3 start include statements
17 use grid::nordugrid::xrsl_file;
18 if( $PsN::config -> {'_'} -> {'use_keyboard'} ) {
28 end include statements
30 # }}} include statements
32 # {{{ description, examples, synopsis, see also
34 # No method, just documentation
37 # In PsN versions < 2.0, the functionality for actually running
38 # NONMEM on models and data PsN objects was provided by the model
39 # class. As of PsN versions 2.0 and higher, this functinality has
40 # been moved to the separate class I<modelfit> in order to make the
41 # class responsibilities clearer.
43 # Fitting a model can be viewed as a special case of a more
44 # general set of tools for population PK/PD. In PsN, the
45 # modelfit class is therefore a specialization of a general PsN
46 # tool class. The tool class itself is not capable of much at
47 # all but to define a common structure for all PsN tools.
49 # All attributes and (class) methods specified for the general
50 # tool class are inherited in the modelfit class. Some (class) methods
51 # are defined in both classes (e.g. the L</run>) and in these
52 # cases it is the modelfit version that will be used.
56 # <tr>Please look at the documentation for the <a
57 # href="../tool.html">general tool class</a> as well as the <a
58 # href="#examples">examples</a> section of this document for
59 # descriptions of the setting that are available for all
66 # Please look at the documentation for the general I<tool> class
67 # as well as the L</examples> section of this document for
68 # descriptions of the setting that are available for all tools.
75 # The following code may be used to create a simple modelfit
76 # object and to run it.
78 # use lib qw(path to PsN installation/lib);
82 # my $model = model -> new( filename => 'run1.mod' );
83 # my $modelfit = tool::modelfit -> new( models => [$model] );
84 # my %results = %{$modelfit -> run};
86 # To illustrate a more complex use of modelfit, we can run a
87 # bootstrap of 200 resampled data sets of same size as the
88 # original data set. In this example we assume that the modelfile
89 # we use contains only one problem and one sub problem.
91 # use lib qw(path to PsN installation/lib);
96 # Math::Random; # For perturbation of initial estimates
97 # # after unsuccessful minimizations
99 # # set these to appropriate values for your own run
101 # my $modelfile = 'run1.mod';
102 # my $boot_sample_file = 'boot_ind.csv';
103 # my $boot_results_file = 'boot_results.csv';
105 # # set the seed from a phrase (consistent over different hardware,
106 # # see Math::Random )
107 # random_set_seed_from_phrase('testing');
109 # # ignore missing data and (especially) output files
110 # my $model = model -> new( filename => $modelfile,
111 # ignore_missing_files => 1 );
113 # my $data = $model -> datas -> [0];
115 # # Create the bootstrap data sets. The default name for each
116 # # new resampled data file will be bs###.dta, where ### is a
117 # # number from 1 to $samples.
118 # my ( $dataref, $incl_ind_ref, $incl_keys_ref ) =
119 # $data -> bootstrap ( samples => $samples );
121 # # Save the resampled ID numbers in a file, one row for each
122 # # bootstrap data set
123 # open ( LOG, ">$boot_sample_file" );
124 # foreach my $sample ( @{$incl_ind_ref} ) {
125 # print LOG join(';', @{$sample} ),"\n";
128 # # Create the boostrap models and set the correct resampled
129 # # data file in $DATA. Save them in @bs_models.
130 # my @bs_models = ();
131 # for ( my $i = 1; $i <= $samples; $i++ ) {
132 # my $bs_mod = $model -> copy( filename => 'bs'.$i.'.mod',
135 # $bs_mod -> datafiles( new_names => ['bs'.$i.'.dta'],
136 # absolute_path => 1 );
138 # push( @bs_models, $bs_mod );
141 # # Create a modelfit object with the bootstrap models as
142 # # input. Set the number of parallel runs to 2.
143 # my $mfitobj = tool::modelfit -> new ( models => \@bs_models,
146 # # Run the model fit. Since the bootstrap models are named
147 # # bs###.mod, the default names for the output files will be
151 # # We'll save the OFV plus the theta, omega and sigma estimates
152 # # for each run in a file.
153 # open( RESULT, ">$boot_results_file" );
155 # for ( my $i = 1; $i <= $samples; $i++ ) {
156 # my $bs_out = output -> new( filename => 'bs'.$i.'.lst' );
157 # my @ofv = @{$bs_out -> ofv};
158 # my @thetas = @{$bs_out -> thetas};
159 # my @omegas = @{$bs_out -> omegas};
160 # my @sigmas = @{$bs_out -> sigmas};
161 # # We know that we only have one problem and one sub problem in this
162 # # example. ([0][0] comes from that fact)
163 # my @print_strings = ();
164 # push( @print_strings, $ofv[0][0] );
165 # push( @print_strings, @{$thetas[0][0]} );
166 # push( @print_strings, @{$omegas[0][0]} );
167 # push( @print_strings, @{$sigmas[0][0]} );
168 # print RESULT join( ';', @print_strings ),"\n";
177 # use tool::modelfit;
180 # my $model_obj = model -> new ( filename => 'run1.mod' );
182 # my $modelfit_obj = tool::modelfit -> new ( models => [$model_obj] );
184 # my $output_obj = $modelfit_obj -> run;
190 # <a HREF="../data.html">data</a>, <a
191 # HREF="../model.html">model</a> <a
192 # HREF="../output.html">output</a>, <a
193 # HREF="../tool.html">tool</a>
199 # data, model, output, tool
211 # $modelfit_object = tool::modelfit -> new( models => [$model_object],
214 # This is the basic usage and it creates a modelfit object that
215 # can later be run using the L</run> method. I<models> is an array
216 # of PsN model objects.
218 # $modelfitObject = $tool::modelfit -> new( 'retries' => 5 );
219 # $modelfitObject -> add_model( init_data => { filename => $modelFileName } );
221 # This way of using modelfit is suitable if you have a list with
222 # filenames of modelfiles. "add_model> will create modelfitobject
225 # A more interresting attribute is I<threads> which sets how many
226 # parallel executions of NONMEM that will run. Some tips are:
227 # Setting the number of threads higher than the number of nodes in
228 # your cluster/supercomputer can make your runs slower. The
229 # biggest limiting factor is the amount of memory needed by
230 # NONMEM. With smaller runs, just set the thread number to the
231 # number of nodes available.
233 # The I<directory> is the folder where the tools stores
234 # temporary data and runs subtools (or in the modelfit case,
235 # runs NONMEM). Each NONMEM run will have its own sub directory
236 # NM_run[X] where [X] is an index running from 1 to the number of
237 # runs. If unsure of what this means, leave it undefined and a
238 # default will be used, e.g. modelfit_dir3 or something.
240 # Next, the I<compress> and I<remove_temp_files> attributes are good
241 # if you want to save some hard disk space. I<compress> set to 1
242 # will put all NONMEM output in to an tar/gz archive named
243 # I<nonmem_files.tgz> placed in the I<NM_run[X]> directory
244 # described above. If I<remove_temp_files> is set to 1, the NONMEM
245 # files: 'FCON', 'FDATA', 'FSTREAM', 'PRDERR' will be removed.
247 # I<clean> is a stronger version of I<remove_temp_files>; it will also
248 # remove I<NM_run[X]> and all that is in these.
250 # I<retries> is the number of times L</run> will alter initial
251 # values and (re)execute NONMEM when executions fail. I<retries>
252 # can either be an integer, specifying the number of retries for
253 # all models, or it can be an array with the number of retries
254 # specific for each modelfile as elements. The default value is
255 # B<5>. The algorithm for altering the initial values works
256 # roughly like this: For each each new try, a random new initial
257 # value is drawn from a uniform distribution with limits +-n*10%
258 # of the original intial estimate and where n i equal to the retry
259 # number. I.e. the first retry, the borders of the distribution
260 # are +-10%. The algorithm ensures that the new values are within
261 # specified boundaries.
265 # For a full dexcription of the algorithm, see <a
266 # href="../model/problem/record/init_option.html#set_random_init">set_random_init</a>
268 # href="../model/problem/record/init_option.html">init_option
275 # For a full dexcription of the algorithm, see I<set_random_init>
276 # of the I<init_option> class.
280 # If I<picky> is set to 1, the output from NONMEM will be checked
281 # more thoroughly. If any of the lines below are found in the
282 # minimization message, a rerun is initiated.
284 # COVARIANCE STEP ABORTED
285 # PROGRAM TERMINATED BY OBJ
286 # ESTIMATE OF THETA IS NEAR THE BOUNDARY AND
287 # PARAMETER ESTIMATE IS NEAR ITS BOUNDARY
288 # R MATRIX ALGORITHMICALLY SINGULAR
289 # S MATRIX ALGORITHMICALLY SINGULAR
291 # I<nm_version> is a string with the version number of NONMEM that
292 # will be used. The installed versions of NONMEM must be specified
293 # in OSspecific.pm, the class responsible for system specific
296 # I<logfile> specifies the name of the logfile.
298 # if I<silent_logfile> is defined all NONMEM output will
299 # be written to I<NM_run[X]/xxx>, where xxx is the defined value.
301 # I<extra_files> is an array of strings where each string is a
302 # file needed for NONMEM execution. Those file will be moved
303 # to the I<NM_run[X]> directory.
305 # I<seed> is just a way to set a random seed number.
307 # If I<run_on_nordugrid> is set to true modelfit will submit the nonmem
308 # runs to a grid. A group of related parameters are also
311 # I<cpuTime> Is an estimated execution time for each individual
312 # modelfile. It should preferably be a bit longer than reality. If
313 # you specify a cpuTime that is to short, you risk that the grid
314 # kills your jobs prematurely. The unit of I<cpuTime> is minutes.
316 # I<grid_cpuTime> is the time of the actual grid job. It should be
317 # used to group modelfiles together. For example, if you set
318 # I<cpuTime> to ten minutes, I<grid_cpuTime> to 60 minutes and the
319 # number of modelfiles is 14 modelfit will create three grid jobs,
320 # two with six model files each and one with two modelfiles.
322 # I<grid_adress> is the URL of the grid submission server,
323 # e.g. hagrid.it.uu.se.
327 if ( defined $this -> {'logfile'} ) {
329 $this -> {'logfile'} = join('', OSspecific
::absolute_path
( $this -> {'directory'},
330 $this -> {'logfile'}) );
332 if ( $this -> {'ask_if_fail'} ) {
341 # {{{ prepare_raw_results
343 start prepare_raw_results
345 # As of PsN version 2.1.8, we don't handle problems and
346 # subproblems in any of the tools but modelfit.
347 my @params = ( 'theta', 'omega', 'sigma', 'npomega', 'shrinkage_etas', 'shrinkage_wres','eigen' );
349 # ---------------------- Collect the parameter names ----------------------
353 # Find the model with most parameter of each kind and put the
354 # number of the parameter in "max_hash".
356 my ( %max_hash ); #, %category_names );
357 for ( my $i = 0; $i < scalar @
{$self -> {'models'}}; $i++ ) { # models level
359 # Some column in "raw_results_header" are meta-columns, they
360 # will be replaced by several columns. For example, the
361 # 'theta' column will be replaced with TH1, TH2, TH3 in the
362 # general case. (Actually it will be replaced with the
363 # thetas labels from the model file. Here we search the meta
364 # column of the raw_results_header to find the maximum
365 # number of real columns.
367 foreach my $category ( @
{$self -> {'raw_results_header'}},'npomega' ) {
368 if ( $category eq 'setheta' or $category eq 'seomega' or $category eq 'sesigma' ){
370 } elsif ( $category eq 'theta' or $category eq 'omega' or $category eq 'sigma' or
371 $category eq 'npomega' or $category eq 'shrinkage_etas' or $category eq 'eigen') {
373 if( $category eq 'npomega' or $category eq 'shrinkage_etas' ) {
374 my $nomegas = $self -> {'models'} -> [$i] -> nomegas
;
375 if( defined $nomegas ) {
376 for( my $j = 0; $j < scalar @
{$nomegas}; $j++ ) {
377 if( $category eq 'npomega' ) {
378 my $npar = $nomegas -> [$j];
379 $npar = $npar*($npar+1)/2;
380 $numpar = $numpar >= $npar ?
$numpar : $npar;
382 $numpar = $numpar >= $nomegas -> [$j] ?
$numpar : $nomegas -> [$j];
386 } elsif( $category eq 'eigen') {
387 foreach my $prob_eigens ( @
{$self -> {'models'} -> [$i] -> outputs
-> [0] -> eigens
} ){
388 foreach my $subprob_eigens( @
{$prob_eigens} ){
389 if( defined $subprob_eigens ){
390 $numpar = $numpar < scalar @
{$subprob_eigens} ?
scalar @
{$subprob_eigens} : $numpar ;
395 my $labels = $self -> {'models'} -> [$i] -> {'outputs'} -> [0] -> labels
( parameter_type
=> $category );
397 # we can't use labels directly since different models may have different
398 # labels (still within the same modelfit)
399 if( defined $labels ) {
400 for( my $j = 0; $j < scalar @
{$labels}; $j++ ) {
401 if( defined $labels -> [$j] ) {
402 $numpar = $numpar >= scalar @
{$labels -> [$j]} ?
$numpar : scalar @
{$labels -> [$j]};
407 if ( $max_hash{ $category } < $numpar ) {
408 $max_hash{ $category } = $numpar;
409 $max_hash{ 'se'.$category } = $numpar;
412 $max_hash{ $category } = 1;
419 # -------------------------- Collect the values ---------------------------
423 my $pushed_rows = 0; # All rows pushed on result array in previous models
424 my $raw_line_structure = ext
::Config
::Tiny
-> new
( );
425 for ( my $i = 0; $i < scalar @
{$self -> {'models'}}; $i++ ) { # models level
426 my @probs = @
{$self -> {'models'} -> [$i] -> {'outputs'} -> [0] -> problem_structure
};
427 my $np = scalar @probs; # #probs
429 # ------------ Push model, problem and sub-problem numbers --------------
431 for( my $j = 0; $j < $np; $j++ ) {
432 my $ns = $probs[$j]; # #subprobs
433 for( my $k = 0; $k < $ns; $k++ ) {
434 my $row = $pushed_rows+$model_row++;
435 push( @
{$self -> {'raw_results'} -> [$row]}, (($i+1),($j+1),($k+1)) );
439 # --------------------- Loop all result categories ----------------------
441 foreach my $category ( @
{$self -> {'raw_results_header'}},'npomega' ){
442 next if( $category eq 'model' or $category eq 'problem' or $category eq 'subproblem' );
443 my $model_row = 0; # Need to mask previous definition of model_row
444 my ( $accessor, $res );
446 # {{{ Get the values for the category
448 if ( $category eq 'theta' or $category eq 'omega' or $category eq 'sigma' or
449 $category eq 'setheta' or $category eq 'seomega' or $category eq 'sesigma' or
450 $category eq 'npomega' or $category eq 'eigen' ) {
451 $accessor = $category.'s';
452 $res = $self -> {'models'} -> [$i] -> {'outputs'} -> [0] -> $accessor;
454 if( defined $res and ref $res eq 'ARRAY' and $category ne 'npomega' ){
456 foreach my $prob ( @
{$res} ){
457 if( defined $prob and ref $prob eq 'ARRAY' and $prob -> [0] and ref $prob -> [0] eq 'ARRAY' ){
458 $raw_line_structure -> { $i+$prob_num }{ $category } = scalar @
{$self -> {'raw_results'} -> [$i+$prob_num]}+$position
459 . ",". scalar @
{$prob -> [0]};
460 #$position += $#{$prob -> [0]};
466 } elsif ( $category eq 'shrinkage_etas' ) {
467 # Shrinkage does not work for subproblems right now.
