3 start include statements
9 use tool
::cdd
::jackknife
;
10 use ext
::Statistics
::Distributions
'udistr', 'uprob';
15 # }}} include statements
21 foreach my $attribute ( 'logfile', 'raw_results_file','raw_nonp_file' ) {
22 if ( not( ref($this -> {$attribute}) eq 'ARRAY' or
23 ref($this -> {$attribute}) eq 'HASH' ) ) {
24 my $tmp = $this -> {$attribute};
25 $this -> {$attribute} = [];
26 for ( my $i = 1; $i <= scalar @
{$this -> {'models'}}; $i++ ) {
28 if ( $name =~ /\./ ) {
35 OSspecific
::absolute_path
( $this -> {'directory'}, $name );
36 push ( @
{$this -> {$attribute}}, $ldir.$name ) ;
45 # {{{ general_pre_fork_setup
47 start general_pre_fork_setup
49 # These attributes can be given as a
50 # 1. A scalar : used for all models and problems
51 # 2. A 1-dim. array : specified per problem but same for all models
52 # 3. A 2-dim. array : specified per problem and model
54 foreach my $attribute_string( 'stratify_on', 'samples', 'subjects' ){
55 my $attribute = $self -> {$attribute_string};
56 if ( defined $attribute ) {
57 # If stratification is given we check at what level it is
59 unless ( ref( \
$attribute ) eq 'SCALAR' or
60 ( ref( $attribute ) eq 'ARRAY' and scalar @
{$attribute} > 0 ) ) {
61 # Here we know its neither scalar or a correct array. But we
62 # seem to assume the lenght be equal to the number of
64 debug
-> die( message
=> "attribute $attribute is " .
65 "defined as a " . ref( $attribute ) .
66 "and is neither a scalar or a non-zero size array" );
67 } elsif ( ref( \
$attribute ) eq 'SCALAR' ) {
68 # If it is a scalar we copy the scalar value into an array
69 # for each model, with one value for each problem.
70 my @mo_attribute = ();
71 foreach my $model ( @
{$self -> {'models'}} ) {
72 my @pr_attribute = ();
73 foreach my $problem ( @
{$model -> problems
} ) {
74 push( @pr_attribute, $attribute );
76 push( @mo_attribute, \
@pr_attribute );
78 $self -> {$attribute_string} = \
@mo_attribute;
79 } elsif ( ref( $attribute ) eq 'ARRAY' ) {
80 # If it is an array we check if the it is an array of
81 # scalars or of arrays. If it is of arrays we seem to
82 # assume that the arrays have a length the matches the
83 # number of problems. It it is an array of scalars, we
84 # copy that scalar into arrays for each problem.
85 unless ( ref( \
$attribute -> [0] ) eq 'SCALAR' or
86 ( ref( $attribute -> [0] ) eq 'ARRAY' and scalar @
{$attribute -> [0]} > 0 ) ) {
87 debug
-> die( message
=> "attribute $attribute is ",
88 "defined as a ",ref( $attribute -> [0] ),
89 "and is neither a scalar or a non-zero size array" );
90 } elsif ( ref(\
$attribute -> [0]) eq 'SCALAR' ) {
91 my @mo_attribute = ();
92 foreach my $model ( @
{$self -> {'models'}} ) {
93 push( @mo_attribute, $attribute );
95 $self -> {$attribute_string} = \
@mo_attribute;
99 # If stratify is not defined we copy an undefined value to
100 # arrays corresponding to models and subproblem. I wonder if
101 # this is really necessary.
