chain_start = false;
1623 prev_xmax = HeapTupleHeaderGetXmax(heapTuple.t_data);
1625 else
1626 break; /* end of chain */
1629 return false;
1633 * heap_hot_search - search HOT chain for tuple satisfying snapshot
1635 * This has the same API as heap_hot_search_buffer, except that the caller
1636 * does not provide the buffer containing the page, rather we access it
1637 * locally.
1639 bool
1640 heap_hot_search(ItemPointer tid, Relation relation, Snapshot snapshot,
1641 bool *all_dead)
1643 bool result;
1644 Buffer buffer;
1646 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
1647 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1648 result = heap_hot_search_buffer(tid, buffer, snapshot, all_dead);
1649 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1650 ReleaseBuffer(buffer);
1651 return result;
1655 * heap_get_latest_tid - get the latest tid of a specified tuple
1657 * Actually, this gets the latest version that is visible according to
1658 * the passed snapshot. You can pass SnapshotDirty to get the very latest,
1659 * possibly uncommitted version.
1661 * *tid is both an input and an output parameter: it is updated to
1662 * show the latest version of the row. Note that it will not be changed
1663 * if no version of the row passes the snapshot test.
1665 void
1666 heap_get_latest_tid(Relation relation,
1667 Snapshot snapshot,
1668 ItemPointer tid)
1670 BlockNumber blk;
1671 ItemPointerData ctid;
1672 TransactionId priorXmax;
1674 /* this is to avoid Assert failures on bad input */
1675 if (!ItemPointerIsValid(tid))
1676 return;
1679 * Since this can be called with user-supplied TID, don't trust the input
1680 * too much. (RelationGetNumberOfBlocks is an expensive check, so we
1681 * don't check t_ctid links again this way. Note that it would not do to
1682 * call it just once and save the result, either.)
1684 blk = ItemPointerGetBlockNumber(tid);
1685 if (blk >= RelationGetNumberOfBlocks(relation))
1686 elog(ERROR, "block number %u is out of range for relation \"%s\"",
1687 blk, RelationGetRelationName(relation));
1690 * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we
1691 * need to examine, and *tid is the TID we will return if ctid turns out
1692 * to be bogus.
1694 * Note that we will loop until we reach the end of the t_ctid chain.
1695 * Depending on the snapshot passed, there might be at most one visible
1696 * version of the row, but we don't try to optimize for that.
1698 ctid = *tid;
1699 priorXmax = InvalidTransactionId; /* cannot check first XMIN */
1700 for (;;)
1702 Buffer buffer;
1703 Page page;
1704 OffsetNumber offnum;
1705 ItemId lp;
1706 HeapTupleData tp;
1707 bool valid;
1710 * Read, pin, and lock the page.
1712 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
1713 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1714 page = BufferGetPage(buffer);
1717 * Check for bogus item number. This is not treated as an error
1718 * condition because it can happen while following a t_ctid link. We
1719 * just assume that the prior tid is OK and return it unchanged.
1721 offnum = ItemPointerGetOffsetNumber(&ctid);
1722 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
1724 UnlockReleaseBuffer(buffer);
1725 break;
1727 lp = PageGetItemId(page, offnum);
1728 if (!ItemIdIsNormal(lp))
1730 UnlockReleaseBuffer(buffer);
1731 break;
1734 /* OK to access the tuple */
1735 tp.t_self = ctid;
1736 tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
1737 tp.t_len = ItemIdGetLength(lp);
1740 * After following a t_ctid link, we might arrive at an unrelated
1741 * tuple. Check for XMIN match.
1743 if (TransactionIdIsValid(priorXmax) &&
1744 !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
1746 UnlockReleaseBuffer(buffer);
1747 break;
1751 * Check time qualification of tuple; if visible, set it as the new
1752 * result candidate.
1754 valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
1755 if (valid)
1756 *tid = ctid;
1759 * If there's a valid t_ctid link, follow it, else we're done.
1761 if ((tp.t_data->t_infomask & (HEAP_XMAX_INVALID | HEAP_IS_LOCKED)) ||
1762 ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
1764 UnlockReleaseBuffer(buffer);
1765 break;
1768 ctid = tp.t_data->t_ctid;
1769 priorXmax = HeapTupleHeaderGetXmax(tp.t_data);
1770 UnlockReleaseBuffer(buffer);
1771 } /* end of loop */
1776 * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
1778 * This is called after we have waited for the XMAX transaction to terminate.
1779 * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
1780 * be set on exit. If the transaction committed, we set the XMAX_COMMITTED
1781 * hint bit if possible --- but beware that that may not yet be possible,
1782 * if the transaction committed asynchronously. Hence callers should look
1783 * only at XMAX_INVALID.
1785 static void
1786 UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
1788 Assert(TransactionIdEquals(HeapTupleHeaderGetXmax(tuple), xid));
1790 if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
1792 if (TransactionIdDidCommit(xid))
1793 HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
1794 xid);
1795 else
1796 HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
1797 InvalidTransactionId);
1803 * heap_insert - insert tuple into a heap
1805 * The new tuple is stamped with current transaction ID and the specified
1806 * command ID.
1808 * If use_wal is false, the new tuple is not logged in WAL, even for a
1809 * non-temp relation. Safe usage of this behavior requires that we arrange
1810 * that all new tuples go into new pages not containing any tuples from other
1811 * transactions, and that the relation gets fsync'd before commit.
1812 * (See also heap_sync() comments)
1814 * use_fsm is passed directly to RelationGetBufferForTuple, which see for
1815 * more info.
1817 * Note that use_wal and use_fsm will be applied when inserting into the
1818 * heap's TOAST table, too, if the tuple requires any out-of-line data.
1820 * The return value is the OID assigned to the tuple (either here or by the
1821 * caller), or InvalidOid if no OID. The header fields of *tup are updated
1822 * to match the stored tuple; in particular tup->t_self receives the actual
1823 * TID where the tuple was stored. But note that any toasting of fields
1824 * within the tuple data is NOT reflected into *tup.
1827 heap_insert(Relation relation, HeapTuple tup, CommandId cid,
1828 bool use_wal, bool use_fsm)
1830 TransactionId xid = GetCurrentTransactionId();
1831 HeapTuple heaptup;
1832 Buffer buffer;
1834 if (relation->rd_rel->relhasoids)
1836 #ifdef NOT_USED
1837 /* this is redundant with an Assert in HeapTupleSetOid */
1838 Assert(tup->t_data->t_infomask & HEAP_HASOID);
1839 #endif
1842 * If the object id of this tuple has already been assigned, trust the
1843 * caller. There are a couple of ways this can happen. At initial db
1844 * creation, the backend program sets oids for tuples. When we define
1845 * an index, we set the oid. Finally, in the future, we may allow
1846 * users to set their own object ids in order to support a persistent
1847 * object store (objects need to contain pointers to one another).
1849 if (!OidIsValid(HeapTupleGetOid(tup)))
1850 HeapTupleSetOid(tup, GetNewOid(relation));
1852 else
1854 /* check there is not space for an OID */
1855 Assert(!(tup->t_data->t_infomask & HEAP_HASOID));
1858 tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
1859 tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
1860 tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
1861 HeapTupleHeaderSetXmin(tup->t_data, xid);
1862 HeapTupleHeaderSetCmin(tup->t_data, cid);
1863 HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
1864 tup->t_tableOid = RelationGetRelid(relation);
1867 * If the new tuple is too big for storage or contains already toasted
1868 * out-of-line attributes from some other relation, invoke the toaster.
1870 * Note: below this point, heaptup is the data we actually intend to store
1871 * into the relation; tup is the caller's original untoasted data.
1873 if (relation->rd_rel->relkind != RELKIND_RELATION)
1875 /* toast table entries should never be recursively toasted */
1876 Assert(!HeapTupleHasExternal(tup));
1877 heaptup = tup;
1879 else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
1880 heaptup = toast_insert_or_update(relation, tup, NULL,
1881 use_wal, use_fsm);
1882 else
1883 heaptup = tup;
1885 /* Find buffer to insert this tuple into */
1886 buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
1887 InvalidBuffer, use_fsm);
1889 /* NO EREPORT(ERROR) from here till changes are logged */
1890 START_CRIT_SECTION();
1892 RelationPutHeapTuple(relation, buffer, heaptup);
1895 * XXX Should we set PageSetPrunable on this page ?
1897 * The inserting transaction may eventually abort thus making this tuple
1898 * DEAD and hence available for pruning. Though we don't want to optimize
1899 * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
1900 * aborted tuple will never be pruned until next vacuum is triggered.
1902 * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
1905 MarkBufferDirty(buffer);
1907 /* XLOG stuff */
1908 if (use_wal && !relation->rd_istemp)
1910 xl_heap_insert xlrec;
1911 xl_heap_header xlhdr;
1912 XLogRecPtr recptr;
1913 XLogRecData rdata[3];
1914 Page page = BufferGetPage(buffer);
1915 uint8 info = XLOG_HEAP_INSERT;
1917 xlrec.target.node = relation->rd_node;
1918 xlrec.target.tid = heaptup->t_self;
1919 rdata[0].data = (char *) &xlrec;
1920 rdata[0].len = SizeOfHeapInsert;
1921 rdata[0].buffer = InvalidBuffer;
1922 rdata[0].next = &(rdata[1]);
1924 xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
1925 xlhdr.t_infomask = heaptup->t_data->t_infomask;
1926 xlhdr.t_hoff = heaptup->t_data->t_hoff;
1929 * note we mark rdata[1] as belonging to buffer; if XLogInsert decides
1930 * to write the whole page to the xlog, we don't need to store
1931 * xl_heap_header in the xlog.
1933 rdata[1].data = (char *) &xlhdr;
1934 rdata[1].len = SizeOfHeapHeader;
1935 rdata[1].buffer = buffer;
1936 rdata[1].buffer_std = true;
1937 rdata[1].next = &(rdata[2]);
1939 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
1940 rdata[2].data = (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits);
1941 rdata[2].len = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits);
1942 rdata[2].buffer = buffer;
1943 rdata[2].buffer_std = true;
1944 rdata[2].next = NULL;
1947 * If this is the single and first tuple on page, we can reinit the
1948 * page instead of restoring the whole thing. Set flag, and hide
1949 * buffer references from XLogInsert.
1951 if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
1952 PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
1954 info |= XLOG_HEAP_INIT_PAGE;
1955 rdata[1].buffer = rdata[2].buffer = InvalidBuffer;
1958 recptr = XLogInsert(RM_HEAP_ID, info, rdata);
1960 PageSetLSN(page, recptr);
1961 PageSetTLI(page, ThisTimeLineID);
1964 END_CRIT_SECTION();
1966 UnlockReleaseBuffer(buffer);
1969 * If tuple is cachable, mark it for invalidation from the caches in case
1970 * we abort. Note it is OK to do this after releasing the buffer, because
1971 * the heaptup data structure is all in local memory, not in the shared
1972 * buffer.
1974 CacheInvalidateHeapTuple(relation, heaptup);
1976 pgstat_count_heap_insert(relation);
1979 * If heaptup is a private copy, release it. Don't forget to copy t_self
1980 * back to the caller's image, too.
1982 if (heaptup != tup)
1984 tup->t_self = heaptup->t_self;
1985 heap_freetuple(heaptup);
1988 return HeapTupleGetOid(tup);
1992 * simple_heap_insert - insert a tuple
1994 * Currently, this routine differs from heap_insert only in supplying
1995 * a default command ID and not allowing access to the speedup options.
1997 * This should be used rather than using heap_insert directly in most places
1998 * where we are modifying system catalogs.
2001 simple_heap_insert(Relation relation, HeapTuple tup)
2003 return heap_insert(relation, tup, GetCurrentCommandId(true), true, true);
2007 * heap_delete - delete a tuple
2009 * NB: do not call this directly unless you are prepared to deal with
2010 * concurrent-update conditions. Use simple_heap_delete instead.
2012 * relation - table to be modified (caller must hold suitable lock)
2013 * tid - TID of tuple to be deleted
2014 * ctid - output parameter, used only for failure case (see below)
2015 * update_xmax - output parameter, used only for failure case (see below)
2016 * cid - delete command ID (used for visibility test, and stored into
2017 * cmax if successful)
2018 * crosscheck - if not InvalidSnapshot, also check tuple against this
2019 * wait - true if should wait for any conflicting update to commit/abort
2021 * Normal, successful return value is HeapTupleMayBeUpdated, which
2022 * actually means we did delete it. Failure return codes are
2023 * HeapTupleSelfUpdated, HeapTupleUpdated, or HeapTupleBeingUpdated
2024 * (the last only possible if wait == false).
2026 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
2027 * If t_ctid is the same as tid, the tuple was deleted; if different, the
2028 * tuple was updated, and t_ctid is the location of the replacement tuple.
2029 * (t_xmax is needed to verify that the replacement tuple matches.)