468 $res = $self -> {'models'} -> [$i] -> eta_shrinkage
;
469 } elsif ( $category eq 'shrinkage_wres' ) {
470 # Shrinkage does not work for subproblems right now.
471 # get ofv just to get the prob-subp structure
472 $res = $self -> {'models'} -> [$i] -> wres_shrinkage
;
474 $accessor = $category;
475 $res = $self -> {'models'} -> [$i] -> {'outputs'} -> [0] -> $accessor;
478 # }}} Get the values for the category
480 if( $category eq 'npomega' ){
481 $results_file = 'raw_nonp_results';
483 $results_file = 'raw_results';
487 for( my $j = 0; $j < $np; $j++ ) {
488 my $ns = $probs[$j]; # #subprobs
489 if( defined $res -> [$j] ) {
490 for( my $k = 0; $k < $ns; $k++ ) {
491 my $row = $pushed_rows+$model_row++;
492 if( ref $res -> [$j] eq 'ARRAY' ){
493 if( defined $res -> [$j][$k] ) {
494 if ( ref $res -> [$j][$k] eq 'ARRAY' ) {
495 push( @
{$self -> {$results_file} -> [$row]}, @
{$res -> [$j][$k]} );
496 push( @
{$self -> {$results_file} -> [$row]},
497 (undef) x
($max_hash{$category}- scalar @
{$res -> [$j][$k]}) );
499 push( @
{$self -> {$results_file} -> [$row]}, $res -> [$j][$k] );
502 push( @
{$self -> {$results_file} -> [$row]},
503 (undef) x
$max_hash{$category} );
506 push( @
{$self -> {$results_file} -> [$row]},
512 # {{{ Push undefs for missing subprobs
514 for( my $k = 0; $k < $ns; $k++ ) {
515 my $row = $pushed_rows+$model_row++;
516 push( @
{$self -> {$results_file} -> [$row]},
517 (undef) x
$max_hash{$category} );
520 # }}} Push undefs for missing subprobs
527 # {{{ Push undefs for missing probs/subprobs
529 for( my $j = 0; $j < $np; $j++ ) {
530 my $ns = $probs[$j]; # #subprobs
531 for( my $k = 0; $k < $ns; $k++ ) {
532 my $row = $pushed_rows+$model_row++;
533 push( @
{$self -> {$results_file} -> [$row]},
534 (undef) x
$max_hash{$category} );
538 # }}} Push undefs for missing probs/subprobs
542 $self -> {'models'} -> [$i] -> {'outputs'} -> [0] -> flush
;
543 map( $pushed_rows += $_, @probs );
545 $raw_line_structure -> write( 'raw_file_structure' );
548 &{$self -> {'_raw_results_callback'}}( $self, \
%max_hash )
549 if ( defined $self -> {'_raw_results_callback'} );
551 # --------------------------- Create a header ----------------------------
555 foreach my $name ( @
{$self -> {'raw_results_header'}} ) {
557 foreach my $param ( @params ) {
558 if ( $name eq $param ){
559 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
560 push ( @new_header, uc(substr($name,0,2)).$i );
564 } elsif ( $name eq 'se'.$param ) {
566 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
567 push ( @new_names, uc(substr($param,2,2)).$i );
569 map ( $_ = 'se'.$_, @new_names );
571 push( @new_header, @new_names );
577 push( @new_header, $name );
581 $self -> {'raw_results_header'} = \
@new_header;
585 end prepare_raw_results
587 # }}} prepare_raw_results
589 # {{{ print_raw_results
591 start print_raw_results
593 if ( defined $self -> {'raw_results'} ) {
594 my ($dir,$file) = OSspecific
::absolute_path
( $self -> {'directory'},
595 $self -> {'raw_results_file'} );
596 my $append = $self -> {'raw_results_append'} ?
'>>' : '>';
597 open( RRES
, $append.$dir.$file );
598 print RRES
join(',',@
{$self -> {'raw_results_header'}} ),"\n"
599 if( not $self -> {'raw_results_append'} );
600 for ( my $i = 0; $i < scalar @
{$self -> {'raw_results'}}; $i++ ) {
601 my @result_array = @
{$self -> {'raw_results'} -> [$i]};
602 map( $_ = defined $_ ?
$_ : $PsN::config
-> {'_'} -> {'out_miss_data'}, @result_array );
603 print RRES
join(',',@result_array ),"\n";
607 if( defined $self ->{'raw_nonp_results' } ) {
608 my ($dir,$file) = OSspecific
::absolute_path
( $self -> {'directory'},
609 $self -> {'raw_nonp_file'} );
610 my $append = $self -> {'raw_results_append'} ?
'>>' : '>';
611 open( RRES
, $append.$dir.$file );
612 # print RRES join(',',@{$self -> {'raw_results_header'}} ),"\n"
613 # if( not $self -> {'raw_results_append'} );
614 for ( my $i = 0; $i < scalar @
{$self -> {'raw_nonp_results'}}; $i++ ) {
615 my @result_array = @
{$self -> {'raw_nonp_results'} -> [$i]};
616 map( $_ = defined $_ ?
$_ : $PsN::config
-> {'_'} -> {'out_miss_data'}, @result_array );
617 print RRES
join(',',@result_array ),"\n";
622 end print_raw_results
624 # }}} print_raw_results
631 # ($tmp_dir, $file) = OSspecific::absolute_path( './' .
632 ($tmp_dir, $file) = OSspecific
::absolute_path
( $self -> {'directory'}.'/' .
635 unless( -e
$tmp_dir ){
643 # {{{ copy_model_and_input
645 start copy_model_and_input
647 # Copy data files to temporary dirctory and set short version names
651 if( defined $model -> datas
){
652 foreach my $data ( @
{$model -> datas
} ) {
653 my $filename = $data -> filename
;
655 # We always copy the datafile in case a crash corrupted the
658 # cp( $data -> full_name, $filename );
660 push( @new_data_names, $filename );
664 debug
-> die( message
=> 'No datafiles set in modelfile.' );
667 # Copy extra data files to temporary dirctory and set short version names
668 my @new_extra_data_names;
669 my @problems = @
{$model -> problems
};
670 for ( my $i = 1; $i <= $#problems + 1; $i++ ) {
671 my $extra_data = $problems[$i-1] -> extra_data
;
672 if ( defined $extra_data ) {
673 my $filename = $extra_data -> filename
;
674 if ( not -e
$filename ) {
675 # cp( $extra_data -> full_name, $filename );
677 push( @new_extra_data_names, $filename );
681 # Copy extra files needed to run NONMEM
682 if( defined $model -> extra_files
){
683 foreach my $x_file (@
{$model -> extra_files
}){
684 debug
-> warn( level
=> 2,
685 message
=> "Copying extra file: $x_file" );
686 my ( $dir, $filename ) = OSspecific
::absolute_path
( $model -> directory
,
688 cp
( $dir.$filename, $filename );
692 # Set the table names to a short version
693 my @new_table_names = ();
694 my @table_names = @
{$model -> table_names
( ignore_missing_files
=> 1 )};
696 for ( my $i = 0; $i <= $#table_names; $i++ ) {
698 # Loop the table files within each problem
699 for ( my $j = 0; $j < scalar @
{$table_names[$i]}; $j++ ) {
700 my ( $dir, $filename ) = OSspecific
::absolute_path
( '.', $table_names[$i][$j] );
701 push( @new_arr, $filename );
703 push( @new_table_names, \
@new_arr );
706 # Copy the model object. Set the new (shorter) data file names.
707 # There's no need to physically copy these here since we took care of that above.
708 $final_model = $model -> copy
( filename
=> 'psn.mod',
709 data_file_names
=> \
@new_data_names,
710 extra_data_file_names
=> \
@new_extra_data_names,
712 $final_model -> register_in_database
;
713 $model -> flush_data
;
715 $final_model -> table_names
( new_names
=> \
@new_table_names,
716 ignore_missing_files
=> 1 );
717 # $final_model -> clean_extra_data_code;
718 $final_model -> drop_dropped
if ( $self -> {'drop_dropped'} );
719 $final_model -> wrap_data
if ( $self -> {'wrap_data'} );
720 $final_model -> add_extra_data_code
;
721 $final_model -> write_get_subs
;
722 $final_model -> write_readers
;
723 $final_model -> _write
( filename
=> 'psn.mod',
724 write_data
=> 1 ); #Kolla denna, den funkar inte utan wrap!!
725 $final_model -> flush_data
;
726 $final_model -> store_inits
;
728 $self -> {'orig_filename'} = $model -> filename
;
729 $maxeval = $model -> maxeval
-> [0][0];
730 if ( $maxeval > 9999 ) {
731 $final_model -> maxeval
( new_values
=> 9999,
732 problem_numbers
=> [1] );
735 end copy_model_and_input
739 # {{{ copy_model_and_output
741 start copy_model_and_output
743 my $outfilename = $model -> outputs
-> [0] -> full_name
;
745 cp
( "psn-$use_run.lst", 'psn.lst' ) if ( $use_run ne '' );
746 cp
( "psn.lst", $outfilename );
747 if( defined $model -> table_names
){
748 foreach my $table_files( @
{$model -> table_names
} ){
749 foreach my $table_file( @
{$table_files} ){
750 cp
( $table_file.'-'.$use_run, $table_file );
754 my $final_output = output
-> new
( filename
=> $outfilename,
755 model_id
=> $model -> model_id
);
756 $final_output -> register_in_database
( model_id
=> $model -> model_id
,
757 force
=> 1 ); # If we are here, the model has been run
758 $final_model -> outputs
( [$final_output] );
760 if( defined $model -> table_names
){
761 foreach my $table_files( @
{$model -> table_names
} ){
762 foreach my $table_file( @
{$table_files} ){
763 my ( $dir, $filename ) = OSspecific
::absolute_path
($model -> directory
,
765 cp
( $filename, $dir.$filename );
768 $final_model -> table_names
( new_names
=> $model -> table_names
);
771 my @problems = @
{$model -> problems
};
772 my @final_problems = @
{$final_model -> problems
};
773 for( my $i = 0; $i <= $#problems; $i++ ) {
774 if( $problems[$i-1] -> shrinkage_module
-> enabled
) {
775 my ( $dir, $eta_filename ) =
776 OSspecific
::absolute_path
($model -> directory
,
777 $problems[$i] -> shrinkage_module
-> eta_tablename
);
778 cp
( $final_problems[$i] -> shrinkage_module
-> eta_tablename
, $dir.$eta_filename );
779 my ( $dir, $wres_filename ) =
780 OSspecific
::absolute_path
($model -> directory
,
781 $problems[$i] -> shrinkage_module
-> wres_tablename
);
782 cp
( $final_problems[$i] -> shrinkage_module
-> wres_tablename
, $dir.$wres_filename );
786 unlink 'nonmem', 'nonmem6', 'nonmem5','nonmem.exe', 'nonmem6_adaptive', 'nonmem5_adaptive';
787 if( $self -> {'clean'} >= 1){
788 unlink 'nonmem', 'nonmem'.$self -> {'nm_version'}, 'nonmem.exe','FDATA', 'FREPORT', 'FSUBS', 'FSUBS.f', 'FSUBS.for', 'LINK.LNK', 'FSTREAM';
789 foreach my $data ( @
{$model -> datas
} ){
790 unlink $data -> filename
;
792 for ( my $i = 1; $i <= $self -> {'retries'}; $i++ ) {
793 unlink( 'FCON.'.$i );
794 unlink( "psn-$i.lst" );
795 unlink( "psn-$i.mod" );
796 unlink( 'compilation_output.txt.'.$i );
800 if ( $self -> {'clean'} >= 2 ) {
801 unlink 'FCON', 'PRDERR';
804 if ( $self -> {'clean'} >= 3 ) {
805 # Do nothing. "run_nonmem" will remove entire work directory
808 system('tar cz --remove-files -f nonmem_files.tgz *')
809 if ( $self -> {'compress'} and $Config{osname
} ne 'MSWin32' );
810 system('compact /c /s /q > NUL')
811 if ( $self -> {'compress'} and $Config{osname
} eq 'MSWin32' );
814 end copy_model_and_output
818 # {{{ _twoDimToString
820 start _twoDimToString
823 for(my $j = 0; $j <= $#array; $j++ ){
826 my $thetas = $array[$j];
828 for(my $i = 0;$i < $#{$thetas}; $i++ ){
829 $string .= $thetas -> [$i] . ",";
831 $string .= $thetas -> [$#{$thetas}] . "]";
842 # {{{ _printGridScript
844 start _printGridScript
846 my $mainExecName = 'batch' . $batchStart . '.pl';
848 open( my $gridScript , ">>", $self -> directory
. "/$mainExecName" );
849 print $gridScript "#!/usr/bin/perl\n";
850 print $gridScript 'use FindBin qw($Bin);', "\n";
851 print $gridScript "use fcon;\n\n";
853 print $gridScript "my \$fcon = fcon -> new('filename' => 'FCON');\n";
854 print $gridScript "\$fcon -> run('retries' => 5, 'batchStart' => $batchStart, 'batchSize' => $batchSize,\n";
855 print $gridScript "'fixed_thetas' => [";
857 print $gridScript @theta_fixed;
859 print $gridScript "], 'fixed_omegas' => [";
861 print $gridScript @omega_fixed;
863 print $gridScript "], 'fixed_sigmas' => [";
865 print $gridScript @sigma_fixed;
867 print $gridScript "], 'retries' => [";
869 print $gridScript @retries;
871 print $gridScript "], 'picky' => [";
873 print $gridScript @picky;
875 print $gridScript "] )\n";
877 close( $gridScript );
883 # {{{ set_msfo_to_msfi
885 start set_msfo_to_msfi
887 my ( $msfo_ref, $junk ) = $final_model ->
888 _get_option_val_pos
( problem_numbers
=> [0],
890 record_name
=> 'estimation' );
892 unless ( defined $msfo_ref ) {
893 debug
-> die( message
=> "handle_maxevals set, but no MSFO option " .