102 my @mo_attribute = ();
103 foreach my $model ( @
{$self -> {'models'}} ) {
104 my @pr_attribute = ();
105 foreach my $data ( @
{$model -> datas
} ) {
106 if( $attribute_string eq 'stratify_on' ){
107 push( @pr_attribute, undef );
108 } elsif ( $attribute_string eq 'samples' ){
109 push( @pr_attribute, 200 );
110 } elsif ( $attribute_string eq 'subjects' ){
111 push( @pr_attribute, $data -> count_ind
);
114 push( @mo_attribute, \
@pr_attribute );
116 $self -> {$attribute_string} = \
@mo_attribute;
120 end general_pre_fork_setup
124 # {{{ modelfit_pre_fork_setup
126 start modelfit_pre_fork_setup
128 $self -> general_pre_fork_setup
( model_number
=> $model_number );
130 end modelfit_pre_fork_setup
134 # {{{ llp_pre_fork_setup
136 start llp_pre_fork_setup
138 $self -> general_pre_fork_setup
( model_number
=> $model_number );
140 end llp_pre_fork_setup
149 my $subm_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
150 $self -> {'threads'} -> [1]:$self -> {'threads'};
151 $self -> general_setup
( model_number
=> $model_number,
152 class => 'tool::modelfit',
153 subm_threads
=> $subm_threads );
164 # If the number of threads are given per tool, e.g. [2,5] meaning 2 threads for
165 # scm and 5 for the modelfit.
166 my $subm_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
167 $self -> {'threads'} -> [1]:$self -> {'threads'};
168 my $own_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
169 $self -> {'threads'} -> [0]:$self -> {'threads'};
170 # More threads than models?
171 my $num = scalar @
{$self -> {'models'}};
172 $own_threads = $num if ( $own_threads > $num );
174 # Sub tool threads can be given as scalar or reference to an array?
175 #my $subm_threads = $parm{'subm_threads'};
176 #my $own_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
177 # $self -> {'threads'} -> [0]:$self -> {'threads'};
178 # Group variable names are matched in the model, not the data!
179 my $model = $self -> {'models'} -> [$model_number-1];
180 my @samples = @
{$self -> {'samples'} -> [$model_number-1]};
181 my @stratify_on = @
{$self -> {'stratify_on'} -> [$model_number-1]};
182 my @subjects = @
{$self -> {'subjects'} -> [$model_number-1]};
184 # Check which models that hasn't been run and run them This
185 # will be performed each step but will only result in running
186 # models at the first step, if at all.
188 # If more than one process is used, there is a VERY high risk
189 # of interaction between the processes when creating
190 # directories for model fits. Therefore the {'directory'}
191 # attribute is given explicitly below.
193 # ------------------------ Run original run -------------------------------
197 unless ( $model -> is_run
) {
199 if ( defined $self -> {'subtool_arguments'} ) {
200 %subargs = %{$self -> {'subtool_arguments'}};
203 if( $self -> {'nonparametric_etas'} or
204 $self -> {'nonparametric_marginals'} ) {
205 $model -> add_nonparametric_code
;
208 my $orig_fit = tool
::modelfit
->
209 new
( reference_object
=> $self,
210 base_directory
=> $self -> {'directory'},
211 directory
=> $self -> {'directory'}.
212 '/orig_modelfit_dir'.$model_number,
214 threads
=> $subm_threads,
215 parent_threads
=> $own_threads,
216 parent_tool_id
=> $self -> {'tool_id'},
218 raw_results
=> undef,
219 prepared_models
=> undef,
222 ui
-> print( category
=> 'bootstrap',
223 message
=> 'Executing base model.' );
229 my $output = $model -> outputs
-> [0];
233 # ------------------------ Print a log-header -----------------------------
237 my @orig_datas = @
{$model -> datas
};
238 my @problems = @
{$model -> problems
};
242 # Lasse 2005-04-21: The minimization_message print will probably not work anymore
243 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
244 my $ui_text = sprintf("%-5s",'RUN').','.sprintf("%20s",'FILENAME ').',';
245 print LOG
sprintf("%-5s",'RUN'),',',sprintf("%20s",'FILENAME '),',';
246 foreach my $param ( 'ofv', 'minimization_message', 'covariance_step_successful' ) {
247 my $orig_ests = $model -> outputs
-> [0] -> $param;
249 for ( my $j = 0; $j < scalar @
{$orig_ests}; $j++ ) {
250 if ( ref( $orig_ests -> [$j][0] ) ne 'ARRAY' ) {
251 my $label = uc($param)."_".($j+1);
252 $ui_text = $ui_text.sprintf("%12s",$label).',';
253 print LOG
sprintf("%12s",$label),',';