2031 HTSU_Result
2032 heap_delete(Relation relation, ItemPointer tid,
2033 ItemPointer ctid, TransactionId *update_xmax,
2034 CommandId cid, Snapshot crosscheck, bool wait)
2036 HTSU_Result result;
2037 TransactionId xid = GetCurrentTransactionId();
2038 ItemId lp;
2039 HeapTupleData tp;
2040 Page page;
2041 Buffer buffer;
2042 bool have_tuple_lock = false;
2043 bool iscombo;
2045 Assert(ItemPointerIsValid(tid));
2047 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
2048 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2050 page = BufferGetPage(buffer);
2051 lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
2052 Assert(ItemIdIsNormal(lp));
2054 tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
2055 tp.t_len = ItemIdGetLength(lp);
2056 tp.t_self = *tid;
2059 result = HeapTupleSatisfiesUpdate(tp.t_data, cid, buffer);
2061 if (result == HeapTupleInvisible)
2063 UnlockReleaseBuffer(buffer);
2064 elog(ERROR, "attempted to delete invisible tuple");
2066 else if (result == HeapTupleBeingUpdated && wait)
2068 TransactionId xwait;
2069 uint16 infomask;
2071 /* must copy state data before unlocking buffer */
2072 xwait = HeapTupleHeaderGetXmax(tp.t_data);
2073 infomask = tp.t_data->t_infomask;
2075 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2078 * Acquire tuple lock to establish our priority for the tuple (see
2079 * heap_lock_tuple). LockTuple will release us when we are
2080 * next-in-line for the tuple.
2082 * If we are forced to "start over" below, we keep the tuple lock;
2083 * this arranges that we stay at the head of the line while rechecking
2084 * tuple state.
2086 if (!have_tuple_lock)
2088 LockTuple(relation, &(tp.t_self), ExclusiveLock);
2089 have_tuple_lock = true;
2093 * Sleep until concurrent transaction ends. Note that we don't care
2094 * if the locker has an exclusive or shared lock, because we need
2095 * exclusive.
2098 if (infomask & HEAP_XMAX_IS_MULTI)
2100 /* wait for multixact */
2101 MultiXactIdWait((MultiXactId) xwait);
2102 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2105 * If xwait had just locked the tuple then some other xact could
2106 * update this tuple before we get to this point. Check for xmax
2107 * change, and start over if so.
2109 if (!(tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2110 !TransactionIdEquals(HeapTupleHeaderGetXmax(tp.t_data),
2111 xwait))
2112 goto l1;
2115 * You might think the multixact is necessarily done here, but not
2116 * so: it could have surviving members, namely our own xact or
2117 * other subxacts of this backend. It is legal for us to delete
2118 * the tuple in either case, however (the latter case is
2119 * essentially a situation of upgrading our former shared lock to
2120 * exclusive). We don't bother changing the on-disk hint bits
2121 * since we are about to overwrite the xmax altogether.
2124 else
2126 /* wait for regular transaction to end */
2127 XactLockTableWait(xwait);
2128 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2131 * xwait is done, but if xwait had just locked the tuple then some
2132 * other xact could update this tuple before we get to this point.
2133 * Check for xmax change, and start over if so.
2135 if ((tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2136 !TransactionIdEquals(HeapTupleHeaderGetXmax(tp.t_data),
2137 xwait))
2138 goto l1;
2140 /* Otherwise check if it committed or aborted */
2141 UpdateXmaxHintBits(tp.t_data, buffer, xwait);
2145 * We may overwrite if previous xmax aborted, or if it committed but
2146 * only locked the tuple without updating it.
2148 if (tp.t_data->t_infomask & (HEAP_XMAX_INVALID |
2149 HEAP_IS_LOCKED))
2150 result = HeapTupleMayBeUpdated;
2151 else
2152 result = HeapTupleUpdated;
2155 if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated)
2157 /* Perform additional check for serializable RI updates */
2158 if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
2159 result = HeapTupleUpdated;
2162 if (result != HeapTupleMayBeUpdated)
2164 Assert(result == HeapTupleSelfUpdated ||
2165 result == HeapTupleUpdated ||
2166 result == HeapTupleBeingUpdated);
2167 Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
2168 *ctid = tp.t_data->t_ctid;
2169 *update_xmax = HeapTupleHeaderGetXmax(tp.t_data);
2170 UnlockReleaseBuffer(buffer);
2171 if (have_tuple_lock)
2172 UnlockTuple(relation, &(tp.t_self), ExclusiveLock);
2173 return result;
2176 /* replace cid with a combo cid if necessary */
2177 HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
2179 START_CRIT_SECTION();
2182 * If this transaction commits, the tuple will become DEAD sooner or
2183 * later. Set flag that this page is a candidate for pruning once our xid
2184 * falls below the OldestXmin horizon. If the transaction finally aborts,
2185 * the subsequent page pruning will be a no-op and the hint will be
2186 * cleared.
2188 PageSetPrunable(page, xid);
2190 /* store transaction information of xact deleting the tuple */
2191 tp.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2192 HEAP_XMAX_INVALID |
2193 HEAP_XMAX_IS_MULTI |
2194 HEAP_IS_LOCKED |
2195 HEAP_MOVED);
2196 HeapTupleHeaderClearHotUpdated(tp.t_data);
2197 HeapTupleHeaderSetXmax(tp.t_data, xid);
2198 HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
2199 /* Make sure there is no forward chain link in t_ctid */
2200 tp.t_data->t_ctid = tp.t_self;
2202 MarkBufferDirty(buffer);
2204 /* XLOG stuff */
2205 if (!relation->rd_istemp)
2207 xl_heap_delete xlrec;
2208 XLogRecPtr recptr;
2209 XLogRecData rdata[2];
2211 xlrec.target.node = relation->rd_node;
2212 xlrec.target.tid = tp.t_self;
2213 rdata[0].data = (char *) &xlrec;
2214 rdata[0].len = SizeOfHeapDelete;
2215 rdata[0].buffer = InvalidBuffer;
2216 rdata[0].next = &(rdata[1]);
2218 rdata[1].data = NULL;
2219 rdata[1].len = 0;
2220 rdata[1].buffer = buffer;
2221 rdata[1].buffer_std = true;
2222 rdata[1].next = NULL;
2224 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE, rdata);
2226 PageSetLSN(page, recptr);
2227 PageSetTLI(page, ThisTimeLineID);
2230 END_CRIT_SECTION();
2232 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2235 * If the tuple has toasted out-of-line attributes, we need to delete
2236 * those items too. We have to do this before releasing the buffer
2237 * because we need to look at the contents of the tuple, but it's OK to
2238 * release the content lock on the buffer first.
2240 if (relation->rd_rel->relkind != RELKIND_RELATION)
2242 /* toast table entries should never be recursively toasted */
2243 Assert(!HeapTupleHasExternal(&tp));
2245 else if (HeapTupleHasExternal(&tp))
2246 toast_delete(relation, &tp);
2249 * Mark tuple for invalidation from system caches at next command
2250 * boundary. We have to do this before releasing the buffer because we
2251 * need to look at the contents of the tuple.
2253 CacheInvalidateHeapTuple(relation, &tp);
2255 /* Now we can release the buffer */
2256 ReleaseBuffer(buffer);
2259 * Release the lmgr tuple lock, if we had it.
2261 if (have_tuple_lock)
2262 UnlockTuple(relation, &(tp.t_self), ExclusiveLock);
2264 pgstat_count_heap_delete(relation);
2266 return HeapTupleMayBeUpdated;
2270 * simple_heap_delete - delete a tuple
2272 * This routine may be used to delete a tuple when concurrent updates of
2273 * the target tuple are not expected (for example, because we have a lock
2274 * on the relation associated with the tuple). Any failure is reported
2275 * via ereport().
2277 void
2278 simple_heap_delete(Relation relation, ItemPointer tid)
2280 HTSU_Result result;
2281 ItemPointerData update_ctid;
2282 TransactionId update_xmax;
2284 result = heap_delete(relation, tid,
2285 &update_ctid, &update_xmax,
2286 GetCurrentCommandId(true), InvalidSnapshot,
2287 true /* wait for commit */ );
2288 switch (result)
2290 case HeapTupleSelfUpdated:
2291 /* Tuple was already updated in current command? */
2292 elog(ERROR, "tuple already updated by self");
2293 break;
2295 case HeapTupleMayBeUpdated:
2296 /* done successfully */
2297 break;
2299 case HeapTupleUpdated:
2300 elog(ERROR, "tuple concurrently updated");
2301 break;
2303 default:
2304 elog(ERROR, "unrecognized heap_delete status: %u", result);
2305 break;
2310 * heap_update - replace a tuple
2312 * NB: do not call this directly unless you are prepared to deal with
2313 * concurrent-update conditions. Use simple_heap_update instead.
2315 * relation - table to be modified (caller must hold suitable lock)
2316 * otid - TID of old tuple to be replaced
2317 * newtup - newly constructed tuple data to store
2318 * ctid - output parameter, used only for failure case (see below)
2319 * update_xmax - output parameter, used only for failure case (see below)
2320 * cid - update command ID (used for visibility test, and stored into
2321 * cmax/cmin if successful)
2322 * crosscheck - if not InvalidSnapshot, also check old tuple against this
2323 * wait - true if should wait for any conflicting update to commit/abort
2325 * Normal, successful return value is HeapTupleMayBeUpdated, which
2326 * actually means we *did* update it. Failure return codes are
2327 * HeapTupleSelfUpdated, HeapTupleUpdated, or HeapTupleBeingUpdated
2328 * (the last only possible if wait == false).
2330 * On success, the header fields of *newtup are updated to match the new
2331 * stored tuple; in particular, newtup->t_self is set to the TID where the
2332 * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
2333 * update was done. However, any TOAST changes in the new tuple's
2334 * data are not reflected into *newtup.
2336 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
2337 * If t_ctid is the same as otid, the tuple was deleted; if different, the
2338 * tuple was updated, and t_ctid is the location of the replacement tuple.
2339 * (t_xmax is needed to verify that the replacement tuple matches.)
2341 HTSU_Result
2342 heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
2343 ItemPointer ctid, TransactionId *update_xmax,
2344 CommandId cid, Snapshot crosscheck, bool wait)
2346 HTSU_Result result;
2347 TransactionId xid = GetCurrentTransactionId();
2348 Bitmapset *hot_attrs;
2349 ItemId lp;
2350 HeapTupleData oldtup;
2351 HeapTuple heaptup;
2352 Page page;
2353 Buffer buffer,
2354 newbuf;
2355 bool need_toast,
2356 already_marked;
2357 Size newtupsize,
2358 pagefree;
2359 bool have_tuple_lock = false;
2360 bool iscombo;
2361 bool use_hot_update = false;
2363 Assert(ItemPointerIsValid(otid));
2366 * Fetch the list of attributes to be checked for HOT update. This is
2367 * wasted effort if we fail to update or have to put the new tuple on a
2368 * different page. But we must compute the list before obtaining buffer
2369 * lock --- in the worst case, if we are doing an update on one of the
2370 * relevant system catalogs, we could deadlock if we try to fetch the list
2371 * later. In any case, the relcache caches the data so this is usually
2372 * pretty cheap.
2374 * Note that we get a copy here, so we need not worry about relcache flush
2375 * happening midway through.
2377 hot_attrs = RelationGetIndexAttrBitmap(relation);
2379 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(otid));
2380 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2382 page = BufferGetPage(buffer);
2383 lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
2384 Assert(ItemIdIsNormal(lp));
2386 oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
2387 oldtup.t_len = ItemIdGetLength(lp);
2388 oldtup.t_self = *otid;
2391 * Note: beyond this point, use oldtup not otid to refer to old tuple.
2392 * otid may very well point at newtup->t_self, which we will overwrite
2393 * with the new tuple's location, so there's great risk of confusion if we
2394 * use otid anymore.
2398 result = HeapTupleSatisfiesUpdate(oldtup.t_data, cid, buffer);
2400 if (result == HeapTupleInvisible)
2402 UnlockReleaseBuffer(buffer);
2403 elog(ERROR, "attempted to update invisible tuple");
2405 else if (result == HeapTupleBeingUpdated && wait)
2407 TransactionId xwait;
2408 uint16 infomask;
2410 /* must copy state data before unlocking buffer */
2411 xwait = HeapTupleHeaderGetXmax(oldtup.t_data);
2412 infomask = oldtup.t_data->t_infomask;
2414 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2417 * Acquire tuple lock to establish our priority for the tuple (see
2418 * heap_lock_tuple). LockTuple will release us when we are
2419 * next-in-line for the tuple.
2421 * If we are forced to "start over" below, we keep the tuple lock;
2422 * this arranges that we stay at the head of the line while rechecking
2423 * tuple state.
2425 if (!have_tuple_lock)
2427 LockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2428 have_tuple_lock = true;
2432 * Sleep until concurrent transaction ends. Note that we don't care
2433 * if the locker has an exclusive or shared lock, because we need
2434 * exclusive.
2437 if (infomask & HEAP_XMAX_IS_MULTI)
2439 /* wait for multixact */
2440 MultiXactIdWait((MultiXactId) xwait);
2441 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2444 * If xwait had just locked the tuple then some other xact could
2445 * update this tuple before we get to this point. Check for xmax
2446 * change, and start over if so.
2448 if (!(oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2449 !TransactionIdEquals(HeapTupleHeaderGetXmax(oldtup.t_data),
2450 xwait))
2451 goto l2;
2454 * You might think the multixact is necessarily done here, but not
2455 * so: it could have surviving members, namely our own xact or
2456 * other subxacts of this backend. It is legal for us to update
2457 * the tuple in either case, however (the latter case is
2458 * essentially a situation of upgrading our former shared lock to
2459 * exclusive). We don't bother changing the on-disk hint bits
2460 * since we are about to overwrite the xmax altogether.
2463 else
2465 /* wait for regular transaction to end */
2466 XactLockTableWait(xwait);
2467 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2470 * xwait is done, but if xwait had just locked the tuple then some
2471 * other xact could update this tuple before we get to this point.