894 "defined in model file " . $final_model -> filename
);
897 my $msfo = @
{$msfo_ref}->[0][0];
900 if ( defined ( $1 ) ) {
901 cp
( 'psn.lst', 'psn.lst.msfo'.($1) );
902 cp
( $final_model -> filename
, $final_model -> filename
.'.msfo'.($1) );
904 my $new_num = defined ( $1 ) ?
$1+1 : 1;
905 $msfo =~ s/\d*(\Z)/$new_num$1/;
907 $final_model->_option_val_pos( name
=> 'MSFO',
908 record_name
=> 'estimation',
909 problem_numbers
=> [[0]],
910 new_values
=> [[$msfo]]);
912 $final_model->set_records(type
=>'msfi',
913 record_strings
=> ["$msfo"]); # $msfi or ????
923 my @data_ref = @
{$final_model -> record
( record_name
=> 'msfi' )};
924 # Check if there is a msfi record and then delete it
925 if (scalar(@data_ref)!=0) {
926 $final_model->remove_records(type
=>'msfi');
928 # Set the intial values + boundaries to the first values (update theta, omega, sigma)
930 my @old_problems = @
{$basic_model -> problems
};
931 my @new_problems = @
{$final_model -> problems
};
932 for ( my $i=0; $i <= $#old_problems; $i++ ) {
933 foreach my $param ( 'thetas', 'omegas', 'sigmas' ) {
934 $new_problems[$i] -> $param( Storable
::dclone
( $old_problems[$i] -> $param ) );
941 # Update the msfo file if defined
942 my ( $msfo_ref, $junk ) = $final_model ->
943 _get_option_val_pos
( problem_numbers
=> [0],
945 record_name
=> 'estimation' );
947 if ( defined $msfo_ref ) {
948 my $msfo = @
{$msfo_ref}->[0][0];
951 my $new_num = defined ( $1 ) ?
$1+1 : 1;
952 $msfo =~ s/\d*(\Z)/$new_num$1/;
954 $final_model->_option_val_pos( name
=> 'MSFO',
955 record_name
=> 'estimation',
956 problem_numbers
=> [[0]],
957 new_values
=> [[$msfo]]);
968 $final_model -> update_inits
( from_output
=> $output_file,
973 foreach my $th_num ( @cutoff_thetas ) {
974 my $init_val = $final_model ->
975 initial_values
( parameter_type
=> 'theta',
976 parameter_numbers
=> [[$th_num]])->[0][0];
977 if (abs($init_val)<=$self->{'cutoff'}) {
978 $final_model->initial_values(parameter_type
=> 'theta',
979 parameter_numbers
=> [[$th_num]],
981 $final_model->fixed(parameter_type
=> 'theta',
982 parameter_numbers
=> [[$th_num]],
983 new_values
=> [[1]] );
995 # rand should not be used here. find some other way to create unique file names.
997 open( TMP
, ">/tmp/$num" );
998 print TMP
"START MODEL FILE NAME\n";
999 print TMP
$basic_model -> filename
,"\n";
1000 print TMP
"END MODEL FILE NAME\n";
1001 foreach my $prob ( @reruns ) {
1002 my @theta_labels = @
{$final_model -> labels
( parameter_type
=> 'theta' )};
1003 my @omega_labels = @
{$final_model -> labels
( parameter_type
=> 'omega' )};
1004 my @sigma_labels = @
{$final_model -> labels
( parameter_type
=> 'sigma' )};
1005 my @theta_inits = @
{$final_model -> initial_values
( parameter_type
=> 'theta' )};
1006 my @omega_inits = @
{$final_model -> initial_values
( parameter_type
=> 'omega' )};
1007 my @sigma_inits = @
{$final_model -> initial_values
( parameter_type
=> 'sigma' )};
1008 print TMP
"START PROBLEM NUMBER\n";
1009 print TMP
$prob,"\n";
1010 print TMP
"END PROBLEM NUMBER\n";
1011 print TMP
"START MINIMIZATION_MESSAGE\n";
1012 print TMP
$minimization_message -> [$prob-1][0],"\n";
1013 print TMP
"END MINIMIZATION_MESSAGE\n";
1014 print TMP
"START FINAL GRADIENT\n";
1015 print TMP
join( " ",@
{$output_file -> final_gradients
-> [$prob-1][0]}),"\n";
1016 print TMP
"END FINAL GRADIENT\n";
1017 print TMP
"START OFV\n";
1018 print TMP
$output_file -> ofv
-> [$prob-1][0],"\n";
1019 print TMP
"END OFV\n";
1020 print TMP
"START INITIAL VALUES THETA\n";
1021 print TMP
join(" ", @
{$theta_inits[$prob-1]}),"\n";
1022 print TMP
"END INITIAL VALUES THETA\n";
1023 print TMP
"START INITIAL VALUES OMEGA\n";
1024 print TMP
join(" ", @
{$omega_inits[$prob-1]}),"\n";
1025 print TMP
"END INITIAL VALUES OMEGA\n";
1026 print TMP
"START INITIAL VALUES SIGMA\n";
1027 print TMP
join(" ", @
{$sigma_inits[$prob-1]}),"\n";
1028 print TMP
"END INITIAL VALUES SIGMA\n";
1029 print TMP
"START LABELS\n";
1030 print TMP
join(" ", (@
{$theta_labels[$prob-1]},@
{$omega_labels[$prob-1]},
1031 @
{$sigma_labels[$prob-1]})),"\n";
1032 print TMP
"END LABELS\n";
1035 my $out = readpipe
( "/users/lasse/PsN/Diagrams/test/scm_comm.pl $num ".$output_file->filename );
1036 my @out_per_prob = split("\n",$out);
1037 foreach my $prob ( @reruns ) {
1038 my ( $choice, $rest ) = split( ' ', shift( @out_per_prob ), 2 );
1039 if ( $choice == 0 ) {
1040 $retries = $tries + $rest;
1041 } elsif ( $choice == 1 ) {
1042 my ($theta_str,$omega_str,$sigma_str) = split(':',$rest);
1043 print "thstr $theta_str\n";
1044 print "omstr $omega_str\n";
1045 print "sistr $sigma_str\n";
1046 my @thetas = split( ' ', $theta_str );
1047 print "$prob: @thetas\n";
1048 $final_model -> initial_values
( parameter_type
=> 'theta',
1049 problem_numbers
=> [$prob],
1050 new_values
=> [\
@thetas],
1051 add_if_absent
=> 0 );
1052 $retries = $tries+1;
1056 $final_model -> _write
;
1058 $return_value = $retries;
1069 # This method will submit the nonmem.pm file as a script to the
1070 # LSF system. The nonmem.pm file will use the
1071 # "no_remote_compile" and "no_remote_execution" arguments what
1072 # to do on the remote host. It can either compile or execute or
1073 # both. If only execution is done remote, compilation will
1074 # already be done by a call to nonmem -> compile in
1077 my $fsubs = join( ',' , @
{$model -> subroutine_files
} );
1079 # Check for vital lsf options.
1080 unless( $self -> {'lsf_queue'} ){
1081 if( $PsN::config
-> {'_'} -> {'lsf_queue'} ){
1082 $self -> {'lsf_queue'} = $PsN::config
-> {'_'} -> {'lsf_queue'};
1084 'debug' -> die( message
=> 'No queue specified for lsf run' );
1088 foreach my $lsf_option ( 'lsf_project_name', 'lsf_job_name', 'lsf_resources', 'lsf_ttl', 'lsf_options' ){
1089 unless( $self -> {$lsf_option} ){
1090 if( $PsN::config
-> {'_'} -> {$lsf_option} ){
1091 $self -> {$lsf_option} = $PsN::config
-> {'_'} -> {$lsf_option};
1096 run3
( "bsub -e stderr -o stdout -K " .
1097 "-q " . $self -> {'lsf_queue'} .
1098 ($self -> {'lsf_project_name'} ?
" -P " . $self -> {'lsf_project_name'} : ' ') .
1099 ($self -> {'lsf_job_name'} ?
" -J " . $self -> {'lsf_job_name'} : ' ') .
1100 ($self -> {'lsf_ttl'} ?
" -c " . $self -> {'lsf_ttl'} : ' ') .
1101 ($self -> {'lsf_resources'} ?
" -R " . $self -> {'lsf_resources'} : ' ') .
1102 $self -> {'lsf_options'} .
1103 ($PsN::config
-> {'_'} -> {'remote_perl'} ?
' ' . $PsN::config
-> {'_'} -> {'remote_perl'} : ' perl ') . " -I" .
1104 $PsN::lib_dir
."/../ " .
1105 $PsN::lib_dir
. "/nonmem.pm" .
1106 " psn.mod psn.lst " .
1107 $self -> {'nice'} . " ".
1109 $self -> {'no_remote_compile'} . " " .
1110 $self -> {'no_remote_execution'} . " " .
1112 $self -> {'nm_directory'} );
1126 ( $final_model, $maxeval ) = $self -> copy_model_and_input
( model
=> $model, source
=> '../' );
1128 # {{{ Experimental code for MSFO-resume
1130 # $final_model = $self -> copy_model_and_input( model => $model, source => $base_dir );
1132 # my ($msfo_ref, $junk) = $final_model -> _get_option_val_pos( problem_numbers => [0],
1134 # record_name => 'estimation' );
1135 # if( defined $msfo_ref and -e @{$msfo_ref}->[0][0] ){
1136 # $self -> set_msfo_to_msfi( final_model => $final_model );
1138 # $final_model->remove_records(type=>'theta');
1139 # $final_model->remove_records(type=>'omega');
1140 # $final_model->remove_records(type=>'sigma');
1142 # $final_model -> _write;
1145 # $final_model = $self -> copy_model_and_input( model => $model, source => $base_dir );
1149 my $marked_for_rerun = 1;
1150 my $modelfile_tainted = 1;
1153 # Here we check wheter compilation and/or exection will be done
1154 # localy or remote. (Remote compilation is only supported on LSF
1155 # so far). So, unless we are doing everything remotely, we will
1156 # need a "nonmem" object. Which is created here.
1158 if( not $self -> {'run_on_lsf'} or
1159 ( $self -> {'run_on_lsf'} and
1160 ( $self -> {'no_remote_compile'} or
1161 $self -> {'no_remote_execution'}))){
1162 $nonmem = nonmem
-> new
( adaptive
=> $self -> {'adaptive'},
1163 modelfile
=> 'psn.mod',
1164 version
=> $nm_version,
1165 nm_directory
=> $self -> {'nm_directory'},
1166 nice
=> $self -> {'nice'},
1167 show_version
=> not $self -> {'run_on_lsf'});
1169 $nonmem -> fsubs
( $final_model -> subroutine_files
);
1172 my $fprob = $final_model -> problems
;
1173 if( defined $fprob ) {
1174 my $nprob = scalar @
{$fprob};
1175 for( my $i = 0; $i < $nprob; $i++ ) {
1176 my ( $model_msfos, $junk ) =
1177 $final_model -> _option_val_pos
( name
=> 'MSFO',
1178 record_name
=> 'estimation',
1179 problem_numbers
=> [$i] );
1181 if( not scalar @
{$model_msfos} > 0 ) {
1182 $final_model -> _option_val_pos
( name
=> 'MSFO',
1183 record_name
=> 'estimation',
1184 problem_numbers
=> [$i],
1185 new_values
=> [["msfo$i"]]);
1189 $final_model->_write();
1191 # -------------- Notes about automatic pertubation and retries -----------------
1193 # Automatic pertubation of initial estimates are usefull for two
1194 # purposes. On reason is when nonmem failed to produce a
1195 # successful minimization we can try to direct the search by
1196 # selection other estimates. But it is also possible to get a
1197 # successful minimization but in a local minima, in this case
1198 # we have now way of knowing that, but if we set new intial
1199 # estimates we can get lucky and find a global minima. Two
1200 # modelfit members govern the pertubation process "retries"
1201 # which is a number giving the maximum number of retries when
1202 # nonmem failes and "auto_perturbation" which is the number of
1203 # runs we want to do to get a global minima. So if
1204 # auto_pertubation is 3 and retries is 5 we will stop after 3
1205 # successful runs but continue until 5 if we nonmem fails to
1206 # minimize successful. The reason we don't do retries for each
1207 # auto_pertubation try is because the pertubation takes place in
1208 # the same space of possible estimates. In other words, if 5
1209 # retry pertubations of the original model fails then it will
1210 # likely fail for a retry of a auto pertubated model.
1212 # It is important to set $marked_for_rerun to 1 if $tries is incremented!
1213 # Otherwise $tries can be incremented twice for one run. The
1214 # oposite is not true however, for instance a reset of maxevals
1215 # is not a retry but sets $marked_for_rerun to 1.
1217 while( $marked_for_rerun and $tries < $retries ){
1219 # {{{ Run nonmem and get minimization messages
1221 # We do not expect any values of rerun lower than 1 here. (a bug otherwise...)
1222 if( not -e
'psn-' . ( $tries + 1 ) . '.lst' or $self -> {'rerun'} >= 2 ){
1223 if( $modelfile_tainted ){ # We need to recompile
1224 if( $self -> {'run_on_nordugrid'} or not $self -> {'run_on_lsf'} or
1225 ( $self -> {'run_on_lsf'} and $self -> {'no_remote_compile'} ) ){
1227 # {{{ local compile requested
1229 unless( $nonmem -> compile
() ){
1230 debug
-> die( message
=> "NONMEM compilation failed:\n" . $nonmem -> error_message
);
1233 unless ( -e
'FCON.orig' ) {
1234 unless( $self -> {'clean'} ){
1236 # Instead of cleaning its better to never create
1237 # garbage :) However, if FCON pertubation becomes
1238 # reality, we will need FCON.orig.