255 # Loop the parameter numbers (skip sub problem level)
256 for ( my $num = 1; $num <= scalar @
{$orig_ests -> [$j][0]}; $num++ ) {
257 my $label = uc($param).$num."_".($j+1);
258 $ui_text = $ui_text.sprintf("%12s",$label).',';
259 print LOG
sprintf("%12s",$label),',';
268 # ------------------------ Log original run -------------------------------
270 # {{{ Log original run
272 # Lasse 2005-04-21: The minimization_message print will probably not work anymore
273 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
274 $ui_text = sprintf("%5s",'0').','.sprintf("%20s",$model -> filename
).',';
275 print LOG
sprintf("%5s",'0'),',',sprintf("%20s",$model -> filename
),',';
276 foreach my $param ( 'ofv', 'minimization_message', 'covariance_step_successful' ) {
277 my $orig_ests = $model -> outputs
-> [0] -> $param;
279 for ( my $j = 0; $j < scalar @
{$orig_ests}; $j++ ) {
280 if ( ref( $orig_ests -> [$j][0] ) ne 'ARRAY' ) {
281 $orig_ests -> [$j][0] =~ s/\n//g;
282 $ui_text = $ui_text.sprintf("%12s",$orig_ests -> [$j][0]).',';
283 print LOG
sprintf("%12s",$orig_ests -> [$j][0]),',';
285 # Loop the parameter numbers (skip sub problem level)
286 for ( my $num = 0; $num < scalar @
{$orig_ests -> [$j][0]}; $num++ ) {
287 $ui_text = $ui_text.sprintf("%12f",$orig_ests -> [$j][0][$num]).',';
288 print LOG
sprintf("%12f",$orig_ests -> [$j][0][$num]),',';
295 # }}} Log original run
297 # TODO: In this loop we loose one dimension (problem) in that
298 # all new models with new data sets are put in the same array,
299 # regardless of which problem the initially belonged to. Fix
302 if ( $#orig_datas < 0 ) {
303 debug
-> warn( level
=> 1,
304 message
=> "No data files to resample from" );
306 debug
-> warn( level
=> 1,
307 message
=> "Starting bootstrap sampling" );
309 for ( my $i = 1; $i <= scalar @orig_datas; $i++ ) {
310 my $orig_data = $orig_datas[$i-1];
312 if ( $self -> {'drop_dropped'} ) {
313 my $model_copy = $model -> copy
( copy_data
=> 1,
314 filename
=> "drop_copy_$i.mod",
315 directory
=> $self -> {'directory'} );
317 $model_copy -> drop_dropped
;
318 $model_copy -> _write
( write_data
=> 1 );
319 $model_copy -> datas
-> [0] -> flush
();
320 $orig_data = $model -> datas
-> [0];
321 $model = $model_copy;
324 my ( @seed, $new_datas, $incl_ids, $incl_keys, $new_mod );
326 my $done = ( -e
$self -> {'directory'}."/m$model_number/done.$i" ) ?
1 : 0;
329 ui
-> print( category
=> 'bootstrap',
330 message
=> "Resampling from ".$orig_data -> filename
);
332 ( $new_datas, $incl_ids, $incl_keys )
333 = $orig_data -> bootstrap
( directory
=> $self -> {'directory'}.'/m'.$model_number,
334 name_stub
=> 'bs_pr'.$i,
335 samples
=> $samples[$i-1],
336 subjects
=> $subjects[$i-1],
337 stratify_on
=> $stratify_on[$i-1],
339 model_ids
=> $self -> {'prepared_model_ids'} );
342 for ( my $j = 0; $j < $samples[$i-1]; $j++ ) {
343 my ($model_dir, $filename) = OSspecific
::absolute_path
( $self -> {'directory'}.'/m'.$model_number,
344 'bs_pr'.$i.'_'.($j+1).'.mod' );
345 # my ($out_dir, $outfilename) = OSspecific::absolute_path( $self -> {'directory'}.'/m'.$model_number ,
346 # '/bs_pr'.$i.'_'.$j.'.lst' );
347 my $prob_copy = Storable
::dclone
($problems[$i-1]);
348 # $Data::Dumper::Maxdepth = 2;
349 # print Dumper $model; die;
352 new
(reference_object
=> $model,
358 active_problems
=> undef,
359 directory
=> $model_dir,
360 filename
=> $filename,
362 problems
=> [$prob_copy],
363 extra_files
=> $model -> extra_files
,
365 ignore_missing_files
=> 1 );
367 if( $self -> {'shrinkage'} ) {
368 $new_mod -> shrinkage_stats
( enabled
=> 1 );
369 my @problems = @
{$new_mod -> problems
};
370 for( my $i = 1; $i <= scalar @problems; $i++ ) {
371 $problems[ $i-1 ] -> shrinkage_module
-> model
( $new_mod );
375 my $model_id = $new_mod -> register_in_database
;
376 push( @
{$self -> {'prepared_model_ids'}}, $model_id );
378 $self -> register_tm_relation
( model_ids
=> [$model_id],
379 prepared_models
=> 1 );
381 $new_mod -> datas
( [$new_datas -> [$j]] );
383 if( $self -> {'nonparametric_etas'} or
384 $self -> {'nonparametric_marginals'} ) {
385 $new_mod -> add_nonparametric_code
;
388 $new_mod -> update_inits
( from_output
=> $output );
391 push( @new_models, $new_mod );
393 # Create a checkpoint. Log the samples and individuals.