2472 * Check for xmax change, and start over if so.
2474 if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2475 !TransactionIdEquals(HeapTupleHeaderGetXmax(oldtup.t_data),
2476 xwait))
2477 goto l2;
2479 /* Otherwise check if it committed or aborted */
2480 UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
2484 * We may overwrite if previous xmax aborted, or if it committed but
2485 * only locked the tuple without updating it.
2487 if (oldtup.t_data->t_infomask & (HEAP_XMAX_INVALID |
2488 HEAP_IS_LOCKED))
2489 result = HeapTupleMayBeUpdated;
2490 else
2491 result = HeapTupleUpdated;
2494 if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated)
2496 /* Perform additional check for serializable RI updates */
2497 if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
2498 result = HeapTupleUpdated;
2501 if (result != HeapTupleMayBeUpdated)
2503 Assert(result == HeapTupleSelfUpdated ||
2504 result == HeapTupleUpdated ||
2505 result == HeapTupleBeingUpdated);
2506 Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
2507 *ctid = oldtup.t_data->t_ctid;
2508 *update_xmax = HeapTupleHeaderGetXmax(oldtup.t_data);
2509 UnlockReleaseBuffer(buffer);
2510 if (have_tuple_lock)
2511 UnlockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2512 bms_free(hot_attrs);
2513 return result;
2516 /* Fill in OID and transaction status data for newtup */
2517 if (relation->rd_rel->relhasoids)
2519 #ifdef NOT_USED
2520 /* this is redundant with an Assert in HeapTupleSetOid */
2521 Assert(newtup->t_data->t_infomask & HEAP_HASOID);
2522 #endif
2523 HeapTupleSetOid(newtup, HeapTupleGetOid(&oldtup));
2525 else
2527 /* check there is not space for an OID */
2528 Assert(!(newtup->t_data->t_infomask & HEAP_HASOID));
2531 newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
2532 newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
2533 newtup->t_data->t_infomask |= (HEAP_XMAX_INVALID | HEAP_UPDATED);
2534 HeapTupleHeaderSetXmin(newtup->t_data, xid);
2535 HeapTupleHeaderSetCmin(newtup->t_data, cid);
2536 HeapTupleHeaderSetXmax(newtup->t_data, 0); /* for cleanliness */
2539 * Replace cid with a combo cid if necessary. Note that we already put
2540 * the plain cid into the new tuple.
2542 HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
2545 * If the toaster needs to be activated, OR if the new tuple will not fit
2546 * on the same page as the old, then we need to release the content lock
2547 * (but not the pin!) on the old tuple's buffer while we are off doing
2548 * TOAST and/or table-file-extension work. We must mark the old tuple to
2549 * show that it's already being updated, else other processes may try to
2550 * update it themselves.
2552 * We need to invoke the toaster if there are already any out-of-line
2553 * toasted values present, or if the new tuple is over-threshold.
2555 if (relation->rd_rel->relkind != RELKIND_RELATION)
2557 /* toast table entries should never be recursively toasted */
2558 Assert(!HeapTupleHasExternal(&oldtup));
2559 Assert(!HeapTupleHasExternal(newtup));
2560 need_toast = false;
2562 else
2563 need_toast = (HeapTupleHasExternal(&oldtup) ||
2564 HeapTupleHasExternal(newtup) ||
2565 newtup->t_len > TOAST_TUPLE_THRESHOLD);
2567 pagefree = PageGetHeapFreeSpace(page);
2569 newtupsize = MAXALIGN(newtup->t_len);
2571 if (need_toast || newtupsize > pagefree)
2573 /* Clear obsolete visibility flags ... */
2574 oldtup.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2575 HEAP_XMAX_INVALID |
2576 HEAP_XMAX_IS_MULTI |
2577 HEAP_IS_LOCKED |
2578 HEAP_MOVED);
2579 HeapTupleClearHotUpdated(&oldtup);
2580 /* ... and store info about transaction updating this tuple */
2581 HeapTupleHeaderSetXmax(oldtup.t_data, xid);
2582 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
2583 /* temporarily make it look not-updated */
2584 oldtup.t_data->t_ctid = oldtup.t_self;
2585 already_marked = true;
2586 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2589 * Let the toaster do its thing, if needed.
2591 * Note: below this point, heaptup is the data we actually intend to
2592 * store into the relation; newtup is the caller's original untoasted
2593 * data.
2595 if (need_toast)
2597 /* Note we always use WAL and FSM during updates */
2598 heaptup = toast_insert_or_update(relation, newtup, &oldtup,
2599 true, true);
2600 newtupsize = MAXALIGN(heaptup->t_len);
2602 else
2603 heaptup = newtup;
2606 * Now, do we need a new page for the tuple, or not? This is a bit
2607 * tricky since someone else could have added tuples to the page while
2608 * we weren't looking. We have to recheck the available space after
2609 * reacquiring the buffer lock. But don't bother to do that if the
2610 * former amount of free space is still not enough; it's unlikely
2611 * there's more free now than before.
2613 * What's more, if we need to get a new page, we will need to acquire
2614 * buffer locks on both old and new pages. To avoid deadlock against
2615 * some other backend trying to get the same two locks in the other
2616 * order, we must be consistent about the order we get the locks in.
2617 * We use the rule "lock the lower-numbered page of the relation
2618 * first". To implement this, we must do RelationGetBufferForTuple
2619 * while not holding the lock on the old page, and we must rely on it
2620 * to get the locks on both pages in the correct order.
2622 if (newtupsize > pagefree)
2624 /* Assume there's no chance to put heaptup on same page. */
2625 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
2626 buffer, true);
2628 else
2630 /* Re-acquire the lock on the old tuple's page. */
2631 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2632 /* Re-check using the up-to-date free space */
2633 pagefree = PageGetHeapFreeSpace(page);
2634 if (newtupsize > pagefree)
2637 * Rats, it doesn't fit anymore. We must now unlock and
2638 * relock to avoid deadlock. Fortunately, this path should
2639 * seldom be taken.
2641 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2642 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
2643 buffer, true);
2645 else
2647 /* OK, it fits here, so we're done. */
2648 newbuf = buffer;
2652 else
2654 /* No TOAST work needed, and it'll fit on same page */
2655 already_marked = false;
2656 newbuf = buffer;
2657 heaptup = newtup;
2661 * At this point newbuf and buffer are both pinned and locked, and newbuf
2662 * has enough space for the new tuple. If they are the same buffer, only
2663 * one pin is held.
2666 if (newbuf == buffer)
2669 * Since the new tuple is going into the same page, we might be able
2670 * to do a HOT update. Check if any of the index columns have been
2671 * changed. If not, then HOT update is possible.
2673 if (HeapSatisfiesHOTUpdate(relation, hot_attrs, &oldtup, heaptup))
2674 use_hot_update = true;
2676 else
2678 /* Set a hint that the old page could use prune/defrag */
2679 PageSetFull(page);
2682 /* NO EREPORT(ERROR) from here till changes are logged */
2683 START_CRIT_SECTION();
2686 * If this transaction commits, the old tuple will become DEAD sooner or
2687 * later. Set flag that this page is a candidate for pruning once our xid
2688 * falls below the OldestXmin horizon. If the transaction finally aborts,
2689 * the subsequent page pruning will be a no-op and the hint will be
2690 * cleared.
2692 * XXX Should we set hint on newbuf as well? If the transaction aborts,
2693 * there would be a prunable tuple in the newbuf; but for now we choose
2694 * not to optimize for aborts. Note that heap_xlog_update must be kept in
2695 * sync if this decision changes.
2697 PageSetPrunable(page, xid);
2699 if (use_hot_update)
2701 /* Mark the old tuple as HOT-updated */
2702 HeapTupleSetHotUpdated(&oldtup);
2703 /* And mark the new tuple as heap-only */
2704 HeapTupleSetHeapOnly(heaptup);
2705 /* Mark the caller's copy too, in case different from heaptup */
2706 HeapTupleSetHeapOnly(newtup);
2708 else
2710 /* Make sure tuples are correctly marked as not-HOT */
2711 HeapTupleClearHotUpdated(&oldtup);
2712 HeapTupleClearHeapOnly(heaptup);
2713 HeapTupleClearHeapOnly(newtup);
2716 RelationPutHeapTuple(relation, newbuf, heaptup); /* insert new tuple */
2718 if (!already_marked)
2720 /* Clear obsolete visibility flags ... */
2721 oldtup.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2722 HEAP_XMAX_INVALID |
2723 HEAP_XMAX_IS_MULTI |
2724 HEAP_IS_LOCKED |
2725 HEAP_MOVED);
2726 /* ... and store info about transaction updating this tuple */
2727 HeapTupleHeaderSetXmax(oldtup.t_data, xid);
2728 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
2731 /* record address of new tuple in t_ctid of old one */
2732 oldtup.t_data->t_ctid = heaptup->t_self;
2734 if (newbuf != buffer)
2735 MarkBufferDirty(newbuf);
2736 MarkBufferDirty(buffer);
2738 /* XLOG stuff */
2739 if (!relation->rd_istemp)
2741 XLogRecPtr recptr = log_heap_update(relation, buffer, oldtup.t_self,
2742 newbuf, heaptup, false);
2744 if (newbuf != buffer)
2746 PageSetLSN(BufferGetPage(newbuf), recptr);
2747 PageSetTLI(BufferGetPage(newbuf), ThisTimeLineID);
2749 PageSetLSN(BufferGetPage(buffer), recptr);
2750 PageSetTLI(BufferGetPage(buffer), ThisTimeLineID);
2753 END_CRIT_SECTION();
2755 if (newbuf != buffer)
2756 LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
2757 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2760 * Mark old tuple for invalidation from system caches at next command
2761 * boundary. We have to do this before releasing the buffer because we
2762 * need to look at the contents of the tuple.
2764 CacheInvalidateHeapTuple(relation, &oldtup);
2766 /* Now we can release the buffer(s) */
2767 if (newbuf != buffer)
2768 ReleaseBuffer(newbuf);
2769 ReleaseBuffer(buffer);
2772 * If new tuple is cachable, mark it for invalidation from the caches in
2773 * case we abort. Note it is OK to do this after releasing the buffer,
2774 * because the heaptup data structure is all in local memory, not in the
2775 * shared buffer.
2777 CacheInvalidateHeapTuple(relation, heaptup);
2780 * Release the lmgr tuple lock, if we had it.
2782 if (have_tuple_lock)
2783 UnlockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2785 pgstat_count_heap_update(relation, use_hot_update);
2788 * If heaptup is a private copy, release it. Don't forget to copy t_self
2789 * back to the caller's image, too.
2791 if (heaptup != newtup)
2793 newtup->t_self = heaptup->t_self;
2794 heap_freetuple(heaptup);
2797 bms_free(hot_attrs);
2799 return HeapTupleMayBeUpdated;
2803 * Check if the specified attribute's value is same in both given tuples.
2804 * Subroutine for HeapSatisfiesHOTUpdate.
2806 static bool
2807 heap_tuple_attr_equals(TupleDesc tupdesc, int attrnum,
2808 HeapTuple tup1, HeapTuple tup2)
2810 Datum value1,
2811 value2;
2812 bool isnull1,
2813 isnull2;
2814 Form_pg_attribute att;
2817 * If it's a whole-tuple reference, say "not equal". It's not really
2818 * worth supporting this case, since it could only succeed after a no-op
2819 * update, which is hardly a case worth optimizing for.
2821 if (attrnum == 0)
2822 return false;
2825 * Likewise, automatically say "not equal" for any system attribute other
2826 * than OID and tableOID; we cannot expect these to be consistent in a HOT
2827 * chain, or even to be set correctly yet in the new tuple.
2829 if (attrnum < 0)
2831 if (attrnum != ObjectIdAttributeNumber &&
2832 attrnum != TableOidAttributeNumber)
2833 return false;
2837 * Extract the corresponding values. XXX this is pretty inefficient if
2838 * there are many indexed columns. Should HeapSatisfiesHOTUpdate do a
2839 * single heap_deform_tuple call on each tuple, instead? But that doesn't
2840 * work for system columns ...
2842 value1 = heap_getattr(tup1, attrnum, tupdesc, &isnull1);
2843 value2 = heap_getattr(tup2, attrnum, tupdesc, &isnull2);
2846 * If one value is NULL and other is not, then they are certainly not
2847 * equal
2849 if (isnull1 != isnull2)
2850 return false;
2853 * If both are NULL, they can be considered equal.
2855 if (isnull1)
2856 return true;
2859 * We do simple binary comparison of the two datums. This may be overly
2860 * strict because there can be multiple binary representations for the
2861 * same logical value. But we should be OK as long as there are no false
2862 * positives. Using a type-specific equality operator is messy because
2863 * there could be multiple notions of equality in different operator
2864 * classes; furthermore, we cannot safely invoke user-defined functions
2865 * while holding exclusive buffer lock.
2867 if (attrnum <= 0)
2869 /* The only allowed system columns are OIDs, so do this */
2870 return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
2872 else
2874 Assert(attrnum <= tupdesc->natts);
2875 att = tupdesc->attrs[attrnum - 1];
2876 return datumIsEqual(value1, value2, att->attbyval, att->attlen);
2881 * Check if the old and new tuples represent a HOT-safe update. To be able
2882 * to do a HOT update, we must not have changed any columns used in index
2883 * definitions.
2885 * The set of attributes to be checked is passed in (we dare not try to
2886 * compute it while holding exclusive buffer lock...) NOTE that hot_attrs
2887 * is destructively modified! That is OK since this is invoked at most once
2888 * by heap_update().