1240 cp
( 'FCON', 'FCON.orig' );
1244 if( $nonmem -> nmtran_message
=~ /WARNING/s ){
1245 debug
-> warn( level
=> 1,
1246 message
=> "NONMEM Warning: " . $nonmem -> nmtran_message
);
1249 $modelfile_tainted = 0;
1253 } elsif ( $self -> {'run_on_lsf'} and $self -> {'no_remote_execution'} ) {
1256 # lsf_submit will call the "nonmem" module that will
1257 # figure out that we want to compile remotely. If we want
1258 # to compile AND run remotely that will be done in the
1259 # call to "lsf_submit" below.
1261 $self -> lsf_submit
( model
=> $final_model.
1262 nm_version
=> $nm_version );
1267 if( not $self -> {'run_on_nordugrid'} and not $self -> {'run_on_lsf'} or
1268 ( $self -> {'run_on_lsf'} and $self -> {'no_remote_execution'} ) ){
1270 # Normal local execution
1271 $nonmem -> execute
();
1273 } elsif( $self -> {'run_on_lsf'} ) {
1275 # lsf_submit will call the "nonmem" module that will figure
1276 # out that we want to run remotely. If we are also compiling
1277 # remotely, it will be done from here as well.
1279 $self -> lsf_submit
( model
=> $final_model,
1280 nm_version
=> $nm_version );
1282 } elsif ( $self -> {'run_on_nordugrid'} ){
1284 # {{{ submit and execute using nordugrid
1286 my ( $ng_failed, $ng_tries ) = ( 1, 1 );
1287 while( $ng_failed and $ng_tries <= 5 ) {
1288 my $jobidfile = $self -> ng_submit
( model
=> $final_model,
1290 my ( $job_files, $job_number ) = $self -> ng_monitor
( jobidfile
=> $jobidfile,
1292 $self -> ng_retrieve
( job_number
=> $job_number,
1293 job_files
=> $job_files,
1294 jobidfile
=> $jobidfile,
1296 if ( -e
$self -> {'directory'}.'NM_run'.($run_no+1).
1297 "/$job_number/psn.log/failed" ) {
1300 print "Job number ",($run_no+1)," with id $job_number failed at nordugrid\n",
1311 # We need the trail of files to select the most appropriate at the end
1312 # (see copy_model_and_output)
1313 cp
( 'FCON', 'FCON.'.($tries+1) );
1314 cp
( 'psn.lst', 'psn-'.($tries+1).'.lst' );
1315 cp
( 'psn.mod', 'psn-'.($tries+1).'.mod' );
1316 if( defined $model -> table_names
){
1317 foreach my $table_files( @
{$model -> table_names
} ){
1318 foreach my $table_file( @
{$table_files} ){
1319 cp
( $table_file, $table_file.'-'.($tries+1) );
1325 # This is rerun==1, i.e. re-evaluate the stuff that has been
1326 # run and (possibly) run extra runs to fix any problems left.
1327 # In this "else" statement it is true that psn-X.lst exists
1328 # and we copy it to psn.lst to make it the current version.
1329 cp
( 'psn-'.($tries+1).'lst', 'psn.lst' );
1333 if ( $PsN::config
-> {'_'} -> {'use_database'} ) {
1334 # Save the temporary run in the database
1335 # for ( my $i = 1; $i <= $self -> {'retries'}; $i++ ) {
1336 # if ( -e "psn-$i.mod" ) {
1337 my $tmp_model = model
-> new
( filename
=> 'psn-'.($tries+1).'.mod',
1338 datas
=> [] ); # Avoid load of data
1339 my $model_id = $tmp_model -> register_in_database
( force
=> 1 );
1340 if ( defined $model_id and defined $tmp_model -> outputs
-> [0] ) {
1341 $tmp_model -> outputs
-> [0] -> register_in_database
( model_id
=> $model_id,
1343 $self -> register_tm_relation
( model_ids
=> [$model_id] );
1348 cp
( 'compilation_output.txt', 'compilation_output.txt.'.($tries+1) );
1350 $marked_for_rerun = 0;
1352 my ( $minimization_successful, $significant_digits, $minimization_message );
1353 my ( $output_file );
1355 if ( -e
'psn.lst' ) {
1356 $output_file = output
-> new
( filename
=> 'psn.lst',
1357 model_id
=> $self -> {'model_id'} );
1358 $minimization_successful = $output_file -> minimization_successful
;
1359 $significant_digits = $output_file -> significant_digits
;
1360 $evals[$tries] += $output_file -> feval
-> [0][0];
1362 # {{{ log the stats of this run
1364 foreach my $category ( 'minimization_successful', 'covariance_step_successful',
1365 'covariance_step_warnings', 'estimate_near_boundary',
1366 'significant_digits', 'ofv' ){
1367 my $res = $output_file -> $category;
1368 $run_results[$tries] -> {$category} = defined $res ?
$res -> [0][0] : undef;
1370 $run_results[$tries] -> {'pass_picky'} = 0;
1374 unless( defined $minimization_successful ) {
1375 debug
-> die( message
=> "No minimization status found in " . $output_file ->filename );
1378 $minimization_message = $output_file -> minimization_message
;
1379 my $ofv = $output_file -> ofv
;
1380 my $problems = $final_model -> problems
;
1382 # We should avoid testing this when we are doing a simulation
1383 unless( $#{$problems} == $#{$minimization_message} or
1384 $#{$problems} == $#{$ofv} ){
1385 $marked_for_rerun = 1;
1386 debug
-> warn( level
=> 1,
1387 message
=> "The number of problems (".
1388 scalar @
{$problems}.
1389 ") does not match the number of minimization messages (".
1390 scalar @
{$minimization_message}.
1391 ").\nNONMEM was likely killed, restarting." );
1392 $tries++; # We need this here to avoid a possible infinite loop.
1396 debug
-> die( message
=> "NONMEM ran, but gave no lst-file" );
1401 if ( not $marked_for_rerun and $handle_maxevals and $maxeval > $evals[$tries] ) {
1403 # {{{ Check if maxevals is reached and copy msfo to msfi
1405 for ( @
{$minimization_message -> [0][0]} ) {
1406 if ( /\s*MAX. NO. OF FUNCTION EVALUATIONS EXCEEDED\s*/) {
1408 if( $self -> {'use_implicit_msfo'} ) {
1409 $self -> set_msfo_to_msfi
( final_model
=> $final_model );
1412 $final_model->remove_records(type
=>'theta');
1413 $final_model->remove_records(type
=>'omega');
1414 $final_model->remove_records(type
=>'sigma');
1416 $final_model -> _write
;
1417 $modelfile_tainted = 1;
1418 $marked_for_rerun = 1;
1427 if ( not $marked_for_rerun and $handle_rounding_errors || $handle_hessian_npd) {
1429 # {{{ Check for rounding errors and/or hessian_npd messages
1433 for ( @
{$minimization_message -> [0][0]} ) {
1434 $round_rerun = 1 and last if ( /\s*DUE TO ROUNDING ERRORS\s*/);
1435 $hessian_rerun = 1 and last if ( /\s*NUMERICAL HESSIAN OF OBJ. FUNC. FOR COMPUTING CONDITIONAL ESTIMATE IS NON POSITIVE DEFINITE\s*/);
1438 if ( ($round_rerun && $handle_rounding_errors) or ($hessian_rerun && $handle_hessian_npd)) {
1440 if( $self -> {'use_implicit_msfo'} ) {
1441 $self -> reset_msfo
( basic_model
=> $model,
1442 final_model
=> $final_model );
1445 $self -> cut_thetas
( final_model
=> $final_model,
1446 cutoff_thetas
=> \
@cutoff_thetas,
1447 output_file
=> $output_file );
1449 $final_model -> _write
;
1450 $modelfile_tainted = 1;
1452 $marked_for_rerun = 1;
1454 $tries ++; # This is a precaution, handle_rounding and handle_hessian should have
1455 # their own termination checks
1462 if ( not $marked_for_rerun and $tweak_inits ) {
1464 # {{{ Check for failed problems and possibly check for picky errors.
1467 my @problems = @
{$final_model -> problems
};
1468 for ( my $problem = 1; $problem <= scalar @problems; $problem++ ) {
1469 unless( $final_model -> is_simulation
( problem_number
=> $problem ) ){
1470 if ( $minimization_successful -> [$problem-1][0] ) {
1472 $run_results[$tries] -> {'pass_picky'} = 1;
1473 for ( @
{$minimization_message -> [$problem-1][0]} ) {
1474 if ( /0COVARIANCE STEP ABORTED/ or
1475 /0PROGRAM TERMINATED BY OBJ/ or
1476 /0ESTIMATE OF THETA IS NEAR THE BOUNDARY AND/ or
1477 /0PARAMETER ESTIMATE IS NEAR ITS BOUNDARY/ or
1478 /0R MATRIX ALGORITHMICALLY SINGULAR/ or
1479 /0S MATRIX ALGORITHMICALLY SINGULAR/ ) {
1480 push( @reruns, $problem );
1481 $run_results[$tries] -> {'pass_picky'} = 0;
1487 if ( not ( $significant_digits_rerun and $significant_digits -> [$problem-1][0] > $significant_digits_rerun ) ) {
1488 push( @reruns, $problem );
1494 if( $tries < ($retries -1) and scalar @reruns > 0 ) {
1495 $marked_for_rerun = 1;
1498 if( $tries >= $self -> {'min_retries'} and $self -> {'verbose'} ){
1499 my $message = "R:".($run_no+1).":". ($tries+1) . " ";
1500 ui
-> print( category
=> 'all', message
=> $message,
1504 if( $self -> {'ask_if_fail'} ) {
1505 $retries = $self -> ask_user
( basic_model
=> $model,
1506 final_model
=> $final_model,
1508 minimization_message
=> $minimization_message,
1509 output_file
=> $output_file,
1510 retries
=> $retries,
1512 $final_model->_write;
1513 $modelfile_tainted = 1;
1516 # This code must be adjusted for multiple problems!!
1517 my $degree = 0.1*$tries;
1518 if( $self -> {'use_implicit_msfo'} and
1519 $self -> reset_msfo
( basic_model
=> $model,
1520 final_model
=> $final_model ) ){
1522 foreach my $prob ( @reruns ) {
1523 $problems[$prob-1] -> set_random_inits
( degree
=> $degree );
1526 $final_model->_write;
1527 $modelfile_tainted = 1;
1530 foreach my $prob ( @reruns ) {
1531 $problems[$prob-1] -> set_random_inits
( degree
=> $degree );
1534 $final_model->_write;
1535 $modelfile_tainted = 1;
1536 # The fcon code does not parse the dofetilide model correctly
1537 # my $fcon = fcon -> new( filename => 'FCON.orig' );
1539 # $fcon -> pertubate_all( fixed_thetas => $final_model -> fixed( 'parameter_type' => 'theta' ),
1540 # fixed_omegas => $final_model -> fixed( 'parameter_type' => 'omega' ),
1541 # fixed_sigmas => $final_model -> fixed( 'parameter_type' => 'sigma' ),
1542 # degree => $degree );
1543 # $fcon -> write( filename => 'FCON' );
1552 # This "if" block should conceptually be last, since it is
1553 # something we should only do if the model succeeds. In
1554 # practise it could swap places with at least the tweak inits
1555 # block, but for simplicities sake, lets leave it at the
1558 if( not $marked_for_rerun and $tries < $self -> {'min_retries'} ) {
1560 # {{{ Perturb estimates
1562 #Here we force pertubation when the model is successful.
1565 $marked_for_rerun = 1;
1566 my $degree = 0.1 * $tries;
1567 if( $self -> {'use_implicit_msfo'} and
1568 $self -> reset_msfo
( basic_model
=> $model,
1569 final_model
=> $final_model ) ){
1571 foreach my $prob ( @
{$final_model -> problems
} ) {
1572 $prob -> set_random_inits
( degree
=> $degree );
1575 $final_model->_write;
1578 foreach my $prob ( @
{$final_model -> problems
} ) {
1579 $prob -> set_random_inits
( degree
=> $degree );
1582 $final_model->_write;
1585 $modelfile_tainted = 1;
1592 # -------------- Notes about Final model selection -----------------
1594 # Since we have reruns with pertubation and now also forced (or
1595 # automatic) pertubation the final model is not equal to the
1596 # original model. If we consider the models run in the algoritm
1597 # above, there are four implicit subsets. Those that pass the
1598 # picky test, those that don't pass the picky test but have
1599 # minimization successful, those that don't pass the
1600 # minimization step but produce ofv values and, finaly, those
1601 # that doesn't produce an ofv value. The final model will be the
1602 # model that passes the most tests and have the lowest ofv
1603 # value, and if no ofv value is produced, it will be the basic
1607 # Get all runs that passed the picky test (if picky is used)
1609 # The order of categories is important. Highes priority goes
1612 my @selection_categories = ('picky','normal');
1613 my ( %selection, $selected );
1614 foreach my $category ( @selection_categories ) {
1615 $selection{$category}{'best_significant_digits'} = 0;
1617 for(my $i = 0; $i < scalar @run_results; $i++ ){
1618 foreach my $category ( @selection_categories ) {
1620 if( $category eq 'picky' ) {
1622 if ( $run_results[$i] -> {'pass_picky'} ) {
1623 if( $run_results[$i] -> {'significant_digits'} >
1624 $selection{$category}{'best_significant_digits'} ){
1625 $selection{$category}{'selected'} = ($i+1);
1626 $selection{$category}{'best_significant_digits'} = $run_results[$i] -> {'significant_digits'};
1631 if ( $run_results[$i] -> {'minimization_successful'} ) {
1632 if( $run_results[$i] -> {'significant_digits'} >
1633 $selection{$category}{'best_significant_digits'} ){
1634 $selection{$category}{'selected'} = ($i+1);
1635 $selection{$category}{'best_significant_digits'} = $run_results[$i] -> {'significant_digits'};
1642 foreach my $category ( @selection_categories ) {
1643 $selected = defined $selection{$category}{'selected'} ?
1644 $selection{$category}{'selected'} : $selected;
1646 $selected = defined $selected ?
$selected : 1;
1649 open( STAT
, '>stats-runs.csv' );
1650 print STAT Dumper \
@run_results;
1653 $self -> copy_model_and_output
( final_model
=> $final_model,
1655 use_run
=> $selected ?