394 open( DONE
, ">".$self -> {'directory'}."/m$model_number/done.$i" ) ;
395 print DONE
"Resampling from ",$orig_data -> filename
, " performed\n";
396 print DONE
"$samples[$i-1] samples\n";
397 print DONE
"$subjects[$i-1] subjects\n";
398 print DONE
"Included individuals:\n";
399 @seed = random_get_seed
;
400 print DONE
"seed: @seed\n";
401 for( my $k = 0; $k < scalar @
{$incl_ids}; $k++ ) {
402 print DONE
join(',',@
{$incl_ids -> [$k]}),"\n";
404 print DONE
"Included keys:\n";
405 for( my $k = 0; $k < scalar @
{$incl_keys}; $k++ ) {
406 print DONE
join(',',@
{$incl_keys -> [$k]}),"\n";
409 open( INCL
, ">".$self -> {'directory'}."included_individuals".$model_number.".csv" ) ;
410 for( my $k = 0; $k < scalar @
{$incl_ids}; $k++ ) {
411 print INCL
join(',',@
{$incl_ids -> [$k]}),"\n";
414 open( KEYS
, ">".$self -> {'directory'}."included_keys".$model_number.".csv" ) ;
415 open( SAMPLEKEYS
, ">".$self -> {'directory'}."sample_keys".$model_number.".csv" ) ;
416 for( my $k = 0; $k < scalar @
{$incl_keys}; $k++ ) {
418 my $sample_size = scalar @
{$incl_keys -> [$k]};
419 for ( my $l = 0; $l < $sample_size; $l++ ) {
420 $sample_keys{$incl_keys -> [$k][$l]}++;
422 for ( my $l = 0; $l < $sample_size; $l++ ) {
423 my $val = defined $sample_keys{$l} ?
$sample_keys{$l} : 0;
424 my $extra = ($l == ($sample_size-1)) ?
"\n" : ',';
425 print SAMPLEKEYS
$val,$extra;
427 print KEYS
join(',',@
{$incl_keys -> [$k]}),"\n";
432 ui
-> print( category
=> 'bootstrap',
433 message
=> "Recreating samples ".$orig_data -> filename
." from previous run." );
435 # Recreate the datasets and models from a checkpoint
436 my ($stored_filename, $stored_samples, $stored_subjects);
438 my ($stored_filename_found, $stored_samples_found, $stored_subjects_found, $stored_seed_found);
439 open( DONE
, $self -> {'directory'}."/m$model_number/done.$i" );
441 if( /^Resampling from (.+) performed$/ ){
442 $stored_filename = $1;
443 $stored_filename_found = 1;
446 if( /^(\d+) samples$/ ){
447 $stored_samples = $1;
448 $stored_samples_found = 1;
451 if( /^(\d+) subjects$/ ){
452 $stored_subjects = $1;
453 $stored_subjects_found = 1;
456 if( /^seed: (\d+) (\d+)$/ ){
458 $stored_seed_found = 1;
462 if( $stored_filename_found and $stored_samples_found
463 and $stored_subjects_found and $stored_seed_found ){
468 unless( $stored_filename_found and $stored_samples_found
469 and $stored_samples_found and $stored_seed_found ){
470 debug
-> die( level
=> 1,
471 message
=> "The bootstrap/m1/done file could not be parsed." );
474 if ( $stored_samples < $samples[$i-1] ) {
475 debug
-> die( message
=> "The number of samples saved in previous run ($stored_samples) ".