2890 * Returns true if safe to do HOT update.
2892 static bool
2893 HeapSatisfiesHOTUpdate(Relation relation, Bitmapset *hot_attrs,
2894 HeapTuple oldtup, HeapTuple newtup)
2896 int attrnum;
2898 while ((attrnum = bms_first_member(hot_attrs)) >= 0)
2900 /* Adjust for system attributes */
2901 attrnum += FirstLowInvalidHeapAttributeNumber;
2903 /* If the attribute value has changed, we can't do HOT update */
2904 if (!heap_tuple_attr_equals(RelationGetDescr(relation), attrnum,
2905 oldtup, newtup))
2906 return false;
2909 return true;
2913 * simple_heap_update - replace a tuple
2915 * This routine may be used to update a tuple when concurrent updates of
2916 * the target tuple are not expected (for example, because we have a lock
2917 * on the relation associated with the tuple). Any failure is reported
2918 * via ereport().
2920 void
2921 simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup)
2923 HTSU_Result result;
2924 ItemPointerData update_ctid;
2925 TransactionId update_xmax;
2927 result = heap_update(relation, otid, tup,
2928 &update_ctid, &update_xmax,
2929 GetCurrentCommandId(true), InvalidSnapshot,
2930 true /* wait for commit */ );
2931 switch (result)
2933 case HeapTupleSelfUpdated:
2934 /* Tuple was already updated in current command? */
2935 elog(ERROR, "tuple already updated by self");
2936 break;
2938 case HeapTupleMayBeUpdated:
2939 /* done successfully */
2940 break;
2942 case HeapTupleUpdated:
2943 elog(ERROR, "tuple concurrently updated");
2944 break;
2946 default:
2947 elog(ERROR, "unrecognized heap_update status: %u", result);
2948 break;
2953 * heap_lock_tuple - lock a tuple in shared or exclusive mode
2955 * Note that this acquires a buffer pin, which the caller must release.
2957 * Input parameters:
2958 * relation: relation containing tuple (caller must hold suitable lock)
2959 * tuple->t_self: TID of tuple to lock (rest of struct need not be valid)
2960 * cid: current command ID (used for visibility test, and stored into
2961 * tuple's cmax if lock is successful)
2962 * mode: indicates if shared or exclusive tuple lock is desired
2963 * nowait: if true, ereport rather than blocking if lock not available
2965 * Output parameters:
2966 * *tuple: all fields filled in
2967 * *buffer: set to buffer holding tuple (pinned but not locked at exit)
2968 * *ctid: set to tuple's t_ctid, but only in failure cases
2969 * *update_xmax: set to tuple's xmax, but only in failure cases
2971 * Function result may be:
2972 * HeapTupleMayBeUpdated: lock was successfully acquired
2973 * HeapTupleSelfUpdated: lock failed because tuple updated by self
2974 * HeapTupleUpdated: lock failed because tuple updated by other xact
2976 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
2977 * If t_ctid is the same as t_self, the tuple was deleted; if different, the
2978 * tuple was updated, and t_ctid is the location of the replacement tuple.
2979 * (t_xmax is needed to verify that the replacement tuple matches.)
2982 * NOTES: because the shared-memory lock table is of finite size, but users
2983 * could reasonably want to lock large numbers of tuples, we do not rely on
2984 * the standard lock manager to store tuple-level locks over the long term.
2985 * Instead, a tuple is marked as locked by setting the current transaction's
2986 * XID as its XMAX, and setting additional infomask bits to distinguish this
2987 * usage from the more normal case of having deleted the tuple. When
2988 * multiple transactions concurrently share-lock a tuple, the first locker's
2989 * XID is replaced in XMAX with a MultiTransactionId representing the set of
2990 * XIDs currently holding share-locks.
2992 * When it is necessary to wait for a tuple-level lock to be released, the
2993 * basic delay is provided by XactLockTableWait or MultiXactIdWait on the
2994 * contents of the tuple's XMAX. However, that mechanism will release all
2995 * waiters concurrently, so there would be a race condition as to which
2996 * waiter gets the tuple, potentially leading to indefinite starvation of
2997 * some waiters. The possibility of share-locking makes the problem much
2998 * worse --- a steady stream of share-lockers can easily block an exclusive
2999 * locker forever. To provide more reliable semantics about who gets a
3000 * tuple-level lock first, we use the standard lock manager. The protocol
3001 * for waiting for a tuple-level lock is really
3002 * LockTuple()
3003 * XactLockTableWait()
3004 * mark tuple as locked by me
3005 * UnlockTuple()
3006 * When there are multiple waiters, arbitration of who is to get the lock next
3007 * is provided by LockTuple(). However, at most one tuple-level lock will
3008 * be held or awaited per backend at any time, so we don't risk overflow
3009 * of the lock table. Note that incoming share-lockers are required to
3010 * do LockTuple as well, if there is any conflict, to ensure that they don't
3011 * starve out waiting exclusive-lockers. However, if there is not any active
3012 * conflict for a tuple, we don't incur any extra overhead.
3014 HTSU_Result
3015 heap_lock_tuple(Relation relation, HeapTuple tuple, Buffer *buffer,
3016 ItemPointer ctid, TransactionId *update_xmax,
3017 CommandId cid, LockTupleMode mode, bool nowait)
3019 HTSU_Result result;
3020 ItemPointer tid = &(tuple->t_self);
3021 ItemId lp;
3022 Page page;
3023 TransactionId xid;
3024 TransactionId xmax;
3025 uint16 old_infomask;
3026 uint16 new_infomask;
3027 LOCKMODE tuple_lock_type;
3028 bool have_tuple_lock = false;
3030 tuple_lock_type = (mode == LockTupleShared) ? ShareLock : ExclusiveLock;
3032 *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
3033 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3035 page = BufferGetPage(*buffer);
3036 lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
3037 Assert(ItemIdIsNormal(lp));
3039 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
3040 tuple->t_len = ItemIdGetLength(lp);
3041 tuple->t_tableOid = RelationGetRelid(relation);
3044 result = HeapTupleSatisfiesUpdate(tuple->t_data, cid, *buffer);
3046 if (result == HeapTupleInvisible)
3048 UnlockReleaseBuffer(*buffer);
3049 elog(ERROR, "attempted to lock invisible tuple");
3051 else if (result == HeapTupleBeingUpdated)
3053 TransactionId xwait;
3054 uint16 infomask;
3056 /* must copy state data before unlocking buffer */
3057 xwait = HeapTupleHeaderGetXmax(tuple->t_data);
3058 infomask = tuple->t_data->t_infomask;
3060 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3063 * If we wish to acquire share lock, and the tuple is already
3064 * share-locked by a multixact that includes any subtransaction of the
3065 * current top transaction, then we effectively hold the desired lock
3066 * already. We *must* succeed without trying to take the tuple lock,
3067 * else we will deadlock against anyone waiting to acquire exclusive
3068 * lock. We don't need to make any state changes in this case.
3070 if (mode == LockTupleShared &&
3071 (infomask & HEAP_XMAX_IS_MULTI) &&
3072 MultiXactIdIsCurrent((MultiXactId) xwait))
3074 Assert(infomask & HEAP_XMAX_SHARED_LOCK);
3075 /* Probably can't hold tuple lock here, but may as well check */
3076 if (have_tuple_lock)
3077 UnlockTuple(relation, tid, tuple_lock_type);
3078 return HeapTupleMayBeUpdated;
3082 * Acquire tuple lock to establish our priority for the tuple.
3083 * LockTuple will release us when we are next-in-line for the tuple.
3084 * We must do this even if we are share-locking.
3086 * If we are forced to "start over" below, we keep the tuple lock;
3087 * this arranges that we stay at the head of the line while rechecking
3088 * tuple state.
3090 if (!have_tuple_lock)
3092 if (nowait)
3094 if (!ConditionalLockTuple(relation, tid, tuple_lock_type))
3095 ereport(ERROR,
3096 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3097 errmsg("could not obtain lock on row in relation \"%s\"",
3098 RelationGetRelationName(relation))));
3100 else
3101 LockTuple(relation, tid, tuple_lock_type);
3102 have_tuple_lock = true;
3105 if (mode == LockTupleShared && (infomask & HEAP_XMAX_SHARED_LOCK))
3108 * Acquiring sharelock when there's at least one sharelocker
3109 * already. We need not wait for him/them to complete.
3111 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3114 * Make sure it's still a shared lock, else start over. (It's OK
3115 * if the ownership of the shared lock has changed, though.)
3117 if (!(tuple->t_data->t_infomask & HEAP_XMAX_SHARED_LOCK))
3118 goto l3;
3120 else if (infomask & HEAP_XMAX_IS_MULTI)
3122 /* wait for multixact to end */
3123 if (nowait)
3125 if (!ConditionalMultiXactIdWait((MultiXactId) xwait))
3126 ereport(ERROR,
3127 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3128 errmsg("could not obtain lock on row in relation \"%s\"",
3129 RelationGetRelationName(relation))));
3131 else
3132 MultiXactIdWait((MultiXactId) xwait);
3134 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3137 * If xwait had just locked the tuple then some other xact could
3138 * update this tuple before we get to this point. Check for xmax
3139 * change, and start over if so.
3141 if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
3142 !TransactionIdEquals(HeapTupleHeaderGetXmax(tuple->t_data),
3143 xwait))
3144 goto l3;
3147 * You might think the multixact is necessarily done here, but not
3148 * so: it could have surviving members, namely our own xact or
3149 * other subxacts of this backend. It is legal for us to lock the
3150 * tuple in either case, however. We don't bother changing the
3151 * on-disk hint bits since we are about to overwrite the xmax
3152 * altogether.
3155 else
3157 /* wait for regular transaction to end */
3158 if (nowait)
3160 if (!ConditionalXactLockTableWait(xwait))
3161 ereport(ERROR,
3162 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3163 errmsg("could not obtain lock on row in relation \"%s\"",
3164 RelationGetRelationName(relation))));
3166 else
3167 XactLockTableWait(xwait);
3169 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3172 * xwait is done, but if xwait had just locked the tuple then some
3173 * other xact could update this tuple before we get to this point.
3174 * Check for xmax change, and start over if so.
3176 if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
3177 !TransactionIdEquals(HeapTupleHeaderGetXmax(tuple->t_data),
3178 xwait))
3179 goto l3;
3181 /* Otherwise check if it committed or aborted */
3182 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
3186 * We may lock if previous xmax aborted, or if it committed but only
3187 * locked the tuple without updating it. The case where we didn't
3188 * wait because we are joining an existing shared lock is correctly
3189 * handled, too.
3191 if (tuple->t_data->t_infomask & (HEAP_XMAX_INVALID |
3192 HEAP_IS_LOCKED))
3193 result = HeapTupleMayBeUpdated;
3194 else
3195 result = HeapTupleUpdated;
3198 if (result != HeapTupleMayBeUpdated)
3200 Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated);
3201 Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
3202 *ctid = tuple->t_data->t_ctid;
3203 *update_xmax = HeapTupleHeaderGetXmax(tuple->t_data);
3204 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3205 if (have_tuple_lock)
3206 UnlockTuple(relation, tid, tuple_lock_type);
3207 return result;
3211 * We might already hold the desired lock (or stronger), possibly under a
3212 * different subtransaction of the current top transaction. If so, there
3213 * is no need to change state or issue a WAL record. We already handled
3214 * the case where this is true for xmax being a MultiXactId, so now check
3215 * for cases where it is a plain TransactionId.
3217 * Note in particular that this covers the case where we already hold
3218 * exclusive lock on the tuple and the caller only wants shared lock. It
3219 * would certainly not do to give up the exclusive lock.
3221 xmax = HeapTupleHeaderGetXmax(tuple->t_data);
3222 old_infomask = tuple->t_data->t_infomask;
3224 if (!(old_infomask & (HEAP_XMAX_INVALID |
3225 HEAP_XMAX_COMMITTED |
3226 HEAP_XMAX_IS_MULTI)) &&
3227 (mode == LockTupleShared ?
3228 (old_infomask & HEAP_IS_LOCKED) :
3229 (old_infomask & HEAP_XMAX_EXCL_LOCK)) &&
3230 TransactionIdIsCurrentTransactionId(xmax))
3232 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3233 /* Probably can't hold tuple lock here, but may as well check */
3234 if (have_tuple_lock)
3235 UnlockTuple(relation, tid, tuple_lock_type);
3236 return HeapTupleMayBeUpdated;
3240 * Compute the new xmax and infomask to store into the tuple. Note we do
3241 * not modify the tuple just yet, because that would leave it in the wrong
3242 * state if multixact.c elogs.
3244 xid = GetCurrentTransactionId();
3246 new_infomask = old_infomask & ~(HEAP_XMAX_COMMITTED |
3247 HEAP_XMAX_INVALID |
3248 HEAP_XMAX_IS_MULTI |
3249 HEAP_IS_LOCKED |
3250 HEAP_MOVED);
3252 if (mode == LockTupleShared)
3255 * If this is the first acquisition of a shared lock in the current
3256 * transaction, set my per-backend OldestMemberMXactId setting. We can
3257 * be certain that the transaction will never become a member of any
3258 * older MultiXactIds than that. (We have to do this even if we end
3259 * up just using our own TransactionId below, since some other backend
3260 * could incorporate our XID into a MultiXact immediately afterwards.)