$selected : '',
1656 hit_max_tries
=> ( $retries > 1 and $tries > $retries ) );
1658 if( $self -> {'nonparametric_etas'} and
1659 ( not -e
'np_etas.lst' or $self -> {'rerun'} >=2 ) ) {
1661 # --------------------- Create nonp eta model -----------------------------
1663 # {{{ nonp eta model
1665 if( not -e
'np_etas.lst' or $self -> {'rerun'} >= 2 ){
1667 ui
-> print( category
=> 'execute',
1668 message
=> 'Creating NPETA model' );
1670 my $np_eta_mod = $final_model ->
1671 copy
( filename
=> $self -> {'directory'}.
1672 'NM_run'.($run_no+1).'/np_etas.mod',
1677 my ( $msfo_ref, $junk ) = $final_model ->
1678 _get_option_val_pos
( name
=> 'MSFO',
1679 record_name
=> 'estimation' );
1680 # We should have an MSFO file here
1681 for( my $i = 0; $i < scalar @
{$msfo_ref}; $i++ ) {
1682 my $msfi = $msfo_ref->[$i][0];
1683 $np_eta_mod -> set_records
( problem_numbers
=> [($i+1)],
1685 record_strings
=> ["$msfi"]);
1686 $np_eta_mod -> set_records
( problem_numbers
=> [($i+1)],
1687 type
=> 'nonparametric',
1688 record_strings
=> [ 'ETAS UNCONDITIONAL '.
1689 'MSFO=npmsfo'.($i+1) ] );
1691 $np_eta_mod -> remove_option
( record_name
=> 'estimation',
1692 option_name
=> 'MSFO' );
1693 $np_eta_mod -> remove_records
( type
=> 'theta' );
1694 $np_eta_mod -> remove_records
( type
=> 'omega' );
1695 $np_eta_mod -> remove_records
( type
=> 'sigma' );
1696 $np_eta_mod -> remove_records
( type
=> 'table' );
1697 my @nomegas = @
{$final_model -> nomegas
};
1700 for( my $i = 0; $i <= $#nomegas; $i++ ) {
1701 my $marg_str = 'ID';
1702 for( my $j = 1; $j <= $nomegas[$i]; $j++ ) {
1703 $marg_str = $marg_str.' ETA'.$j;
1705 $marg_str = $marg_str.' FILE='.$model -> filename
.'.nonp_etas'.
1706 ' NOAPPEND ONEHEADER NOPRINT FIRSTONLY';
1707 $np_eta_mod -> add_records
( problem_numbers
=> [($i+1)],
1709 record_strings
=> [ $marg_str ] );
1710 $max_evals[$i] = [0];
1713 # my @table_names = @{$np_eta_mod -> table_names};
1714 # for ( my $i = 0; $i <= $#table_names; $i++ ) {
1715 # foreach my $table ( @{$table_names[$i]} ) {
1716 # $table = 'nonp_'.$table;
1719 # $np_eta_mod -> table_names( new_names => \@table_names );
1721 $np_eta_mod -> maxeval
( new_values
=> \
@max_evals );
1722 $np_eta_mod -> _write
;
1724 # }}} nonp eta model
1726 # ---------------------- run nonp eta model -------------------------------
1730 ui
-> print( category
=> 'execute',
1731 message
=> 'Running NPETA model' );
1733 $nonmem = nonmem
-> new
( adaptive
=> $self -> {'adaptive'},
1734 modelfile
=> 'np_etas.mod',
1735 version
=> $nm_version,
1736 nm_directory
=> $self -> {'nm_directory'},
1737 nice
=> $self -> {'nice'},
1738 show_version
=> not $self -> {'run_on_lsf'});
1740 $nonmem -> fsubs
( $np_eta_mod -> subroutine_files
);
1741 unless( $nonmem -> compile
() ){
1742 debug
-> die( message
=> "NONMEM compilation failed:\n" .$nonmem -> error_message
);
1744 if( $nonmem -> nmtran_message
=~ /WARNING/s ){
1745 debug
-> warn( level
=> 1,
1746 message
=> "NONMEM Warning: " . $nonmem -> nmtran_message
);
1748 $nonmem -> execute
();
1750 foreach my $table_files( @
{$np_eta_mod -> table_names
} ){
1751 foreach my $table_file( @
{$table_files} ){
1752 my $dir = $model -> directory
;
1753 cp
( $table_file, $dir );
1757 unlink 'nonmem', 'nonmem6', 'nonmem5','nonmem.exe', 'nonmem6_adaptive', 'nonmem5_adaptive';
1763 # {{{ Nonparametric stuff
1765 # if( $self -> {'nonparametric_marginals'} ) {
1767 # --------------------- Create nonp marginal model -----------------------------
1769 # print "Creating NPMARG model\n";
1770 # # {{{ nonp marginal model
1772 # my $np_marg_mod = $final_model ->
1773 # copy( filename => $self -> {'directory'}.
1774 # 'NM_run'.($run_no+1).'/np_marginals.mod',
1777 # copy_output => 0);
1779 # my @table_names = @{$np_marg_mod -> table_names};
1780 # if ( $self -> {'nonparametric_etas'} ) {
1781 # $np_marg_mod -> remove_records( type => 'table' );
1783 # for ( my $i = 0; $i <= $#table_names; $i++ ) {
1784 # foreach my $table ( @{$table_names[$i]} ) {
1785 # $table = 'nonp_'.$table;
1788 # $np_marg_mod -> table_names( new_names => \@table_names );
1791 # my ( $msfo_ref, $junk ) = $final_model ->
1792 # _get_option_val_pos( problem_numbers => [0],
1794 # record_name => 'estimation' );
1796 # my $final_output = $final_model -> outputs -> [0];
1797 # my $npomegas = $final_output -> npomegas;
1799 # We should have an MSFO file here
1800 # for( my $i = 0; $i < scalar @{$msfo_ref}; $i++ ) {
1801 # my $n_npomegas = scalar @{$npomegas->[$i][0]};
1802 # my $msfi = $msfo_ref->[$i][0];
1803 # $np_marg_mod -> set_records( problem_numbers => [($i+1)],
1805 # record_strings => [$msfi]);
1806 # $np_marg_mod -> set_records( problem_numbers => [($i+1)],
1807 # type => 'nonparametric',
1808 # record_strings => [ 'MARGINALS UNCONDITIONAL '.
1809 # 'MSFO=np_marg_msfo'.($i+1) ] );
1810 # my $marg_str = 'ID';
1811 # print "NPOMEGAS: ".$n_npomegas."\n";
1812 # for( my $j = 0; $j <= $n_npomegas; $j++ ) {
1813 # $marg_str = $marg_str.' COM('.($j+1).')=MG'.($j+1);
1815 # $marg_str = $marg_str.' FILE='.$final_model->filename.'.marginals'.
1816 # ' NOAPPEND ONHEADER';
1817 # $np_marg_mod -> add_records( problem_numbers => [($i+1)],
1819 # record_strings => [ $marg_str ] );
1820 # $np_marg_mod -> add_records( problem_numbers => [($i+1)],
1821 # type => 'abbreviated',
1822 # record_strings => [ "COMRES=".($n_npomegas+1) ] );
1824 # add_marginals_code( problem_numbers => [($i+1)],
1825 # nomegas => [ $n_npomegas ] );
1828 # $np_marg_mod -> remove_option( record_name => 'estimation',
1829 # option_name => 'MSFO' );
1830 # $np_marg_mod -> remove_records( type => 'theta' );
1831 # $np_marg_mod -> remove_records( type => 'omega' );
1832 # $np_marg_mod -> remove_records( type => 'sigma' );
1836 # @max_evals = @table_names;
1837 # map( $_ = [0], @max_evals );
1839 # $np_marg_mod -> maxeval( new_values => \@max_evals );
1840 # $np_marg_mod -> _write;
1842 # # }}} nonp marginal model
1844 # # ---------------------- run nonp marginal model -------------------------------
1846 # print "Running NPMARG model\n";
1847 # # {{{ run marginal model
1849 # $nonmem = nonmem -> new( modelfile => 'np_marginals.mod',
1850 # version => $nm_version,
1851 # nm_directory => $self -> {'nm_directory'},
1852 # nice => $self -> {'nice'},
1853 # show_version => not $self -> {'run_on_lsf'});
1855 # $nonmem -> fsubs( $np_marg_mod -> subroutine_files );
1856 # unless( $nonmem -> compile() ){
1857 # debug -> die( message => $nonmem -> error_message );
1859 # if( $nonmem -> nmtran_message =~ /WARNING/s ){
1860 # debug -> warn( level => 1,
1861 # message => "NONMEM Warning: " . $nonmem -> nmtran_message );
1863 # $nonmem -> execute();
1865 # foreach my $table_files( @{$np_marg_mod -> table_names} ){
1866 # foreach my $table_file( @{$table_files} ){
1867 # my $dir = $model -> directory;
1868 # cp( $table_file, $dir );
1872 # # }}} run marginal model
1883 # {{{ _grid_proxy_init
1885 start _grid_proxy_up
1887 if( ($return_value = system( 'grid-proxy-info -exists &>/dev/null' )) ){
1889 warn "Failed to execute \"grid-proxy-info\": $!\n";
1891 if( ($return_value = system('grid-proxy-init -valid 168:0')) ){
1893 warn "Failed to execute \"grid-proxy-init\": $!\n";
1895 warn 'grid-proxy-init failed to setup a proxy\n';
1908 # The batch_size is the number of models that go into on
1911 # $batchSize = $self -> {'grid_batch_size'};
1913 # my @allmodels = @{ $self -> {'models'} };
1916 # Four parallel compilation jobs would be ok even on a one-processor machine
1917 # $pm2 = ext::Parallel::ForkManager -> new (4);
1918 # for ( my $run = 0; $run <= $#allmodels ; $run += $batchSize) {
1919 # my $batchEnd = $run + $batchSize - 1 > $#allmodels ? $#allmodels : $run + $batchSize - 1;
1920 # my @models = @allmodels[$run .. $batchEnd];
1922 # {{{ Filename accumulation And Directory creation.
1924 my (@inputFiles, @executables, @outputFiles );
1926 # push( @inputFiles, [$INC{'fcon.pm'}, 'fcon.pm'] );
1928 # push( @xrsls,'-f', $self -> directory . '/psn'. $run .'.xrsl' );
1931 my $mainExecName = 'batch' . $run . '.pl';
1939 # if( ref( $self -> {'retries'} ) eq 'ARRAY' ){
1940 # @retries = @{$self -> {'retries'}}[$run .. $batchEnd];
1942 # if(ref( $self -> {'picky'} ) eq 'ARRAY' ){
1943 # @picky = @{$self -> {'picky'}}[$run .. $batchEnd];
1946 # foreach my $model ( @models ){
1947 # my $dirName = 'NM_run' . ($index+1) . '/';
1949 # push(@theta_fixed, $self -> _twoDimToString( 'array' => $model -> fixed( 'parameter_type' => 'theta' ) ) );
1950 # push(@omega_fixed, $self -> _twoDimToString( 'array' => $model -> fixed( 'parameter_type' => 'omega' ) ) );
1951 # push(@sigma_fixed, $self -> _twoDimToString( 'array' => $model -> fixed( 'parameter_type' => 'sigma' ) ) );
1953 push(@inputFiles, ( 'nonmem.sh',
1954 'nonmem'.$self -> {'nm_version'},
1959 if ( defined $model -> extra_files
) {
1960 foreach my $extra_file( @
{$model -> extra_files
} ){
1961 if ( $extra_file =~ /^\// ) {
1962 $extra_file =~ /\/([^\
/]*)$/;
1965 push( @inputFiles, $extra_file );
1969 # push(@inFilesToRename, 'FDATA', 'FSTREAM');
1971 for( my $i = 0; $i < $model -> nproblems
; $i++ ) {
1972 if( $model -> is_option_set
( 'problem_number' => $i,
1973 'record' => 'subroutine',
1974 'name' => 'LIBRARY' ) ){
1975 push( @inputFiles, 'FLIB');
1976 # push( @inFilesToRename, 'FLIB');
1981 push(@executables, 'nonmem'.$self -> {'nm_version'} );
1983 my @table_files = ();
1984 if( $model -> table_names
){
1985 foreach my $table_name_array ( @
{$model -> table_names
} ) {
1986 @table_files = (@table_files, @
{$table_name_array});
1987 # push(@outFilesToRename, @table_files);
1991 for( my $i = 0; $i <= $#table_files; $i++ ){
1992 $table_files[$i] = $table_files[$i];
1995 push( @outputFiles, ( 'psn.lst',
1999 # unless( ref( $self -> {'retries'} ) eq 'ARRAY' ){
2000 # push( @retries,$self -> {'retries'});
2002 # unless( ref( $self -> {'picky'} ) eq 'ARRAY' ){
2003 # push( @picky, $self -> {'picky'} );
2010 # $self -> _printGridScript( 'batchStart' => $run,
2011 # 'batchSize' => $batchSize,
2012 # 'theta_fixed' => \@theta_fixed,
2013 # 'omega_fixed' => \@omega_fixed,
2014 # 'sigma_fixed' => \@sigma_fixed,
2015 # 'retries' => \@retries,
2016 # 'picky' => \@picky );
2022 my $jobname = "nonmem_run_".($run+1);
2024 if( $self -> {'cpu_time'} < 2 ){
2025 # Two minutes is the lowest allowed cpu_time.
2026 $self -> {'cpu_time'} = 2;
2029 # my $total_cpuTime = $self -> {'cpu_time'} * scalar(@models) * 1.2; # We expect 20 % to fail
2031 # debug -> warn( level => 2,
2032 # message => "grid_time: $total_cpuTime" );
2034 my $xrslfile = grid
::nordugrid
::xrsl_file
-> new
( executable
=> 'nonmem.sh',
2035 inputFiles
=> \
@inputFiles,
2036 executables
=> \
@executables,
2037 outputFiles
=> \
@outputFiles,
2041 #in_base_url => 'gsiftp://joe.asdfbiof.uu.se/ftp/',
2042 #out_base_url => 'gsiftp://joe.biof.uu.se/ftp/',
2043 cpuTime
=> "\"" . $self -> {'cpu_time'} . " minutes\"",
2044 gmlog
=> "\"psn.log\"",
2045 jobName
=> "\"$jobname\"",
2046 filename
=> 'psn'.($run+1).'.xrsl',
2052 # {{{ nonmem compilation
2055 # my $wdir = getcwd;
2057 # $pm2 -> start and next;
2058 # foreach my $model ( @models ){
2059 # my $dirName = 'NM_run' . ($index+1);
2061 # my $tmp_dir = $self -> create_sub_dir( 'subDir' => $dirName . '/' );
2062 # chdir( $tmp_dir );
2064 # $self -> copy_model_and_input( 'model' => $model, 'source' => $self -> directory . '/../');
2066 # my $nm_version = ref( $self -> {'nm_version'} ) eq 'ARRAY' ?