476 "are bigger than the number of samples specified for this run (".
477 $samples[$i-1].")" );
479 if ( $stored_subjects != $subjects[$i-1] ) {
480 debug
-> die( message
=> "The number of individuals saved in previous run (".
481 "$stored_subjects) does not match the number of individuals specified ".
482 "for this run (".$subjects[$i-1].")" );
484 # my ( @stored_ids, @stored_keys );
485 # for ( my $k = 4; $k < 4+$stored_samples; $k++ ) {
487 # my @sample_ids = split(',', $rows[$k] );
488 # push( @stored_ids, \@sample_ids );
490 # for ( my $k = 5+$stored_samples; $k < 5+2*$stored_samples; $k++ ) {
492 # my @sample_keys = split(',', $rows[$k] );
493 # push( @stored_keys, \@sample_keys );
495 # @seed = split(' ',$rows[5+2*$stored_samples]);
496 # $incl_ids = \@stored_ids;
497 # $incl_keys = \@stored_keys;
498 # shift( @seed ); # get rid of 'seed'-word
499 # Reinitiate the model objects
500 for ( my $j = 1; $j <= $stored_samples; $j++ ) {
501 my ($model_dir, $filename) = OSspecific
::absolute_path
( $self -> {'directory'}.'/m'.
503 'bs_pr'.$i.'_'.$j.'.mod' );
504 # my ($out_dir, $outfilename) = OSspecific::absolute_path( $self -> {'directory'}.'/m'.
506 # '/bs_pr'.$i.'_'.$j.'.lst' );
508 new
( directory
=> $model_dir,
509 filename
=> $filename,
510 # outputfile => $outfilename,
511 extra_files
=> $model -> extra_files
,
513 ignore_missing_files
=> 1 );
514 push( @new_models, $new_mod );
516 random_set_seed
( @seed );
517 ui
-> print( category
=> 'bootstrap',
518 message
=> "Using $stored_samples previously resampled bootstrap sets of".
519 " of $stored_subjects individuals from $stored_filename" )
520 unless $self -> {'parent_threads'} > 1;
522 # push( @{$self -> {'included_inds'} -> [$model_number-1]}, $incl_ids );
523 # push( @{$self -> {'included_keys'} -> [$model_number-1]}, $incl_keys );
525 $self -> {'prepared_models'}[$model_number-1]{'own'} = \
@new_models;
527 # --------------------- Create the sub tools ------------------------------
532 $subdir =~ s/tool:://;
533 my @subtools = @
{$self -> {'subtools'}};
536 if ( defined $self -> {'subtool_arguments'} ) {
537 %subargs = %{$self -> {'subtool_arguments'}};
539 push( @
{$self -> {'tools'}},
541 new
( reference_object
=> $self,
542 models
=> \
@new_models,
543 threads
=> $subm_threads,
544 directory
=> $self -> {'directory'}.'/'.$subdir.'_dir'.$model_number,
545 _raw_results_callback
=> $self ->
546 _modelfit_raw_results_callback
( model_number
=> $model_number ),
547 subtools
=> \
@subtools,
548 parent_threads
=> $own_threads,
549 parent_tool_id
=> $self -> {'tool_id'},
550 logfile
=> $self -> {'logfile'}[$model_number-1],
551 raw_results
=> undef,
552 prepared_models
=> undef,
555 # ( clean => $self -> {'clean'},
556 # base_directory => $self -> {'directory'},
557 # compress => $self -> {'compress'},
558 # directory => $self -> {'directory'}.'/'.$subdir.'_dir'.$model_number,
559 # drop_dropped => $self -> {'drop_dropped'},
560 # wrap_data => $self -> {'wrap_data'},
561 # run_on_nordugrid => $self -> {'run_on_nordugrid'},
562 # cpu_time => $self -> {'cpu_time'},
563 # run_on_lsf => $self -> {'run_on_lsf'},
564 # no_remote_execution => $self -> {'no_remote_execution'},