3262 MultiXactIdSetOldestMember();
3264 new_infomask |= HEAP_XMAX_SHARED_LOCK;
3267 * Check to see if we need a MultiXactId because there are multiple
3268 * lockers.
3270 * HeapTupleSatisfiesUpdate will have set the HEAP_XMAX_INVALID bit if
3271 * the xmax was a MultiXactId but it was not running anymore. There is
3272 * a race condition, which is that the MultiXactId may have finished
3273 * since then, but that uncommon case is handled within
3274 * MultiXactIdExpand.
3276 * There is a similar race condition possible when the old xmax was a
3277 * regular TransactionId. We test TransactionIdIsInProgress again
3278 * just to narrow the window, but it's still possible to end up
3279 * creating an unnecessary MultiXactId. Fortunately this is harmless.
3281 if (!(old_infomask & (HEAP_XMAX_INVALID | HEAP_XMAX_COMMITTED)))
3283 if (old_infomask & HEAP_XMAX_IS_MULTI)
3286 * If the XMAX is already a MultiXactId, then we need to
3287 * expand it to include our own TransactionId.
3289 xid = MultiXactIdExpand((MultiXactId) xmax, xid);
3290 new_infomask |= HEAP_XMAX_IS_MULTI;
3292 else if (TransactionIdIsInProgress(xmax))
3295 * If the XMAX is a valid TransactionId, then we need to
3296 * create a new MultiXactId that includes both the old locker
3297 * and our own TransactionId.
3299 xid = MultiXactIdCreate(xmax, xid);
3300 new_infomask |= HEAP_XMAX_IS_MULTI;
3302 else
3305 * Can get here iff HeapTupleSatisfiesUpdate saw the old xmax
3306 * as running, but it finished before
3307 * TransactionIdIsInProgress() got to run. Treat it like
3308 * there's no locker in the tuple.
3312 else
3315 * There was no previous locker, so just insert our own
3316 * TransactionId.
3320 else
3322 /* We want an exclusive lock on the tuple */
3323 new_infomask |= HEAP_XMAX_EXCL_LOCK;
3326 START_CRIT_SECTION();
3329 * Store transaction information of xact locking the tuple.
3331 * Note: Cmax is meaningless in this context, so don't set it; this avoids
3332 * possibly generating a useless combo CID.
3334 tuple->t_data->t_infomask = new_infomask;
3335 HeapTupleHeaderClearHotUpdated(tuple->t_data);
3336 HeapTupleHeaderSetXmax(tuple->t_data, xid);
3337 /* Make sure there is no forward chain link in t_ctid */
3338 tuple->t_data->t_ctid = *tid;
3340 MarkBufferDirty(*buffer);
3343 * XLOG stuff. You might think that we don't need an XLOG record because
3344 * there is no state change worth restoring after a crash. You would be
3345 * wrong however: we have just written either a TransactionId or a
3346 * MultiXactId that may never have been seen on disk before, and we need
3347 * to make sure that there are XLOG entries covering those ID numbers.
3348 * Else the same IDs might be re-used after a crash, which would be
3349 * disastrous if this page made it to disk before the crash. Essentially
3350 * we have to enforce the WAL log-before-data rule even in this case.
3351 * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
3352 * entries for everything anyway.)
3354 if (!relation->rd_istemp)
3356 xl_heap_lock xlrec;
3357 XLogRecPtr recptr;
3358 XLogRecData rdata[2];
3360 xlrec.target.node = relation->rd_node;
3361 xlrec.target.tid = tuple->t_self;
3362 xlrec.locking_xid = xid;
3363 xlrec.xid_is_mxact = ((new_infomask & HEAP_XMAX_IS_MULTI) != 0);
3364 xlrec.shared_lock = (mode == LockTupleShared);
3365 rdata[0].data = (char *) &xlrec;
3366 rdata[0].len = SizeOfHeapLock;
3367 rdata[0].buffer = InvalidBuffer;
3368 rdata[0].next = &(rdata[1]);
3370 rdata[1].data = NULL;
3371 rdata[1].len = 0;
3372 rdata[1].buffer = *buffer;
3373 rdata[1].buffer_std = true;
3374 rdata[1].next = NULL;
3376 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK, rdata);
3378 PageSetLSN(page, recptr);
3379 PageSetTLI(page, ThisTimeLineID);
3382 END_CRIT_SECTION();
3384 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3387 * Now that we have successfully marked the tuple as locked, we can
3388 * release the lmgr tuple lock, if we had it.
3390 if (have_tuple_lock)
3391 UnlockTuple(relation, tid, tuple_lock_type);
3393 return HeapTupleMayBeUpdated;
3398 * heap_inplace_update - update a tuple "in place" (ie, overwrite it)
3400 * Overwriting violates both MVCC and transactional safety, so the uses
3401 * of this function in Postgres are extremely limited. Nonetheless we
3402 * find some places to use it.
3404 * The tuple cannot change size, and therefore it's reasonable to assume
3405 * that its null bitmap (if any) doesn't change either. So we just
3406 * overwrite the data portion of the tuple without touching the null
3407 * bitmap or any of the header fields.
3409 * tuple is an in-memory tuple structure containing the data to be written
3410 * over the target tuple. Also, tuple->t_self identifies the target tuple.
3412 void
3413 heap_inplace_update(Relation relation, HeapTuple tuple)
3415 Buffer buffer;
3416 Page page;
3417 OffsetNumber offnum;
3418 ItemId lp = NULL;
3419 HeapTupleHeader htup;
3420 uint32 oldlen;
3421 uint32 newlen;
3423 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self)));
3424 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
3425 page = (Page) BufferGetPage(buffer);
3427 offnum = ItemPointerGetOffsetNumber(&(tuple->t_self));
3428 if (PageGetMaxOffsetNumber(page) >= offnum)
3429 lp = PageGetItemId(page, offnum);
3431 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
3432 elog(ERROR, "heap_inplace_update: invalid lp");
3434 htup = (HeapTupleHeader) PageGetItem(page, lp);
3436 oldlen = ItemIdGetLength(lp) - htup->t_hoff;
3437 newlen = tuple->t_len - tuple->t_data->t_hoff;
3438 if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
3439 elog(ERROR, "heap_inplace_update: wrong tuple length");
3441 /* NO EREPORT(ERROR) from here till changes are logged */
3442 START_CRIT_SECTION();
3444 memcpy((char *) htup + htup->t_hoff,
3445 (char *) tuple->t_data + tuple->t_data->t_hoff,
3446 newlen);
3448 MarkBufferDirty(buffer);
3450 /* XLOG stuff */
3451 if (!relation->rd_istemp)
3453 xl_heap_inplace xlrec;
3454 XLogRecPtr recptr;
3455 XLogRecData rdata[2];
3457 xlrec.target.node = relation->rd_node;
3458 xlrec.target.tid = tuple->t_self;
3460 rdata[0].data = (char *) &xlrec;
3461 rdata[0].len = SizeOfHeapInplace;
3462 rdata[0].buffer = InvalidBuffer;
3463 rdata[0].next = &(rdata[1]);
3465 rdata[1].data = (char *) htup + htup->t_hoff;
3466 rdata[1].len = newlen;
3467 rdata[1].buffer = buffer;
3468 rdata[1].buffer_std = true;
3469 rdata[1].next = NULL;
3471 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE, rdata);
3473 PageSetLSN(page, recptr);
3474 PageSetTLI(page, ThisTimeLineID);
3477 END_CRIT_SECTION();
3479 UnlockReleaseBuffer(buffer);
3481 /* Send out shared cache inval if necessary */
3482 if (!IsBootstrapProcessingMode())
3483 CacheInvalidateHeapTuple(relation, tuple);
3488 * heap_freeze_tuple
3490 * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
3491 * are older than the specified cutoff XID. If so, replace them with
3492 * FrozenTransactionId or InvalidTransactionId as appropriate, and return
3493 * TRUE. Return FALSE if nothing was changed.
3495 * It is assumed that the caller has checked the tuple with
3496 * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
3497 * (else we should be removing the tuple, not freezing it).
3499 * NB: cutoff_xid *must* be <= the current global xmin, to ensure that any
3500 * XID older than it could neither be running nor seen as running by any
3501 * open transaction. This ensures that the replacement will not change
3502 * anyone's idea of the tuple state. Also, since we assume the tuple is
3503 * not HEAPTUPLE_DEAD, the fact that an XID is not still running allows us
3504 * to assume that it is either committed good or aborted, as appropriate;
3505 * so we need no external state checks to decide what to do. (This is good
3506 * because this function is applied during WAL recovery, when we don't have
3507 * access to any such state, and can't depend on the hint bits to be set.)
3509 * In lazy VACUUM, we call this while initially holding only a shared lock
3510 * on the tuple's buffer. If any change is needed, we trade that in for an
3511 * exclusive lock before making the change. Caller should pass the buffer ID
3512 * if shared lock is held, InvalidBuffer if exclusive lock is already held.
3514 * Note: it might seem we could make the changes without exclusive lock, since
3515 * TransactionId read/write is assumed atomic anyway. However there is a race
3516 * condition: someone who just fetched an old XID that we overwrite here could
3517 * conceivably not finish checking the XID against pg_clog before we finish
3518 * the VACUUM and perhaps truncate off the part of pg_clog he needs. Getting
3519 * exclusive lock ensures no other backend is in process of checking the
3520 * tuple status. Also, getting exclusive lock makes it safe to adjust the
3521 * infomask bits.
3523 bool
3524 heap_freeze_tuple(HeapTupleHeader tuple, TransactionId cutoff_xid,
3525 Buffer buf)
3527 bool changed = false;
3528 TransactionId xid;
3530 xid = HeapTupleHeaderGetXmin(tuple);
3531 if (TransactionIdIsNormal(xid) &&
3532 TransactionIdPrecedes(xid, cutoff_xid))
3534 if (buf != InvalidBuffer)
3536 /* trade in share lock for exclusive lock */
3537 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3538 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3539 buf = InvalidBuffer;
3541 HeapTupleHeaderSetXmin(tuple, FrozenTransactionId);
3544 * Might as well fix the hint bits too; usually XMIN_COMMITTED will
3545 * already be set here, but there's a small chance not.
3547 Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
3548 tuple->t_infomask |= HEAP_XMIN_COMMITTED;
3549 changed = true;
3553 * When we release shared lock, it's possible for someone else to change
3554 * xmax before we get the lock back, so repeat the check after acquiring
3555 * exclusive lock. (We don't need this pushup for xmin, because only
3556 * VACUUM could be interested in changing an existing tuple's xmin, and
3557 * there's only one VACUUM allowed on a table at a time.)
3559 recheck_xmax:
3560 if (!(tuple->t_infomask & HEAP_XMAX_IS_MULTI))
3562 xid = HeapTupleHeaderGetXmax(tuple);
3563 if (TransactionIdIsNormal(xid) &&
3564 TransactionIdPrecedes(xid, cutoff_xid))
3566 if (buf != InvalidBuffer)
3568 /* trade in share lock for exclusive lock */
3569 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3570 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3571 buf = InvalidBuffer;
3572 goto recheck_xmax; /* see comment above */
3574 HeapTupleHeaderSetXmax(tuple, InvalidTransactionId);
3577 * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED
3578 * + LOCKED. Normalize to INVALID just to be sure no one gets
3579 * confused.
3581 tuple->t_infomask &= ~HEAP_XMAX_COMMITTED;
3582 tuple->t_infomask |= HEAP_XMAX_INVALID;
3583 HeapTupleHeaderClearHotUpdated(tuple);
3584 changed = true;
3587 else
3589 /*----------
3590 * XXX perhaps someday we should zero out very old MultiXactIds here?
3592 * The only way a stale MultiXactId could pose a problem is if a
3593 * tuple, having once been multiply-share-locked, is not touched by
3594 * any vacuum or attempted lock or deletion for just over 4G MultiXact
3595 * creations, and then in the probably-narrow window where its xmax
3596 * is again a live MultiXactId, someone tries to lock or delete it.
3597 * Even then, another share-lock attempt would work fine. An
3598 * exclusive-lock or delete attempt would face unexpected delay, or
3599 * in the very worst case get a deadlock error. This seems an
3600 * extremely low-probability scenario with minimal downside even if
3601 * it does happen, so for now we don't do the extra bookkeeping that
3602 * would be needed to clean out MultiXactIds.
3603 *----------
3608 * Although xvac per se could only be set by VACUUM, it shares physical
3609 * storage space with cmax, and so could be wiped out by someone setting
3610 * xmax. Hence recheck after changing lock, same as for xmax itself.
3612 recheck_xvac:
3613 if (tuple->t_infomask & HEAP_MOVED)
3615 xid = HeapTupleHeaderGetXvac(tuple);
3616 if (TransactionIdIsNormal(xid) &&
3617 TransactionIdPrecedes(xid, cutoff_xid))
3619 if (buf != InvalidBuffer)
3621 /* trade in share lock for exclusive lock */
3622 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3623 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3624 buf = InvalidBuffer;
3625 goto recheck_xvac; /* see comment above */
3629 * If a MOVED_OFF tuple is not dead, the xvac transaction must
3630 * have failed; whereas a non-dead MOVED_IN tuple must mean the
3631 * xvac transaction succeeded.
3633 if (tuple->t_infomask & HEAP_MOVED_OFF)
3634 HeapTupleHeaderSetXvac(tuple, InvalidTransactionId);
3635 else
3636 HeapTupleHeaderSetXvac(tuple, FrozenTransactionId);
3639 * Might as well fix the hint bits too; usually XMIN_COMMITTED
3640 * will already be set here, but there's a small chance not.