2067 # $self -> {'nm_version'} -> [$index] : $self -> {'nm_version'};
2069 # my $nonmem = 'nonmem'->new(modelfile => 'psn.mod',
2070 # version => $nm_version,
2071 # show_version => 0);
2073 # if( @{$model -> extra_data_files} > 0 ){
2074 # $nonmem -> fsubs( ['get_sub*.f', 'reader*.f'] );
2078 open( $filehandle, ">", 'nonmem.sh' );
2079 print $filehandle "#!/bin/bash \n";
2081 # foreach my $file(@inFilesToRename ){
2082 # print $filehandle "cp $dirName"."_$file $file\n";
2084 # my $nmdir = $nonmem -> nm_directory;
2085 print $filehandle "./nonmem".$self -> {'nm_version'}." < FCON > psn.lst \n";
2086 print $filehandle "echo This file was created using the NONMEM version in directory [unknown] >> psn.lst\n";
2087 print $filehandle "echo `date` >> psn.lst\n";
2088 print $filehandle "rm FDATA FSTREAM\n";
2089 # print $filehandle "mv PRDERR $dirName" . "_PRDERR\n";
2091 # foreach my $file(@outFilesToRename){
2092 # print $filehandle "mv $file $dirName"."_$file\n";
2097 # unless( $nonmem -> compile() ){
2098 # debug -> die( message => $nonmem -> error_message );
2101 # if( $nonmem -> nmtran_message =~ /WARNING/s ){
2102 # debug -> warn( level => 1,
2103 # message => "NONMEM Warning: " . $nonmem -> nmtran_message );
2113 # $pm2 -> wait_all_children;
2117 my ( $iddir, $idfile ) = OSspecific
::absolute_path
('.', 'job.id' );
2118 $jobidfile = $iddir.$idfile;
2119 unless( $self -> _grid_proxy_up
){
2121 if ( defined $PsN::config
-> {'_'} -> {'ng_clusters'} ) {
2122 $clusters = '-c' . join(' -c', split(/,/, $PsN::config
-> {'_'} -> {'ng_clusters'}));
2124 # my ( $out, $err );
2126 unlink( $jobidfile );
2127 # run3 does not work here. We need the command to finish
2129 my $oldhome = $ENV{'HOME'};
2130 $ENV{'HOME'} = './';
2131 while( $subtries < 6 ) {
2132 my $dbglvl = $subtries <= 1 ?
$subtries : 1; # 3 is just too much
2133 my @command = ( 'ngsub', '-d', $dbglvl,'-f', 'psn'.($run+1).'.xrsl',
2135 if( $clusters ne '' ){
2136 push( @command, $clusters );
2139 open FILE
, ">sub_wrapper.sh";
2140 print FILE
"#!/bin/bash\n";
2141 print FILE
join(" ", @command );
2143 chmod 0755, "sub_wrapper.sh";
2145 my ( $dir, $file ) = OSspecific
::absolute_path
( '.', "sub_wrapper.sh" );
2146 if( system( $dir.$file ) ){
2147 if ( $! eq 'Bad file descriptor' or
2148 $! eq 'No such file or directory' ) {
2149 print "ngsub of run ",($run+1)," failed with $!, retrying in ",++$subtries," seconds\n";
2152 debug
-> die( message
=> "system call @command returned: $!" );
2158 $ENV{'HOME'} = $oldhome;
2161 'debug' -> die( message
=> "Could not submit gridjob, since grid-proxy-init failed" );
2175 while( $opentries < 1 ) {
2176 unless( open( JOB
, "<" , $jobidfile ) ) {
2177 if ( $opentries == 0 ) {
2178 debug
-> die( message
=> "unable to open jobid file for run ".($run+1) );
2180 print "unable to open jobid file for run ",($run+1),
2181 ", retrying in 5 seconds\n";
2193 debug
-> die( message
=> "More than one job id was found in $jobidfile" )
2196 my $job_id = $jobs[0];
2198 my $status = 'SUBMITTED';
2202 my $first_poll = 1; # Do some polling immediately
2204 while( not $status =~ /FINISHED/ and
2205 $status ne 'FAILED' ){
2206 if( $eager or $first_poll ){
2210 $time = defined $self -> {'grid_poll_interval'} ?
$self -> {'grid_poll_interval'}*60 :
2211 int($self -> {'cpu_time'} * 1.2 * 60 * 0.5);
2214 print "Polling T - " . $time . "\n"; #" (or press \'f\' to force an update)\n";
2218 while( $slept < $time ) {
2219 if( $PsN::config
-> {'_'} -> {'use_keyboard'} ) {
2220 my $key = readkey
();
2222 print "Forced Poll\n";
2226 $slept += sleep(10);
2231 open FILE
, ">stat_wrapper.sh";
2232 print FILE
"#!/bin/bash\n";
2233 print FILE
"ngstat -i $jobidfile";
2235 chmod 0755, "stat_wrapper.sh";
2237 run3
( "./stat_wrapper.sh", undef, \
@info, \
$err );
2239 print "info: @info";
2240 print "err: $err\n";
2241 print "Status: $status\n";
2243 my $became_eager = 0;
2244 foreach my $line (@info){
2245 if( $line =~ /Job (gsiftp:\/\
/.*)/ ){
2247 } elsif( $line =~ /Jobname: (.*)/ ){
2249 } elsif( $line =~ /Status: (.*)/ ){
2250 my $new_status = $1;
2251 if( $new_status eq 'FINISHING' ){
2252 print "Job [ $job_id ] is Finishing, polling every minute.\n"; #" (or press \'f\' to force an update)\n";
2256 if( $status ne $new_status ) {
2257 print "Job [ $job_id ] changed status from $status to $1\n";
2259 $status = $new_status;
2260 } elsif( $line =~ /Error: (.*)/ ) {
2262 if( $status =~ /FINISHED/ ){
2263 debug
-> warn( level
=> 1,
2264 message
=> "Job $job_id Failed: $error" );
2268 # print "Found nothing: $line";
2273 $job_id =~ /\/([0-9]*)$/;
2275 my $dir = $self -> {'directory'}.'NM_run'.($run+1).'/';
2276 push( @job_files, [ $dir.$job_number.'/PRDERR', $dir.'PRDERR' ]);
2277 push( @job_files, [ $dir.$job_number.'/psn.lst', $dir.'psn.lst' ]);
2287 my $dir = $self -> {'directory'}.'NM_run'.($run+1).'/';
2288 unless( $self -> _grid_proxy_up
){
2289 my $command = "ngget -i $jobidfile -dir $dir";
2291 open FILE
, ">get_wrapper.sh";
2292 print FILE
"#!/bin/bash\n";
2293 print FILE
$command;
2295 chmod 0755, "get_wrapper.sh";
2297 if( system( "./get_wrapper.sh" ) ){
2298 debug
-> die( message
=> "system command $command returned: $!" );
2301 die "Could not get gridjob ",($run+1),", since grid-proxy-init failed\n";
2304 run3
( "cp ".$dir.$job_number.'/* '.$dir, undef, \
$out, \
$err );
2310 # {{{ print_finish_message
2312 start print_finish_message
2316 $ui_text .= sprintf("%3s",$run+1) . sprintf("%25s",$self -> {'models'} -> [$run] -> filename
);
2317 my $log_text = $run+1 . ',' . $self -> {'models'} -> [$run] -> filename
. ',';
2318 if( $self -> {'verbose'} or $self -> {'quick_summarize'} ){
2319 foreach my $param ( 'ofv', 'covariance_step_successful', 'minimization_message' ) {
2320 my $ests = $final_model -> outputs
-> [0] -> $param;
2321 if( $param eq 'minimization_message' ){
2322 $ui_text .= "\n ---------- Minimization Message ----------\n";
2326 for ( my $j = 0; $j < scalar @
{$ests}; $j++ ) {
2327 if ( ref( $ests -> [$j][0] ) ne 'ARRAY' ) {
2328 $ests -> [$j][0] =~ s/^\s*//;
2329 $ests -> [$j][0] =~ s/\s*$//;
2330 $log_text .= $ests -> [$j][0] .',';
2331 #chomp($ests -> [$j][0]);
2332 $ui_text .= sprintf("%10s",$ests -> [$j][0]);
2335 # Loop the parameter numbers (skip sub problem level)
2336 for ( my $num = 0; $num < scalar @
{$ests -> [$j][0]}; $num++ ) {
2337 #$ests -> [$j][0][$num] =~ s/^\s*//;
2338 #$ests -> [$j][0][$num] =~ s/\s*$/\n/;
2339 $log_text .= $ests -> [$j][0][$num] .',';
2340 #chomp($ests -> [$j][0][$num]);
2341 if( $param eq 'minimization_message' ){
2344 $ui_text .= sprintf("%12s",$ests -> [$j][0][$num]);
2349 if( $param eq 'minimization_message' ){
2350 $ui_text .= " ------------------------------------------\n\n";
2353 ui
-> print( category
=> 'all',
2354 message
=> $ui_text,
2359 open( LOG
, ">>".$self -> {'logfile'} );
2360 print LOG
$log_text;
2365 end print_finish_message
2377 # Returns: Like all tools modelfit returns a hash with two keys;
2378 # 'own' and 'subtool' but one where the 'subtool' doesn't have any
2383 # modelfit -> run implements the core functionality for
2384 # modelfit, it executes NONMEM on each specified
2385 # modelfile. And moves the outputfile to the directory
2386 # where the script was started from.
2390 if ( defined $self -> {'models'} ) {
2391 @models = @
{ $self -> {'models'} };
2393 debug
-> die( message
=> "Have no models!" );
2396 chdir( $self -> {'directory'} );
2398 $threads = $self -> {'threads'};
2399 $threads = $#models + 1 if ( $threads > $#models + 1);
2401 # Currently parallel execution is not supported on windows
2402 # platforms. Because of regular expression issues with
2403 # Parallel::Forkmanager.
2404 $threads = 1 if( $Config{osname
} eq 'MSWin32' );
2406 ui
-> print( category
=> 'all',
2407 message
=> 'Starting ' . scalar(@models) . ' NONMEM executions. '. $threads .' in parallel.' )
2408 unless $self -> {'parent_threads'} > 1;
2409 ui
-> print( category
=> 'all',
2410 message
=> "Run number\tModel name\tOFV\tCovariance step successful." ) if $self -> {'verbose'};
2412 # Print model-NM_run translation file
2413 open( MNT
, ">model_NMrun_translation.txt");
2414 for ( my $run = 0; $run <= $#models; $run ++ ) {
2415 print MNT
sprintf("%-40s",$models[$run]->filename),"NM_run",($run+1),"\n";
2419 # {{{ Setup of parallel forkmanager
2424 if( $self -> {'adaptive'} and $self -> {'threads'} > 1 ) {
2426 # Make a moshog request. Answer will be read on run_on_finish
2428 $moshog_client = moshog_client
-> new
(start_threads
=> $self -> {'threads'});
2429 # print "Making initial request for: ", scalar @models - $self -> {'threads'} , " threads\n";
2430 $moshog_client -> request
( request
=> scalar @models - $self -> {'threads'} );
2432 # print "Initial gran, got new threads: ", $self -> {'threads'} + $moshog_client -> granted(), "\n";
2434 $threads = $self -> {'threads'} + $moshog_client -> granted
();
2438 my $pm = ext
::Parallel
::ForkManager
-> new
($threads) if ( $threads > 1 );
2440 # These are variables used in forkmanager callbacks.
2442 # $run is the loop variable of the nonmem loop. Can be used to
2443 # keep track of progress. (Which we do in the "adaptive" code).
2447 my $keepforking = 1;
2449 my $fork_finished = 0;
2451 if ( $threads > 1 ) {
2453 # This following call defines a function that will be
2454 # called when all children have exited. It detects
2455 # errors from children and kills remaining children.
2456 $pm -> run_on_finish
(
2457 sub { my ( $pid, $exit_code, $ident, $exit_signal ) = @_;
2458 my $tries = $exit_code;
2460 # if( $exit_signal ){
2461 # debug -> die( message => "A NONMEM run failed" );
2466 # !!!!!!!!!!!!!!!!!!!!!
2467 # tries starts on 0 so this will likely never occur
2470 if( $self -> {'abort_on_fail'} and not $aborting){
2472 debug
-> die( message
=> "Some nonmem runs failed, aborting" );
2474 foreach my $child ( @children ){
2476 if( kill( $child ) != 1 ){
2483 debug
-> warn( level
=> 0,
2484 message
=> "One child died" );
2487 push( @
{$self -> {'prepared_models'}[$ident]{'own'}},
2488 model
-> new
( filename
=> "./NM_run" . ($ident+1) ."/psn.mod",
2490 ignore_missing_files
=> 1 ) );
2491 $self -> {'ntries'} -> [$ident] = $tries;
2492 # $self -> {'evals'} -> [$ident] = \@evals;
2494 my $modulus = (($#models+1) <= 10) ?
1 : (($#models+1) / 10)+1;
2496 if ( $ident % $modulus == 0
2500 $ident == $#models ) {
2501 if( $fork_finished ){
2502 ui
-> print( category
=> 'all',
2503 message
=> 'F:'.($ident+1).' .. ',
2506 unless ( $self -> {'parent_threads'} > 1 or $self -> {'verbose'} );
2510 # if( $self -> {'adaptive'} ){
2511 # my $request = scalar @models - $run - $self -> {'threads'};
2512 # unless( $request + $self -> {'threads'} eq $threads or $request <= 0 ){
2513 # print "Exit Requesting\n"; sleep( rand() % 3 );
2514 # $moshog_client -> request( request => $request );
2515 # $threads = $self -> {'threads'} + $moshog_client -> granted();
2516 # print "Child finished, got new threads: $threads.";
2520 # if( $request <= 0 ){
2521 # $threads = $self -> {'threads'};
2524 # print "We had ", $pm -> set_max_procs($threads) , " threads \n";
2532 if( $self -> {'adaptive'} and $self -> {'threads'} > 1 ){
2533 my $request = scalar @models - $run - $self -> {'threads'};
2534 unless( $request + $self -> {'threads'} eq $threads or $request <= 0 ){
2535 $moshog_client -> request
( request
=> $request );
2536 $threads = $self -> {'threads'} + $moshog_client -> granted
();
2539 if( $request <= 0 ){
2540 $threads = $self -> {'threads'};
2543 my $old_threads = $pm -> set_max_procs
($threads);
2545 if( $self -> {'verbose'} and $old_threads != $threads ){
2546 ui
-> print( category
=> 'all',
2547 message
=> "Thread: $threads ($old_threads).",
2558 # {{{ Local execution
2560 my $actual_runs = -1; # Keep track of how many runs we start (only important for the
2561 # sleep statement below )
2563 # $run is defined above so that we can access it from
2564 # forkmanager callbacks.
2565 for ( $run = 0; $run <= $#models; $run ++ ) {
2567 if ( $threads > 6 and $actual_runs != 0 and not (($actual_runs)%6) ) {
2571 my ( @seed, $tries, $final_model, @evals, $evals_ref );
2572 if ( $keepforking ) {
2574 if ( -e
$self -> {'models'} -> [$run] -> outputs
-> [0] -> full_name
){
2575 mkdir( "./NM_run" . ($run+1) );
2576 open( DONE
, ">./NM_run". ($run+1) ."/done" );
2577 print DONE
"This is faked\n 0 attepmts\nevals: 0\nseed: 1 1\n" ;
2580 # Must copy tablefiles if they exist.
2582 cp
( $self -> {'models'} -> [$run] -> outputs
-> [0] -> full_name
, './NM_run' . ($run+1) .'/psn.lst' );
2585 if ( -e
"./NM_run" . ($run+1) . "/done" and not $self -> {'rerun'} > 0 ) {
2587 # Should check for tablefiles.
2591 open( DONE
, "./NM_run". ($run+1) ."/done" );
2595 ( $tries, $junk ) = split(' ',$rows[1],3);
2596 @evals = split(' ',$rows[2]);
2597 @seed = split(' ',$rows[3]);
2598 shift( @evals ); # get rid of 'evals'-word
2599 shift( @seed ); # get rid of 'seed'-word
2600 random_set_seed
( @seed );
2602 my $modulus = (($#models+1) <= 10) ?
1 : (($#models+1) / 10)+1;
2604 if ( $run % $modulus == 0
2608 $run == $#models ) {
2610 ui
-> print( category
=> 'all',
2611 message
=> 'D:'.( $run + 1 ).' .. ',
2614 unless( $self -> {'parent_threads'} > 1 or $self -> {'verbose'} );
2617 $final_model = model
-> new
( filename
=> "./NM_run".($run+1)."/psn.mod",
2619 ignore_missing_files
=> 1,
2620 quick_reload
=> 1 );
2622 $self -> print_finish_message
( final_model
=> $final_model,
2625 $children[$run] = $pm -> start
( $run ) if ( $threads > 1 and not $done);
2627 # We wish to print progress if $threads are 1(that is, no
2628 # forkmanager object exists) or we have multiple threads and
2629 # are in the parent.
2631 if( $threads <= 1 or $children[$run] ) {
2633 # We don't want to print all starting models if they are
2634 # more than ten. But we allways want to print the first
2637 my $modulus = (($#models+1) <= 10) ?
1 : (($#models+1) / 10);
2639 if ( $run % $modulus == 0
2643 $run == $#models ) {
2645 # The unless checks if tool owning the modelfit is
2646 # running more modelfits, in wich case we should be
2647 # silent to avoid confusion. The $done check is made do
2648 # diffrentiate between allready run processes.
2650 ui
-> print( category
=> 'all',
2651 message
=> 'S:'.($run+1).' .. ',
2654 unless ( $self -> {'parent_threads'} > 1 or $done or $self -> {'verbose'} );
2657 # Here we skip to the next model if we are running in
2660 next if $threads > 1;
2668 # Thetas that may be fixed to zero if the go below cutoff
2669 if ((ref( $self -> {'cutoff_thetas'} ) eq 'ARRAY')) {
2670 if ((ref($self -> {'cutoff_thetas'}->[$run]) eq 'ARRAY')) {
2671 $cutoff_thetas = $self->{'cutoff_thetas'}->[$run];
2673 $cutoff_thetas = $self->{'cutoff_thetas'};
2676 if (defined ($self->{'cutoff_thetas'})) {
2677 die("cutoff_thetas: ". $self->{'cutoff_thetas'}. " is not of the correct type in modelfit->run\n");
2681 my %options_hash = ( 'handle_rounding_errors' => undef, # <- Handle rounding errors a bit more intelligently
2682 'handle_hessian_npd' => undef, # <- Handle hessian not postiv definite a bit more intelligently
2683 'handle_maxevals' => undef, # <- Restart after maxeval
2684 'tweak_inits' => undef,
2687 'significant_digits_rerun' => undef,
2688 'nm_version' => undef );
2690 foreach my $option ( keys %options_hash ) {
2691 $options_hash{$option} = (ref( $self -> {$option} ) eq 'ARRAY') ?
2692 $self -> {$option} -> [$run] : $self -> {$option};
2695 # This will stop nasty prints from model, output and data
2696 # which are set to print for the scm.
2697 my $old_category = ui
-> category
();
2699 ui
-> category
( 'modelfit' );
2701 my $base_dir = getcwd
;
2702 my $work_dir = $self -> create_sub_dir
( subDir
=> '/NM_run'.($run+1) );
2705 ( $tries, $final_model, $evals_ref ) =
2706 $self -> run_nonmem
( %options_hash,
2707 cutoff_thetas
=> $cutoff_thetas,
2708 model
=> $models[$run],
2713 ui
-> category
( $old_category );
2715 open( DONE
, ">>./NM_run". ($run+1) ."/done" );
2716 @seed = random_get_seed
;
2717 @evals = @
{$evals_ref} if ( defined $evals_ref );
2718 print DONE
"This file indicates that PsN has run nonmem",
2719 "and tried its best to get it through using\n",
2720 ($tries+1), " number of attempts\n";
2721 print DONE
"evals: @evals\n";
2722 print DONE
"seed: @seed\n";
2728 $self -> print_finish_message
( final_model
=> $final_model,
2732 if ( $threads > 1 and not $done) {
2733 $pm -> finish
( $tries );
2735 push( @
{$self -> {'prepared_models'}[$run]{'own'}}, $final_model );
2736 push( @
{$self -> {'ntries'}}, $tries );
2737 # push( @{$self -> {'evals'}}, \@evals );
2741 ui
-> print( category
=> 'all',
2742 message
=> " done\n") if( $self -> {'parent_threads'} <= 1 and not $self -> {'verbose'} );
2743 ui
-> print( category
=> 'all',
2744 message
=> "Waiting for all NONMEM runs to finish:\n" ) if( $self -> {'parent_threads'} <= 1 and $threads > 1 and not $self -> {'verbose'} );
2747 $pm -> wait_all_children
if ( $threads > 1 ) ;
2749 ui
-> print( category
=> 'all',
2750 message
=> " done\n" ) if( $self -> {'parent_threads'} <= 1 and $threads > 1 and not $self -> {'verbose'});
2757 # if ( $PsN::config -> {'_'} -> {'use_database'} ) {
2758 # $dbh = DBI -> connect("DBI:mysql:host=".$PsN::config -> {'_'} -> {'database_server'}.";databse=psn",
2759 # "psn", "psn_test",
2760 # {'RaiseError' => 1});
2762 # for( my $i = 1; $i <= scalar @{$self -> {'models'}}; $i++ ) {
2764 # foreach my $model ( @{$self -> {'prepared_models'}[$i-1]{'own'}} ) {
2765 # my $model_id = $model -> model_id;
2766 # if ( defined $model_id ) {
2767 # $sth = $dbh -> prepare("INSERT INTO psn.tool_model (tool_id,".
2768 # "model_id,prepared_model) ".
2769 # "VALUES ('".$self -> {'tool_id'}."', ".
2770 # $model_id.", 1 )");
2774 # $sth -> finish if ( defined $sth );
2776 # $dbh -> disconnect;
2781 $self -> prepare_raw_results
();
2783 $self -> print_raw_results
();
2785 # {{{ Result section
2787 # my $models_harvest = $self -> harvest_output( accessors => ['filename'],
2788 # search_models => 1,
2789 # search_original_models => 0 );
2791 # # file name result section
2792 # my @filenames = @{$models_harvest -> {'filename'}};
2793 # for (my $i = 0; $i <= $#filenames; $i++ ) {
2794 # my %return_section;
2795 # $return_section{'name'} = 'filename';
2796 # $return_section{'labels'} = [];
2797 # $return_section{'values'} = [[$filenames[$i]{'own'}]];
2798 # push( @{$self -> {'results'}[$i]{'own'}},\%return_section );
2801 # # ntries result section
2802 # for (my $i = 0; $i <= $#{$self -> {'ntries'}}; $i++ ) {
2803 # my %return_section;
2804 # $return_section{'name'} = 'ntries';
2805 # $return_section{'values'} = [];
2806 # $return_section{'labels'} = [];
2807 # $return_section{'values'} = [[ $self -> {'ntries'} -> [$i] ]];
2808 # push( @{$self -> {'results'}[$i]{'own'}},\%return_section );
2811 # # parameter.estimates and minimization result section
2813 # my $output_harvest = $self -> harvest_output( accessors => ['minimization_successful','ofv','thetas','omegas','sigmas'],
2814 # search_output => 1 );
2816 # foreach my $accessor( 'minimization_successful','ofv' ){
2817 # my @result = @{$output_harvest -> {$accessor}};
2818 # for ( my $i = 0; $i <= $#result; $i++ ) {
2819 # my %return_section;
2820 # my $accessor_renamed = $accessor;
2821 # $accessor_renamed =~ s/_/./;
2822 # $return_section{'name'} = $accessor;
2823 # $return_section{'values'} = [];
2824 # $return_section{'labels'} = [];
2825 # $return_section{'values'} = $result[$i]{'own'}[0];
2826 # push( @{$self -> {'results'}[$i]{'own'}},\%return_section );
2831 # my @thetas = defined $output_harvest -> {'thetas'} ? @{$output_harvest -> {'thetas'}} : ();
2832 # my @omegas = defined $output_harvest -> {'omegas'} ? @{$output_harvest -> {'omegas'}} : ();
2833 # my @sigmas = defined $output_harvest -> {'sigmas'} ? @{$output_harvest -> {'sigmas'}} : ();
2835 # $models_harvest = $self -> harvest_output( accessors => ['labels'],
2836 # accessor_parameters => {parameter_type => 'theta'},
2837 # search_models => 1 );
2838 # my @theta_labels = @{$models_harvest -> {'labels'}};
2839 # $models_harvest = $self -> harvest_output( accessors => ['labels'],
2840 # accessor_parameters => {parameter_type => 'omega'},
2841 # search_models => 1 );
2842 # my @omega_labels = @{$models_harvest -> {'labels'}};
2843 # $models_harvest = $self -> harvest_output( accessors => ['labels'],
2844 # accessor_parameters => {parameter_type => 'sigma'},
2845 # search_models => 1 );
2846 # my @sigma_labels = @{$models_harvest -> {'labels'}};
2850 # # Loop over the models
2851 # for ( my $i = 0; $i <= $#thetas; $i++ ) {
2852 # my %return_section = ();
2853 # $return_section{'name'} = 'parameter.estimates';
2854 # # Loop over the prepared models (only one here (or the same as the orig))
2855 # my @prep_ests = ();
2856 # my @prep_labels = ();
2857 # for ( my $j = 0; $j < scalar @{$thetas[$i]{'own'}}; $j++ ) {
2858 # # Loop the problems
2859 # my @prob_ests = ();
2860 # my @prob_labels = ();
2861 # for ( my $k = 0; $k < @{$thetas[$i]{'own'}[$j]}; $k++ ) {
2862 # # Loop the sub problems
2863 # my @sub_ests = ();
2864 # for ( my $l = 0; $l < @{$thetas[$i]{'own'}[$j][$k]}; $l++ ) {
2865 # # Push the parameter estimates
2867 # if( defined $thetas[$i]{'own'}[$j][$k][$l] ){
2868 # push( @array, @{$thetas[$i]{'own'}[$j][$k][$l]} );
2870 # if( defined $omegas[$i]{'own'}[$j][$k][$l] ){
2871 # push( @array, @{$omegas[$i]{'own'}[$j][$k][$l]} );
2873 # if( defined $sigmas[$i]{'own'}[$j][$k][$l] ){
2874 # push( @array, @{$sigmas[$i]{'own'}[$j][$k][$l]} );
2876 # push( @sub_ests, \@array );
2878 # push( @prob_ests, \@sub_ests );
2881 # if( defined $theta_labels[$i]{'own'}[$j][$k] ){
2882 # push( @array, @{$theta_labels[$i]{'own'}[$j][$k]} );
2884 # if( defined $omega_labels[$i]{'own'}[$j][$k] ){
2885 # push( @array, @{$omega_labels[$i]{'own'}[$j][$k]} );
2887 # if( defined $sigma_labels[$i]{'own'}[$j][$k] ){
2888 # push( @array, @{$sigma_labels[$i]{'own'}[$j][$k]} );
2890 # push( @prob_labels, \@array );
2893 # push( @prep_ests, \@prob_ests );
2894 # push( @prep_labels, \@prob_labels );
2896 # $return_section{'values'} = \@prep_ests;
2897 # $return_section{'labels'} = \@prep_labels;
2898 # push( @{$self -> {'results'}[$i]{'own'}},\%return_section );
2901 # @results = @{$self -> {'results'}};
2903 # $self -> print_results;
2919 for( my $i = 0 ; $i <= scalar @
{$self -> {'raw_results_header'}}; $i++ ){
2920 $raw_header_map{$self -> {'raw_results_header'} -> [$i]} = $i;
2923 my %model_problem_structure;
2925 foreach my $raw_row ( @
{$self -> {'raw_results'}} ){
2926 my $model = $raw_row -> [$raw_header_map{'model'}];
2927 my $problem = $raw_row -> [$raw_header_map{'problem'}];
2928 my $subproblem = $raw_row -> [$raw_header_map{'subproblem'}];
2930 $model_problem_structure{ $model }{ $problem }{ $subproblem } = 1;
2933 # ------------------------------------------------------------------#
2935 # Model evaluation. Part one. Version 0.1
2937 # This method checks a nonmem output file for flaws. The parts
2938 # concerning parts of the covariance step obviously needs the
2939 # $COV # record. In addition, the conditioning number test needs
2940 # the PRINT=E # option of the $COV record. The limits for the
2941 # relative tests may be # changed below:
2943 my $correlation_limit = $self -> {'correlation_limit'}; # All correlations above this number
2945 my $condition_number_limit = $self -> {'condition_number_limit'}; # An error will be rised if the
2946 # condition number is greater
2948 my $near_bound_sign_digits = $self -> {'near_bound_sign_digits'}; # If a parameter estimate is equal
2949 # to a bound with this many
2950 # significant digits, a warning
2952 my $near_zero_boundary_limit = $self -> {'near_zero_boundary_limit'}; # When the bound is zero, the
2953 # check above is not valid. Use
2954 # this limit instead.