3642 Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
3643 tuple->t_infomask |= HEAP_XMIN_COMMITTED;
3644 changed = true;
3648 return changed;
3652 /* ----------------
3653 * heap_markpos - mark scan position
3654 * ----------------
3656 void
3657 heap_markpos(HeapScanDesc scan)
3659 /* Note: no locking manipulations needed */
3661 if (scan->rs_ctup.t_data != NULL)
3663 scan->rs_mctid = scan->rs_ctup.t_self;
3664 if (scan->rs_pageatatime)
3665 scan->rs_mindex = scan->rs_cindex;
3667 else
3668 ItemPointerSetInvalid(&scan->rs_mctid);
3671 /* ----------------
3672 * heap_restrpos - restore position to marked location
3673 * ----------------
3675 void
3676 heap_restrpos(HeapScanDesc scan)
3678 /* XXX no amrestrpos checking that ammarkpos called */
3680 if (!ItemPointerIsValid(&scan->rs_mctid))
3682 scan->rs_ctup.t_data = NULL;
3685 * unpin scan buffers
3687 if (BufferIsValid(scan->rs_cbuf))
3688 ReleaseBuffer(scan->rs_cbuf);
3689 scan->rs_cbuf = InvalidBuffer;
3690 scan->rs_cblock = InvalidBlockNumber;
3691 scan->rs_inited = false;
3693 else
3696 * If we reached end of scan, rs_inited will now be false. We must
3697 * reset it to true to keep heapgettup from doing the wrong thing.
3699 scan->rs_inited = true;
3700 scan->rs_ctup.t_self = scan->rs_mctid;
3701 if (scan->rs_pageatatime)
3703 scan->rs_cindex = scan->rs_mindex;
3704 heapgettup_pagemode(scan,
3705 NoMovementScanDirection,
3706 0, /* needn't recheck scan keys */
3707 NULL);
3709 else
3710 heapgettup(scan,
3711 NoMovementScanDirection,
3712 0, /* needn't recheck scan keys */
3713 NULL);
3718 * Perform XLogInsert for a heap-clean operation. Caller must already
3719 * have modified the buffer and marked it dirty.
3721 * Note: prior to Postgres 8.3, the entries in the nowunused[] array were
3722 * zero-based tuple indexes. Now they are one-based like other uses
3723 * of OffsetNumber.
3725 XLogRecPtr
3726 log_heap_clean(Relation reln, Buffer buffer,
3727 OffsetNumber *redirected, int nredirected,
3728 OffsetNumber *nowdead, int ndead,
3729 OffsetNumber *nowunused, int nunused,
3730 bool redirect_move)
3732 xl_heap_clean xlrec;
3733 uint8 info;
3734 XLogRecPtr recptr;
3735 XLogRecData rdata[4];
3737 /* Caller should not call me on a temp relation */
3738 Assert(!reln->rd_istemp);
3740 xlrec.node = reln->rd_node;
3741 xlrec.block = BufferGetBlockNumber(buffer);
3742 xlrec.nredirected = nredirected;
3743 xlrec.ndead = ndead;
3745 rdata[0].data = (char *) &xlrec;
3746 rdata[0].len = SizeOfHeapClean;
3747 rdata[0].buffer = InvalidBuffer;
3748 rdata[0].next = &(rdata[1]);
3751 * The OffsetNumber arrays are not actually in the buffer, but we pretend
3752 * that they are. When XLogInsert stores the whole buffer, the offset
3753 * arrays need not be stored too. Note that even if all three arrays are
3754 * empty, we want to expose the buffer as a candidate for whole-page
3755 * storage, since this record type implies a defragmentation operation
3756 * even if no item pointers changed state.
3758 if (nredirected > 0)
3760 rdata[1].data = (char *) redirected;
3761 rdata[1].len = nredirected * sizeof(OffsetNumber) * 2;
3763 else
3765 rdata[1].data = NULL;
3766 rdata[1].len = 0;
3768 rdata[1].buffer = buffer;
3769 rdata[1].buffer_std = true;
3770 rdata[1].next = &(rdata[2]);
3772 if (ndead > 0)
3774 rdata[2].data = (char *) nowdead;
3775 rdata[2].len = ndead * sizeof(OffsetNumber);
3777 else
3779 rdata[2].data = NULL;
3780 rdata[2].len = 0;
3782 rdata[2].buffer = buffer;
3783 rdata[2].buffer_std = true;
3784 rdata[2].next = &(rdata[3]);
3786 if (nunused > 0)
3788 rdata[3].data = (char *) nowunused;
3789 rdata[3].len = nunused * sizeof(OffsetNumber);
3791 else
3793 rdata[3].data = NULL;
3794 rdata[3].len = 0;
3796 rdata[3].buffer = buffer;
3797 rdata[3].buffer_std = true;
3798 rdata[3].next = NULL;
3800 info = redirect_move ? XLOG_HEAP2_CLEAN_MOVE : XLOG_HEAP2_CLEAN;
3801 recptr = XLogInsert(RM_HEAP2_ID, info, rdata);
3803 return recptr;
3807 * Perform XLogInsert for a heap-freeze operation. Caller must already
3808 * have modified the buffer and marked it dirty.
3810 XLogRecPtr
3811 log_heap_freeze(Relation reln, Buffer buffer,
3812 TransactionId cutoff_xid,
3813 OffsetNumber *offsets, int offcnt)
3815 xl_heap_freeze xlrec;
3816 XLogRecPtr recptr;
3817 XLogRecData rdata[2];
3819 /* Caller should not call me on a temp relation */
3820 Assert(!reln->rd_istemp);
3822 xlrec.node = reln->rd_node;
3823 xlrec.block = BufferGetBlockNumber(buffer);
3824 xlrec.cutoff_xid = cutoff_xid;
3826 rdata[0].data = (char *) &xlrec;
3827 rdata[0].len = SizeOfHeapFreeze;
3828 rdata[0].buffer = InvalidBuffer;
3829 rdata[0].next = &(rdata[1]);
3832 * The tuple-offsets array is not actually in the buffer, but pretend that
3833 * it is. When XLogInsert stores the whole buffer, the offsets array need
3834 * not be stored too.
3836 if (offcnt > 0)
3838 rdata[1].data = (char *) offsets;
3839 rdata[1].len = offcnt * sizeof(OffsetNumber);
3841 else
3843 rdata[1].data = NULL;
3844 rdata[1].len = 0;
3846 rdata[1].buffer = buffer;
3847 rdata[1].buffer_std = true;
3848 rdata[1].next = NULL;
3850 recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE, rdata);
3852 return recptr;
3856 * Perform XLogInsert for a heap-update operation. Caller must already
3857 * have modified the buffer(s) and marked them dirty.
3859 static XLogRecPtr
3860 log_heap_update(Relation reln, Buffer oldbuf, ItemPointerData from,
3861 Buffer newbuf, HeapTuple newtup, bool move)
3864 * Note: xlhdr is declared to have adequate size and correct alignment for
3865 * an xl_heap_header. However the two tids, if present at all, will be
3866 * packed in with no wasted space after the xl_heap_header; they aren't
3867 * necessarily aligned as implied by this struct declaration.
3869 struct
3871 xl_heap_header hdr;
3872 TransactionId tid1;
3873 TransactionId tid2;
3874 } xlhdr;
3875 int hsize = SizeOfHeapHeader;
3876 xl_heap_update xlrec;
3877 uint8 info;
3878 XLogRecPtr recptr;
3879 XLogRecData rdata[4];
3880 Page page = BufferGetPage(newbuf);
3882 /* Caller should not call me on a temp relation */
3883 Assert(!reln->rd_istemp);
3885 if (move)
3887 Assert(!HeapTupleIsHeapOnly(newtup));
3888 info = XLOG_HEAP_MOVE;
3890 else if (HeapTupleIsHeapOnly(newtup))
3891 info = XLOG_HEAP_HOT_UPDATE;
3892 else
3893 info = XLOG_HEAP_UPDATE;
3895 xlrec.target.node = reln->rd_node;
3896 xlrec.target.tid = from;
3897 xlrec.newtid = newtup->t_self;
3899 rdata[0].data = (char *) &xlrec;
3900 rdata[0].len = SizeOfHeapUpdate;
3901 rdata[0].buffer = InvalidBuffer;
3902 rdata[0].next = &(rdata[1]);
3904 rdata[1].data = NULL;
3905 rdata[1].len = 0;
3906 rdata[1].buffer = oldbuf;
3907 rdata[1].buffer_std = true;
3908 rdata[1].next = &(rdata[2]);
3910 xlhdr.hdr.t_infomask2 = newtup->t_data->t_infomask2;
3911 xlhdr.hdr.t_infomask = newtup->t_data->t_infomask;
3912 xlhdr.hdr.t_hoff = newtup->t_data->t_hoff;
3913 if (move) /* remember xmax & xmin */
3915 TransactionId xid[2]; /* xmax, xmin */
3917 if (newtup->t_data->t_infomask & (HEAP_XMAX_INVALID | HEAP_IS_LOCKED))
3918 xid[0] = InvalidTransactionId;
3919 else
3920 xid[0] = HeapTupleHeaderGetXmax(newtup->t_data);
3921 xid[1] = HeapTupleHeaderGetXmin(newtup->t_data);
3922 memcpy((char *) &xlhdr + hsize,
3923 (char *) xid,
3924 2 * sizeof(TransactionId));
3925 hsize += 2 * sizeof(TransactionId);
3929 * As with insert records, we need not store the rdata[2] segment if we
3930 * decide to store the whole buffer instead.
3932 rdata[2].data = (char *) &xlhdr;
3933 rdata[2].len = hsize;
3934 rdata[2].buffer = newbuf;
3935 rdata[2].buffer_std = true;
3936 rdata[2].next = &(rdata[3]);
3938 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
3939 rdata[3].data = (char *) newtup->t_data + offsetof(HeapTupleHeaderData, t_bits);
3940 rdata[3].len = newtup->t_len - offsetof(HeapTupleHeaderData, t_bits);
3941 rdata[3].buffer = newbuf;
3942 rdata[3].buffer_std = true;
3943 rdata[3].next = NULL;
3945 /* If new tuple is the single and first tuple on page... */
3946 if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
3947 PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
3949 info |= XLOG_HEAP_INIT_PAGE;
3950 rdata[2].buffer = rdata[3].buffer = InvalidBuffer;
3953 recptr = XLogInsert(RM_HEAP_ID, info, rdata);
3955 return recptr;
3959 * Perform XLogInsert for a heap-move operation. Caller must already
3960 * have modified the buffers and marked them dirty.
3962 XLogRecPtr
3963 log_heap_move(Relation reln, Buffer oldbuf, ItemPointerData from,
3964 Buffer newbuf, HeapTuple newtup)
3966 return log_heap_update(reln, oldbuf, from, newbuf, newtup, true);
3970 * Perform XLogInsert of a HEAP_NEWPAGE record to WAL. Caller is responsible
3971 * for writing the page to disk after calling this routine.
3973 * Note: all current callers build pages in private memory and write them
3974 * directly to smgr, rather than using bufmgr. Therefore there is no need
3975 * to pass a buffer ID to XLogInsert, nor to perform MarkBufferDirty within
3976 * the critical section.
3978 * Note: the NEWPAGE log record is used for both heaps and indexes, so do
3979 * not do anything that assumes we are touching a heap.
3981 XLogRecPtr
3982 log_newpage(RelFileNode *rnode, ForkNumber forkNum, BlockNumber blkno,
3983 Page page)
3985 xl_heap_newpage xlrec;
3986 XLogRecPtr recptr;
3987 XLogRecData rdata[2];
3989 /* NO ELOG(ERROR) from here till newpage op is logged */
3990 START_CRIT_SECTION();
3992 xlrec.node = *rnode;
3993 xlrec.forknum = forkNum;
3994 xlrec.blkno = blkno;
3996 rdata[0].data = (char *) &xlrec;
3997 rdata[0].len = SizeOfHeapNewpage;
3998 rdata[0].buffer = InvalidBuffer;
3999 rdata[0].next = &(rdata[1]);
4001 rdata[1].data = (char *) page;
4002 rdata[1].len = BLCKSZ;
4003 rdata[1].buffer = InvalidBuffer;
4004 rdata[1].next = NULL;
4006 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_NEWPAGE, rdata);
4008 PageSetLSN(page, recptr);
4009 PageSetTLI(page, ThisTimeLineID);
4011 END_CRIT_SECTION();
4013 return recptr;
4017 * Handles CLEAN and CLEAN_MOVE record types
4019 static void
4020 heap_xlog_clean(XLogRecPtr lsn, XLogRecord *record, bool clean_move)
4022 xl_heap_clean *xlrec = (xl_heap_clean *) XLogRecGetData(record);
4023 Buffer buffer;
4024 Page page;
4025 OffsetNumber *end;
4026 OffsetNumber *redirected;
4027 OffsetNumber *nowdead;
4028 OffsetNumber *nowunused;
4029 int nredirected;
4030 int ndead;
4031 int nunused;
4033 if (record->xl_info & XLR_BKP_BLOCK_1)
4034 return;
4036 buffer = XLogReadBuffer(xlrec->node, xlrec->block, false);
4037 if (!BufferIsValid(buffer))
4038 return;
4039 page = (Page) BufferGetPage(buffer);
4041 if (XLByteLE(lsn, PageGetLSN(page)))
4043 UnlockReleaseBuffer(buffer);
4044 return;
4047 nredirected = xlrec->nredirected;
4048 ndead = xlrec->ndead;
4049 end = (OffsetNumber *) ((char *) xlrec + record->xl_len);
4050 redirected = (OffsetNumber *) ((char *) xlrec + SizeOfHeapClean);
4051 nowdead = redirected + (nredirected * 2);
4052 nowunused = nowdead + ndead;
4053 nunused = (end - nowunused);
4054 Assert(nunused >= 0);
4056 /* Update all item pointers per the record, and repair fragmentation */
4057 heap_page_prune_execute(buffer,
4058 redirected, nredirected,
4059 nowdead, ndead,
4060 nowunused, nunused,
4061 clean_move);
4064 * Note: we don't worry about updating the page's prunability hints.