2955 my $sign_digits_off_diagonals = $self -> {'sign_digits_off_diagonals'}; # The off-diagonal elements are
2956 # checked against +-1 with this
2957 # many significant digits.
2958 my $large_theta_cv_limit = $self -> {'large_theta_cv_limit'}; # Coefficients of variation larger
2959 # than these numbers will produce
2961 my $large_omega_cv_limit = $self -> {'large_omega_cv_limit'};
2962 my $large_sigma_cv_limit = $self -> {'large_omega_cv_limit'};
2964 my $confidence_level = $self -> {'confidence_level'}; # Percentage value;
2965 my $precision = $self -> {'precision'}; # Precision in output.
2969 my $outcome = shift;
2971 my $l = (7 - length( $outcome ))/2;
2973 $c_num = '07' if ( $outcome eq 'OK' );
2974 $c_num = '13' if ( $outcome eq 'WARNING' );
2975 $c_num = '05' if ( $outcome eq 'ERROR' );
2976 # my $text = sprintf( "%-66s%2s%7s%-5s\n\n", $name, '[ ', $outcome. ' ' x $l, ' ]' );
2978 my $text = sprintf( "%-66s%2s%7s%-5s", $name, '[ ', $outcome. ' ' x
$l, ' ]' );
2980 # cprintf( "%-66s%2s\x03$c_num%7s\x030%-5s", $name, '[ ', $outcome. ' ' x $l, ' ]' );
2981 # my $text = cprintf( "%-66s%2s\x03$c_num%7s\x030%-5s", $name, '[ ', $outcome. ' ' x $l, ' ]' );
2982 ui
-> print( category
=> 'all', message
=> $text, wrap
=> 0 );
2983 print $file $text if defined $file;
2986 my $raw_line_structure = ext
::Config
::Tiny
-> read( $self -> {'directory'} . "/raw_file_structure" );
2987 my $raw_res_index = 0;
2989 for( my $model = 1; $model <= scalar keys %model_problem_structure; $model ++ ){
2991 # my $output = $self -> {'models'} -> [ $model - 1 ] -> outputs -> [0];
2993 # $output -> _read_problems;
2995 open( my $log, ">test.log" );
2998 my $corr_matr_run = 1;
3000 my $raw_res = $self -> {'raw_results'};
3002 for ( my $problem = 1; $problem <= scalar keys %{$model_problem_structure{ $model }} ; $problem++ ) {
3003 print "PROBLEM ",$problem,"\n" if scalar keys %{$model_problem_structure{ $model }} > 1;
3004 for ( my $subproblem = 1; $subproblem <= scalar keys %{$model_problem_structure{ $model }{ $problem }}; $subproblem++ ) {
3005 print "SUBPROBLEM ",$subproblem,"\n" if scalar keys %{$model_problem_structure{ $model }{ $problem }} > 1;
3007 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'minimization_successful'}] == 1 ) { # Is in raw
3008 acknowledge
( 'Successful minimization', 'OK', $log );
3010 acknowledge
( 'Termination problems', 'ERROR', $log );
3012 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'rounding_errors'}] eq '0' ) { # Is in raw
3013 acknowledge
( 'No rounding errors', 'OK', $log );
3015 acknowledge
( 'Rounding errors', 'ERROR', $log );
3018 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'zero_gradients'}] eq '0' ) { # Is in raw
3019 acknowledge
( 'No zero gradients', 'OK', $log );
3021 acknowledge
( 'Zero gradients found '.
3022 $raw_res -> [ $raw_res_index ][$raw_header_map{'zero_gradients'}].
3023 ' times', 'ERROR', $log );
3026 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'final_zero_gradients'}] eq '0' ) { # Is in raw
3027 acknowledge
( 'No final zero gradients', 'OK', $log );
3029 acknowledge
( 'Final zero gradients', 'ERROR', $log );
3032 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'hessian_reset'}] eq '0' ) { # Is in raw
3033 acknowledge
( 'Hessian not reset', 'OK', $log );
3035 acknowledge
( 'Hessian reset '.
3036 $raw_res -> [ $raw_res_index ][$raw_header_map{'hessian_reset'}].
3037 ' times', 'WARNING', $log );
3040 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'estimate_near_boundary'}] eq '0' ){
3041 acknowledge
( 'Estimate not near boundary', 'OK', $log );
3043 acknowledge
( 'Estimate near boundary','WARNING',$log);
3046 my ( $n_b, $f_b, $f_e );# =
3047 # $output -> near_bounds( zero_limit => $near_zero_boundary_limit,
3048 # significant_digits => $near_bound_sign_digits,
3049 # off_diagonal_sign_digits => $sign_digits_off_diagonals ); # Is in raw
3051 if ( defined $n_b -> [$problem] and
3052 defined $n_b -> [$problem][$subproblem] ) {
3053 my @near_bounds = @
{$n_b -> [$problem][$subproblem]};
3054 my @found_bounds = @
{$f_b -> [$problem][$subproblem]};
3055 my @found_estimates = @
{$f_e -> [$problem][$subproblem]};
3056 if ( $#near_bounds < 0 ) {
3057 acknowledge
( 'No parameter near boundary', 'OK', $log );
3059 acknowledge
( 'Parameter(s) near boundary', 'WARNING', $log );
3060 for ( my $problem = 0; $problem <= $#near_bounds; $problem++ ) {
3061 printf( "\t%-20s%10g %10g\n", $near_bounds[$problem],
3062 $found_estimates[$problem], $found_bounds[$problem] );
3063 print $log sprintf( "\t%-20s%10g %10g\n", $near_bounds[$problem],
3064 $found_estimates[$problem], $found_bounds[$problem] );
3065 print "\n" if ( $problem == $#near_bounds );
3066 print $log "\n" if ( $problem == $#near_bounds );
3071 if ( $raw_res -> [ $raw_res_index ][ $raw_header_map{'covariance_step_run'} ] ) { # Is in raw
3072 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'covariance_step_successful'}] eq '0' ) {
3073 acknowledge
( 'Covariance step', 'ERROR', $log );
3075 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'covariance_step_successful'}] eq '1' ) {
3076 acknowledge
( 'Covariance step ', 'OK', $log );
3078 acknowledge
( 'Covariance step', 'WARNING', $log );
3081 my ( $l_se, $f_cv );# =
3082 # $output -> large_standard_errors( theta_cv_limit => $large_theta_cv_limit,
3083 # omega_cv_limit => $large_omega_cv_limit,
3084 # sigma_cv_limit => $large_sigma_cv_limit ); # Is NOT in raw
3085 if ( defined $l_se -> [$problem] and
3086 defined $l_se -> [$problem][$subproblem] ) {
3087 my @large_standard_errors = @
{$l_se -> [$problem][$subproblem]};
3088 my @found_cv = @
{$f_cv -> [$problem][$subproblem]};
3089 if ( $#large_standard_errors < 0 ) {
3090 acknowledge
( 'No large standard errors found', 'OK', $log );
3092 acknowledge
( 'Large standard errors found', 'WARNING', $log );
3093 for ( my $problem = 0; $problem <= $#large_standard_errors; $problem++ ) {
3094 printf( "\t%-20s%10g\n", $large_standard_errors[$problem], $found_cv[$problem] );
3095 print $log sprintf( "\t%-20s%10g\n", $large_standard_errors[$problem], $found_cv[$problem] );
3096 print "\n" if ( $problem == $#large_standard_errors );
3097 print $log "\n" if ( $problem == $#large_standard_errors );
3102 my $eigens = $raw_res -> [ $raw_res_index ][$raw_header_map{'eigens'}]; # Is NOT in raw
3103 if ( $eigens ){# defined $eigens and
3104 # defined $eigens -> [$problem][$subproblem] and
3105 # scalar @{$eigens -> [$problem][$subproblem]} > 0 ) {
3106 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'condition_number'}] < $condition_number_limit ) {
3107 acknowledge
( 'Condition number ', 'OK', $log );
3109 acknowledge
( 'Large condition number ('.
3111 $raw_res -> [ $raw_res_index ][$raw_header_map{'condition_number'}]).
3112 ')', 'WARNING', $log );
3118 if ( $raw_res -> [ $raw_res_index ][$raw_header_map{'s_matrix_singular'}] ne '1' ) { # Is in raw
3119 acknowledge
( 'S-matrix ', 'OK', $log );
3121 acknowledge
( 'S-matrix is singular', 'WARNING', $log );
3124 my ( $h_c, $f_c );# = $output high_correlations( limit => $correlation_limit ); # Is NOT in raw
3125 if ( defined $h_c -> [$problem] and
3126 defined $h_c -> [$problem][$subproblem] ) {
3127 my @high_correlations = @
{$h_c -> [$problem][$subproblem]};
3128 my @found_correlations = @
{$f_c -> [$problem][$subproblem]};
3129 if ( $#high_correlations < 0 ) {
3130 acknowledge
( 'Correlations', 'OK', $log );
3132 acknowledge
( 'Large correlations between parameter estimates found', 'WARNING', $log );
3133 for ( my $problem = 0; $problem <= $#high_correlations; $problem++ ) {
3134 printf( "\t%-20s%10g\n", $high_correlations[$problem],
3135 $found_correlations[$problem] );
3136 print $log sprintf( "\t%-20s%10g\n", $high_correlations[$problem],
3137 $found_correlations[$problem] );
3138 print "\n" if ( $problem == $#high_correlations );
3139 print $log "\n" if ( $problem == $#high_correlations );
3145 print "No Covariance step run\n";
3146 print $log "No Covariance step run\n";
3151 my $confidence_interval = 0;
3153 my $form = '%.' . $precision . 'g';
3156 my @output_matrix_sizes;
3158 my %c_levels = ( '90' => 1.6449,
3163 if( $confidence_interval ) {
3164 if( not defined $c_levels{$confidence_level} ) {
3165 debug
-> die( message
=> "Sorry, confidence intervals for level ".$confidence_level.
3166 " can not be output. Valid levels are: ".join(',', keys %c_levels),
3172 my ( %nam, %est, %cest, %ses );
3175 foreach my $estimate ( 'theta','omega','sigma' ){
3176 my @pos_length = split( /,/ , $raw_line_structure -> {($problem-1)}{$estimate});
3177 my @estimates = @
{$raw_res -> [ $raw_res_index ]}[ $pos_length[0] .. $pos_length[0] + $pos_length[1] ];
3179 foreach my $num ( 0 .. $pos_length[1] - 1){
3180 my $template = uc(substr($estimate,0,2));
3181 push( @names, $template.($num+1));
3184 my @pos_length = split( /,/ , $raw_line_structure -> {($problem-1)}{'se'.$estimate});
3185 my @se_estimates = @
{$raw_res -> [ $raw_res_index ]}[ $pos_length[0] .. $pos_length[0] + $pos_length[1] ];
3187 my @pos_length = split( /,/ , $raw_line_structure -> {($problem-1)}{'cvse'.$estimate});
3188 my @cvse_estimates = @
{$raw_res -> [ $raw_res_index ]}[ $pos_length[0] .. $pos_length[0] + $pos_length[1] ];
3190 $nam{$estimate} = \
@names;
3191 $est{$estimate} = \
@estimates;
3192 $est{'cvse'.$estimate} = \
@cvse_estimates;
3193 $ses{$estimate} = \
@se_estimates;
3196 my $ofv = $raw_res -> [ $raw_res_index ][ $raw_header_map{'ofv'} ];
3198 if ( defined $ofv ) {
3199 print "Objective function value: ",$ofv,"\n\n";
3201 print "Objective function value: UNDEFINED\n\n";
3204 push( @output_matrix, ["","THETA","","","OMEGA","","","SIGMA", ""] );
3205 for( my $i = 0; $i <= $#{$output_matrix[0]}; $i++ ){
3206 if( $output_matrix_sizes[$i] < length( $output_matrix[0][$i] ) ){
3207 $output_matrix_sizes[$i] = length( $output_matrix[0][$i] );
3211 my $max_par = $#{$est{'theta'}};
3212 $max_par = $#{$est{'omega'}} if ( $#{$est{'omega'}} > $max_par );
3213 $max_par = $#{$est{'sigma'}} if ( $#{$est{'sigma'}} > $max_par );
3215 for ( my $max = 0; $max <= $max_par; $max++ ) {
3217 if( $confidence_interval ) {
3218 foreach my $param ( 'theta', 'omega', 'sigma' ) {
3219 if ( defined $est{$param}[$max] ) {
3220 my $diff = $c_levels{$confidence_level}*$ses{$param}[$max];
3222 if( defined $diff ) {
3223 $lo = $est{$param}[$max]-$diff;
3224 $up = $est{$param}[$max]+$diff;
3226 my $cis = sprintf( "($form - $form)", $lo, $up );
3227 push( @row, $nam{$param}[$max],
3228 sprintf( $form, $est{$param}[$max] ),
3231 push( @row, '','','' );
3235 foreach my $estimate ( 'theta', 'omega','sigma' ){ # Loop over comegas instead
3236 if ( defined $nam{$estimate}->[$max] ) {
3237 push( @row, $nam{$estimate}->[$max], defined $est{$estimate}->[$max] ?
sprintf( $form, $est{$estimate}->[$max] ) : '........',
3238 $est{'cvse'.$estimate}->[$max] ?
sprintf( "($form)", $est{'cvse'.$estimate}->[$max] ) : '(........)' );
3240 push( @row, '','','' );
3245 push(@output_matrix, \
@row);
3246 for( my $i = 0; $i <= $#row; $i++ ){
3247 if( $output_matrix_sizes[$i] < length( $row[$i] ) ){
3248 $output_matrix_sizes[$i] = length( $row[$i] );
3253 foreach my $row ( @output_matrix ){
3254 for( my $i = 0; $i <= $#{$row}; $i++ ){
3255 my $spaces = $output_matrix_sizes[$i] - length($row -> [$i]);
3257 print $row -> [$i], ",";
3259 print " " x
$spaces, $row -> [$i], " ";