4065 * At worst this will cause an extra prune cycle to occur soon.
4068 PageSetLSN(page, lsn);
4069 PageSetTLI(page, ThisTimeLineID);
4070 MarkBufferDirty(buffer);
4071 UnlockReleaseBuffer(buffer);
4074 static void
4075 heap_xlog_freeze(XLogRecPtr lsn, XLogRecord *record)
4077 xl_heap_freeze *xlrec = (xl_heap_freeze *) XLogRecGetData(record);
4078 TransactionId cutoff_xid = xlrec->cutoff_xid;
4079 Buffer buffer;
4080 Page page;
4082 if (record->xl_info & XLR_BKP_BLOCK_1)
4083 return;
4085 buffer = XLogReadBuffer(xlrec->node, xlrec->block, false);
4086 if (!BufferIsValid(buffer))
4087 return;
4088 page = (Page) BufferGetPage(buffer);
4090 if (XLByteLE(lsn, PageGetLSN(page)))
4092 UnlockReleaseBuffer(buffer);
4093 return;
4096 if (record->xl_len > SizeOfHeapFreeze)
4098 OffsetNumber *offsets;
4099 OffsetNumber *offsets_end;
4101 offsets = (OffsetNumber *) ((char *) xlrec + SizeOfHeapFreeze);
4102 offsets_end = (OffsetNumber *) ((char *) xlrec + record->xl_len);
4104 while (offsets < offsets_end)
4106 /* offsets[] entries are one-based */
4107 ItemId lp = PageGetItemId(page, *offsets);
4108 HeapTupleHeader tuple = (HeapTupleHeader) PageGetItem(page, lp);
4110 (void) heap_freeze_tuple(tuple, cutoff_xid, InvalidBuffer);
4111 offsets++;
4115 PageSetLSN(page, lsn);
4116 PageSetTLI(page, ThisTimeLineID);
4117 MarkBufferDirty(buffer);
4118 UnlockReleaseBuffer(buffer);
4121 static void
4122 heap_xlog_newpage(XLogRecPtr lsn, XLogRecord *record)
4124 xl_heap_newpage *xlrec = (xl_heap_newpage *) XLogRecGetData(record);
4125 Buffer buffer;
4126 Page page;
4129 * Note: the NEWPAGE log record is used for both heaps and indexes, so do
4130 * not do anything that assumes we are touching a heap.
4132 buffer = XLogReadBuffer(xlrec->node, xlrec->blkno, true);
4133 Assert(BufferIsValid(buffer));
4134 page = (Page) BufferGetPage(buffer);
4136 Assert(record->xl_len == SizeOfHeapNewpage + BLCKSZ);
4137 memcpy(page, (char *) xlrec + SizeOfHeapNewpage, BLCKSZ);
4139 PageSetLSN(page, lsn);
4140 PageSetTLI(page, ThisTimeLineID);
4141 MarkBufferDirty(buffer);
4142 UnlockReleaseBuffer(buffer);
4145 static void
4146 heap_xlog_delete(XLogRecPtr lsn, XLogRecord *record)
4148 xl_heap_delete *xlrec = (xl_heap_delete *) XLogRecGetData(record);
4149 Buffer buffer;
4150 Page page;
4151 OffsetNumber offnum;
4152 ItemId lp = NULL;
4153 HeapTupleHeader htup;
4155 if (record->xl_info & XLR_BKP_BLOCK_1)
4156 return;
4158 buffer = XLogReadBuffer(xlrec->target.node,
4159 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4160 false);
4161 if (!BufferIsValid(buffer))
4162 return;
4163 page = (Page) BufferGetPage(buffer);
4165 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4167 UnlockReleaseBuffer(buffer);
4168 return;
4171 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4172 if (PageGetMaxOffsetNumber(page) >= offnum)
4173 lp = PageGetItemId(page, offnum);
4175 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4176 elog(PANIC, "heap_delete_redo: invalid lp");
4178 htup = (HeapTupleHeader) PageGetItem(page, lp);
4180 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4181 HEAP_XMAX_INVALID |
4182 HEAP_XMAX_IS_MULTI |
4183 HEAP_IS_LOCKED |
4184 HEAP_MOVED);
4185 HeapTupleHeaderClearHotUpdated(htup);
4186 HeapTupleHeaderSetXmax(htup, record->xl_xid);
4187 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4189 /* Mark the page as a candidate for pruning */
4190 PageSetPrunable(page, record->xl_xid);
4192 /* Make sure there is no forward chain link in t_ctid */
4193 htup->t_ctid = xlrec->target.tid;
4194 PageSetLSN(page, lsn);
4195 PageSetTLI(page, ThisTimeLineID);
4196 MarkBufferDirty(buffer);
4197 UnlockReleaseBuffer(buffer);
4200 static void
4201 heap_xlog_insert(XLogRecPtr lsn, XLogRecord *record)
4203 xl_heap_insert *xlrec = (xl_heap_insert *) XLogRecGetData(record);
4204 Buffer buffer;
4205 Page page;
4206 OffsetNumber offnum;
4207 struct
4209 HeapTupleHeaderData hdr;
4210 char data[MaxHeapTupleSize];
4211 } tbuf;
4212 HeapTupleHeader htup;
4213 xl_heap_header xlhdr;
4214 uint32 newlen;
4216 if (record->xl_info & XLR_BKP_BLOCK_1)
4217 return;
4219 if (record->xl_info & XLOG_HEAP_INIT_PAGE)
4221 buffer = XLogReadBuffer(xlrec->target.node,
4222 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4223 true);
4224 Assert(BufferIsValid(buffer));
4225 page = (Page) BufferGetPage(buffer);
4227 PageInit(page, BufferGetPageSize(buffer), 0);
4229 else
4231 buffer = XLogReadBuffer(xlrec->target.node,
4232 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4233 false);
4234 if (!BufferIsValid(buffer))
4235 return;
4236 page = (Page) BufferGetPage(buffer);
4238 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4240 UnlockReleaseBuffer(buffer);
4241 return;
4245 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4246 if (PageGetMaxOffsetNumber(page) + 1 < offnum)
4247 elog(PANIC, "heap_insert_redo: invalid max offset number");
4249 newlen = record->xl_len - SizeOfHeapInsert - SizeOfHeapHeader;
4250 Assert(newlen <= MaxHeapTupleSize);
4251 memcpy((char *) &xlhdr,
4252 (char *) xlrec + SizeOfHeapInsert,
4253 SizeOfHeapHeader);
4254 htup = &tbuf.hdr;
4255 MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData));
4256 /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */
4257 memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits),
4258 (char *) xlrec + SizeOfHeapInsert + SizeOfHeapHeader,
4259 newlen);
4260 newlen += offsetof(HeapTupleHeaderData, t_bits);
4261 htup->t_infomask2 = xlhdr.t_infomask2;
4262 htup->t_infomask = xlhdr.t_infomask;
4263 htup->t_hoff = xlhdr.t_hoff;
4264 HeapTupleHeaderSetXmin(htup, record->xl_xid);
4265 HeapTupleHeaderSetCmin(htup, FirstCommandId);
4266 htup->t_ctid = xlrec->target.tid;
4268 offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true);
4269 if (offnum == InvalidOffsetNumber)
4270 elog(PANIC, "heap_insert_redo: failed to add tuple");
4271 PageSetLSN(page, lsn);
4272 PageSetTLI(page, ThisTimeLineID);
4273 MarkBufferDirty(buffer);
4274 UnlockReleaseBuffer(buffer);
4278 * Handles UPDATE, HOT_UPDATE & MOVE
4280 static void
4281 heap_xlog_update(XLogRecPtr lsn, XLogRecord *record, bool move, bool hot_update)
4283 xl_heap_update *xlrec = (xl_heap_update *) XLogRecGetData(record);
4284 Buffer buffer;
4285 bool samepage = (ItemPointerGetBlockNumber(&(xlrec->newtid)) ==
4286 ItemPointerGetBlockNumber(&(xlrec->target.tid)));
4287 Page page;
4288 OffsetNumber offnum;
4289 ItemId lp = NULL;
4290 HeapTupleHeader htup;
4291 struct
4293 HeapTupleHeaderData hdr;
4294 char data[MaxHeapTupleSize];
4295 } tbuf;
4296 xl_heap_header xlhdr;
4297 int hsize;
4298 uint32 newlen;
4300 if (record->xl_info & XLR_BKP_BLOCK_1)
4302 if (samepage)
4303 return; /* backup block covered both changes */
4304 goto newt;
4307 /* Deal with old tuple version */
4309 buffer = XLogReadBuffer(xlrec->target.node,
4310 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4311 false);
4312 if (!BufferIsValid(buffer))
4313 goto newt;
4314 page = (Page) BufferGetPage(buffer);
4316 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4318 UnlockReleaseBuffer(buffer);
4319 if (samepage)
4320 return;
4321 goto newt;
4324 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4325 if (PageGetMaxOffsetNumber(page) >= offnum)
4326 lp = PageGetItemId(page, offnum);
4328 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4329 elog(PANIC, "heap_update_redo: invalid lp");
4331 htup = (HeapTupleHeader) PageGetItem(page, lp);
4333 if (move)
4335 htup->t_infomask &= ~(HEAP_XMIN_COMMITTED |
4336 HEAP_XMIN_INVALID |
4337 HEAP_MOVED_IN);
4338 htup->t_infomask |= HEAP_MOVED_OFF;
4339 HeapTupleHeaderClearHotUpdated(htup);
4340 HeapTupleHeaderSetXvac(htup, record->xl_xid);
4341 /* Make sure there is no forward chain link in t_ctid */
4342 htup->t_ctid = xlrec->target.tid;
4344 else
4346 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4347 HEAP_XMAX_INVALID |
4348 HEAP_XMAX_IS_MULTI |
4349 HEAP_IS_LOCKED |
4350 HEAP_MOVED);
4351 if (hot_update)
4352 HeapTupleHeaderSetHotUpdated(htup);
4353 else
4354 HeapTupleHeaderClearHotUpdated(htup);
4355 HeapTupleHeaderSetXmax(htup, record->xl_xid);
4356 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4357 /* Set forward chain link in t_ctid */
4358 htup->t_ctid = xlrec->newtid;
4361 /* Mark the page as a candidate for pruning */
4362 PageSetPrunable(page, record->xl_xid);
4365 * this test is ugly, but necessary to avoid thinking that insert change
4366 * is already applied
4368 if (samepage)
4369 goto newsame;
4370 PageSetLSN(page, lsn);
4371 PageSetTLI(page, ThisTimeLineID);
4372 MarkBufferDirty(buffer);
4373 UnlockReleaseBuffer(buffer);
4375 /* Deal with new tuple */
4377 newt:;
4379 if (record->xl_info & XLR_BKP_BLOCK_2)
4380 return;
4382 if (record->xl_info & XLOG_HEAP_INIT_PAGE)
4384 buffer = XLogReadBuffer(xlrec->target.node,
4385 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4386 true);
4387 Assert(BufferIsValid(buffer));
4388 page = (Page) BufferGetPage(buffer);
4390 PageInit(page, BufferGetPageSize(buffer), 0);
4392 else
4394 buffer = XLogReadBuffer(xlrec->target.node,
4395 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4396 false);
4397 if (!BufferIsValid(buffer))
4398 return;
4399 page = (Page) BufferGetPage(buffer);
4401 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4403 UnlockReleaseBuffer(buffer);
4404 return;
4408 newsame:;
4410 offnum = ItemPointerGetOffsetNumber(&(xlrec->newtid));
4411 if (PageGetMaxOffsetNumber(page) + 1 < offnum)
4412 elog(PANIC, "heap_update_redo: invalid max offset number");
4414 hsize = SizeOfHeapUpdate + SizeOfHeapHeader;
4415 if (move)
4416 hsize += (2 * sizeof(TransactionId));
4418 newlen = record->xl_len - hsize;
4419 Assert(newlen <= MaxHeapTupleSize);
4420 memcpy((char *) &xlhdr,
4421 (char *) xlrec + SizeOfHeapUpdate,
4422 SizeOfHeapHeader);
4423 htup = &tbuf.hdr;
4424 MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData));
4425 /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */
4426 memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits),
4427 (char *) xlrec + hsize,
4428 newlen);
4429 newlen += offsetof(HeapTupleHeaderData, t_bits);
4430 htup->t_infomask2 = xlhdr.t_infomask2;
4431 htup->t_infomask = xlhdr.t_infomask;
4432 htup->t_hoff = xlhdr.t_hoff;
4434 if (move)
4436 TransactionId xid[2]; /* xmax, xmin */
4438 memcpy((char *) xid,
4439 (char *) xlrec + SizeOfHeapUpdate + SizeOfHeapHeader,
4440 2 * sizeof(TransactionId));
4441 HeapTupleHeaderSetXmin(htup, xid[1]);
4442 HeapTupleHeaderSetXmax(htup, xid[0]);
4443 HeapTupleHeaderSetXvac(htup, record->xl_xid);
4445 else
4447 HeapTupleHeaderSetXmin(htup, record->xl_xid);
4448 HeapTupleHeaderSetCmin(htup, FirstCommandId);
4450 /* Make sure there is no forward chain link in t_ctid */
4451 htup->t_ctid = xlrec->newtid;
4453 offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true);
4454 if (offnum == InvalidOffsetNumber)
4455 elog(PANIC, "heap_update_redo: failed to add tuple");
4456 PageSetLSN(page, lsn);
4457 PageSetTLI(page, ThisTimeLineID);
4458 MarkBufferDirty(buffer);
4459 UnlockReleaseBuffer(buffer);
4462 static void
4463 heap_xlog_lock(XLogRecPtr lsn, XLogRecord *record)
4465 xl_heap_lock *xlrec = (xl_heap_lock *) XLogRecGetData(record);
4466 Buffer buffer;
4467 Page page;
4468 OffsetNumber offnum;
4469 ItemId lp = NULL;
4470 HeapTupleHeader htup;
4472 if (record->xl_info & XLR_BKP_BLOCK_1)
4473 return;
4475 buffer = XLogReadBuffer(xlrec->target.node,
4476 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4477 false);
4478 if (!BufferIsValid(buffer))
4479 return;
4480 page = (Page) BufferGetPage(buffer);
4482 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4484 UnlockReleaseBuffer(buffer);
4485 return;
4488 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4489 if (PageGetMaxOffsetNumber(page) >= offnum)
4490 lp = PageGetItemId(page, offnum);
4492 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4493 elog(PANIC, "heap_lock_redo: invalid lp");
4495 htup = (HeapTupleHeader) PageGetItem(page, lp);
4497 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4498 HEAP_XMAX_INVALID |
4499 HEAP_XMAX_IS_MULTI |
4500 HEAP_IS_LOCKED |
4501 HEAP_MOVED);
4502 if (xlrec->xid_is_mxact)
4503 htup->t_infomask |= HEAP_XMAX_IS_MULTI;
4504 if (xlrec->shared_lock)
4505 htup->t_infomask |= HEAP_XMAX_SHARED_LOCK;
4506 else
4507 htup->t_infomask |= HEAP_XMAX_EXCL_LOCK;
4508 HeapTupleHeaderClearHotUpdated(htup);
4509 HeapTupleHeaderSetXmax(htup, xlrec->locking_xid);
4510 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4511 /* Make sure there is no forward chain link in t_ctid */
4512 htup->t_ctid = xlrec->target.tid;
4513 PageSetLSN(page, lsn);
4514 PageSetTLI(page, ThisTimeLineID);
4515 MarkBufferDirty(buffer);
4516 UnlockReleaseBuffer(buffer);
4519 static void
4520 heap_xlog_inplace(XLogRecPtr lsn, XLogRecord *record)
4522 xl_heap_inplace *xlrec = (xl_heap_inplace *) XLogRecGetData(record);
4523 Buffer buffer;
4524 Page page;
4525 OffsetNumber offnum;
4526 ItemId lp = NULL;
4527 HeapTupleHeader htup;
4528 uint32 oldlen;
4529 uint32 newlen;
4531 if (record->xl_info & XLR_BKP_BLOCK_1)
4532 return;
4534 buffer = XLogReadBuffer(xlrec->target.node,
4535 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4536 false);
4537 if (!BufferIsValid(buffer))
4538 return;
4539 page = (Page) BufferGetPage(buffer);
4541 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4543 UnlockReleaseBuffer(buffer);
4544 return;
4547 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4548 if (PageGetMaxOffsetNumber(page) >= offnum)
4549 lp = PageGetItemId(page, offnum);
4551 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4552 elog(PANIC, "heap_inplace_redo: invalid lp");
4554 htup = (HeapTupleHeader) PageGetItem(page, lp);
4556 oldlen = ItemIdGetLength(lp) - htup->t_hoff;
4557 newlen = record->xl_len - SizeOfHeapInplace;
4558 if (oldlen != newlen)
4559 elog(PANIC, "heap_inplace_redo: wrong tuple length");
4561 memcpy((char *) htup + htup->t_hoff,
4562 (char *) xlrec + SizeOfHeapInplace,
4563 newlen);
4565 PageSetLSN(page, lsn);
4566 PageSetTLI(page, ThisTimeLineID);
4567 MarkBufferDirty(buffer);
4568 UnlockReleaseBuffer(buffer);
4571 void
4572 heap_redo(XLogRecPtr lsn, XLogRecord *record)
4574 uint8 info = record->xl_info & ~XLR_INFO_MASK;
4576 switch (info & XLOG_HEAP_OPMASK)
4578 case XLOG_HEAP_INSERT:
4579 heap_xlog_insert(lsn, record);
4580 break;
4581 case XLOG_HEAP_DELETE:
4582 heap_xlog_delete(lsn, record);
4583 break;
4584 case XLOG_HEAP_UPDATE:
4585 heap_xlog_update(lsn, record, false, false);
4586 break;
4587 case XLOG_HEAP_MOVE:
4588 heap_xlog_update(lsn, record, true, false);
4589 break;
4590 case XLOG_HEAP_HOT_UPDATE:
4591 heap_xlog_update(lsn, record, false, true);
4592 break;
4593 case XLOG_HEAP_NEWPAGE:
4594 heap_xlog_newpage(lsn, record);
4595 break;
4596 case XLOG_HEAP_LOCK:
4597 heap_xlog_lock(lsn, record);
4598 break;
4599 case XLOG_HEAP_INPLACE:
4600 heap_xlog_inplace(lsn, record);
4601 break;
4602 default:
4603 elog(PANIC, "heap_redo: unknown op code %u", info);
4607 void
4608 heap2_redo(XLogRecPtr lsn, XLogRecord *record)
4610 uint8 info = record->xl_info & ~XLR_INFO_MASK;
4612 switch (info & XLOG_HEAP_OPMASK)
4614 case XLOG_HEAP2_FREEZE:
4615 heap_xlog_freeze(lsn, record);
4616 break;
4617 case XLOG_HEAP2_CLEAN:
4618 heap_xlog_clean(lsn, record, false);
4619 break;
4620 case XLOG_HEAP2_CLEAN_MOVE:
4621 heap_xlog_clean(lsn, record, true);
4622 break;
4623 default:
4624 elog(PANIC, "heap2_redo: unknown op code %u", info);
4628 static void
4629 out_target(StringInfo buf, xl_heaptid *target)
4631 appendStringInfo(buf, "rel %u/%u/%u; tid %u/%u",
4632 target->node.spcNode, target->node.dbNode, target->node.relNode,
4633 ItemPointerGetBlockNumber(&(target->tid)),
4634 ItemPointerGetOffsetNumber(&(target->tid)));
4637 void
4638 heap_desc(StringInfo buf, uint8 xl_info, char *rec)
4640 uint8 info = xl_info & ~XLR_INFO_MASK;
4642 info &= XLOG_HEAP_OPMASK;
4643 if (info == XLOG_HEAP_INSERT)
4645 xl_heap_insert *xlrec = (xl_heap_insert *) rec;
4647 if (xl_info & XLOG_HEAP_INIT_PAGE)
4648 appendStringInfo(buf, "insert(init): ");
4649 else
4650 appendStringInfo(buf, "insert: ");
4651 out_target(buf, &(xlrec->target));
4653 else if (info == XLOG_HEAP_DELETE)
4655 xl_heap_delete *xlrec = (xl_heap_delete *) rec;
4657 appendStringInfo(buf, "delete: ");
4658 out_target(buf, &(xlrec->target));
4660 else if (info == XLOG_HEAP_UPDATE)
4662 xl_heap_update *xlrec = (xl_heap_update *) rec;
4664 if (xl_info & XLOG_HEAP_INIT_PAGE)
4665 appendStringInfo(buf, "update(init): ");
4666 else
4667 appendStringInfo(buf, "update: ");
4668 out_target(buf, &(xlrec->target));
4669 appendStringInfo(buf, "; new %u/%u",
4670 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4671 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4673 else if (info == XLOG_HEAP_MOVE)
4675 xl_heap_update *xlrec = (xl_heap_update *) rec;
4677 if (xl_info & XLOG_HEAP_INIT_PAGE)
4678 appendStringInfo(buf, "move(init): ");
4679 else
4680 appendStringInfo(buf, "move: ");
4681 out_target(buf, &(xlrec->target));
4682 appendStringInfo(buf, "; new %u/%u",
4683 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4684 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4686 else if (info == XLOG_HEAP_HOT_UPDATE)
4688 xl_heap_update *xlrec = (xl_heap_update *) rec;
4690 if (xl_info & XLOG_HEAP_INIT_PAGE) /* can this case happen? */
4691 appendStringInfo(buf, "hot_update(init): ");
4692 else
4693 appendStringInfo(buf, "hot_update: ");
4694 out_target(buf, &(xlrec->target));
4695 appendStringInfo(buf, "; new %u/%u",
4696 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4697 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4699 else if (info == XLOG_HEAP_NEWPAGE)
4701 xl_heap_newpage *xlrec = (xl_heap_newpage *) rec;
4703 appendStringInfo(buf, "newpage: rel %u/%u/%u; blk %u",
4704 xlrec->node.spcNode, xlrec->node.dbNode,
4705 xlrec->node.relNode, xlrec->blkno);
4707 else if (info == XLOG_HEAP_LOCK)
4709 xl_heap_lock *xlrec = (xl_heap_lock *) rec;
4711 if (xlrec->shared_lock)
4712 appendStringInfo(buf, "shared_lock: ");
4713 else
4714 appendStringInfo(buf, "exclusive_lock: ");
4715 if (xlrec->xid_is_mxact)
4716 appendStringInfo(buf, "mxid ");
4717 else
4718 appendStringInfo(buf, "xid ");
4719 appendStringInfo(buf, "%u ", xlrec->locking_xid);
4720 out_target(buf, &(xlrec->target));
4722 else if (info == XLOG_HEAP_INPLACE)
4724 xl_heap_inplace *xlrec = (xl_heap_inplace *) rec;
4726 appendStringInfo(buf, "inplace: ");
4727 out_target(buf, &(xlrec->target));
4729 else
4730 appendStringInfo(buf, "UNKNOWN");
4733 void
4734 heap2_desc(StringInfo buf, uint8 xl_info, char *rec)
4736 uint8 info = xl_info & ~XLR_INFO_MASK;
4738 info &= XLOG_HEAP_OPMASK;
4739 if (info == XLOG_HEAP2_FREEZE)
4741 xl_heap_freeze *xlrec = (xl_heap_freeze *) rec;
4743 appendStringInfo(buf, "freeze: rel %u/%u/%u; blk %u; cutoff %u",
4744 xlrec->node.spcNode, xlrec->node.dbNode,
4745 xlrec->node.relNode, xlrec->block,
4746 xlrec->cutoff_xid);
4748 else if (info == XLOG_HEAP2_CLEAN)
4750 xl_heap_clean *xlrec = (xl_heap_clean *) rec;
4752 appendStringInfo(buf, "clean: rel %u/%u/%u; blk %u",
4753 xlrec->node.spcNode, xlrec->node.dbNode,
4754 xlrec->node.relNode, xlrec->block);
4756 else if (info == XLOG_HEAP2_CLEAN_MOVE)
4758 xl_heap_clean *xlrec = (xl_heap_clean *) rec;
4760 appendStringInfo(buf, "clean_move: rel %u/%u/%u; blk %u",
4761 xlrec->node.spcNode, xlrec->node.dbNode,
4762 xlrec->node.relNode, xlrec->block);
4764 else
4765 appendStringInfo(buf, "UNKNOWN");
4769 * heap_sync - sync a heap, for use when no WAL has been written
4771 * This forces the heap contents (including TOAST heap if any) down to disk.
4772 * If we skipped using WAL, and it's not a temp relation, we must force the
4773 * relation down to disk before it's safe to commit the transaction. This
4774 * requires writing out any dirty buffers and then doing a forced fsync.
4776 * Indexes are not touched. (Currently, index operations associated with
4777 * the commands that use this are WAL-logged and so do not need fsync.
4778 * That behavior might change someday, but in any case it's likely that
4779 * any fsync decisions required would be per-index and hence not appropriate
4780 * to be done here.)
4782 void
4783 heap_sync(Relation rel)
4785 /* temp tables never need fsync */
4786 if (rel->rd_istemp)
4787 return;
4789 /* main heap */
4790 FlushRelationBuffers(rel);
4791 /* FlushRelationBuffers will have opened rd_smgr */
4792 smgrimmedsync(rel->rd_smgr, MAIN_FORKNUM);
4794 /* sync FSM as well */
4795 smgrimmedsync(rel->rd_smgr, FSM_FORKNUM);
4797 /* toast heap, if any */
4798 if (OidIsValid(rel->rd_rel->reltoastrelid))
4800 Relation toastrel;
4802 toastrel = heap_open(rel->rd_rel->reltoastrelid, AccessShareLock);
4803 FlushRelationBuffers(toastrel);
4804 smgrimmedsync(toastrel->rd_smgr, MAIN_FORKNUM);
4805 smgrimmedsync(toastrel->rd_smgr, FSM_FORKNUM);
4806 heap_close(toastrel, AccessShareLock);