565 # no_remote_compile => $self -> {'no_remote_compile'},
566 # lsf_queue => $self -> {'lsf_queue'},
567 # lsf_options => $self -> {'lsf_options'},
568 # lsf_job_name => $self -> {'lsf_job_name'},
569 # lsf_project_name => $self -> {'lsf_project_name'},
571 # parent_tool_id => $self -> {'tool_id'},
573 # models => \@new_models,
574 # grid_batch_size => $self -> {'grid_batch_size'},
575 # nm_version => $self -> {'nm_version'},
576 # picky => $self -> {'picky'},
577 # retries => $self -> {'retries'},
578 # tweak_inits => $self -> {'tweak_inits'},
579 # handle_maxevals => $self -> {'handle_maxevals'},
580 # remove_temp_files => $self -> {'remove_temp_files'},
581 # _raw_results_callback => $self ->
582 # _modelfit_raw_results_callback( model_number => $model_number ),
583 # threads => $subm_threads,
584 # subtools => \@subtools,
585 # logfile => $self -> {'logfile'}[$model_number-1],
586 # parent_threads => $own_threads,
600 if (ref( $self -> {'threads'} ) eq 'ARRAY') {
601 @subm_threads = @
{$self -> {'threads'}};
602 unshift(@subm_threads);
604 @subm_threads = ($self -> {'threads'});
606 $self -> general_setup
( model_number
=> $model_number,
607 class => 'tool::llp',
608 subm_threads
=> \
@subm_threads );
613 # {{{ _jackknife_raw_results_callback
615 start _jackknife_raw_results_callback
617 # Use the bootstrap's raw_results file.
619 OSspecific
::absolute_path
( $self -> {'directory'},
620 $self -> {'raw_results_file'}[$model_number-1] );
621 my ($dir,$nonp_file) =
622 OSspecific
::absolute_path
( $self -> {'directory'},
623 $self -> {'raw_nonp_file'}[$model_number-1] );
625 my $jackknife = shift;
626 my $modelfit = shift;
627 $modelfit -> raw_results_file
( $dir.$file );
628 $modelfit -> raw_nonp_file
( $dir.$nonp_file );
629 $modelfit -> raw_results_append
( 1 );
630 my ( @new_header, %param_names );
631 foreach my $row ( @
{$modelfit -> {'raw_results'}} ) {
632 unshift( @
{$row}, 'jackknife' );
634 $modelfit -> {'raw_results_header'} = [];
638 end _jackknife_raw_results_callback
640 # }}} _jackknife_raw_results_callback
642 # {{{ _modelfit_raw_results_callback
644 start _modelfit_raw_results_callback
646 # Use the bootstrap's raw_results file.
648 OSspecific
::absolute_path
( $self -> {'directory'},
649 $self -> {'raw_results_file'}[$model_number-1] );
650 my ($dir,$nonp_file) =
651 OSspecific
::absolute_path
( $self -> {'directory'},
652 $self -> {'raw_nonp_file'}[$model_number-1] );
653 my $orig_mod = $self -> {'models'}[$model_number-1];
654 my $type = $self -> {'type'};
656 my $modelfit = shift;
658 my %max_hash = %{$mh_ref};
659 $modelfit -> raw_results_file
( $dir.$file );
660 $modelfit -> raw_nonp_file
( $dir.$nonp_file );
662 # The prepare_raw_results in the modelfit will fix the
663 # raw_results for each bootstrap sample model, we must add
664 # the result for the original model.
666 my ($raw_results_row,$row_structure) = $self -> create_raw_results_rows
( max_hash
=> $mh_ref,
667 model
=> $orig_mod );
669 unshift( @
{$modelfit -> {'raw_results'}}, @
{$raw_results_row} );
673 my ( @new_header, %param_names );
674 my @params = ( 'theta', 'omega', 'sigma' );
675 foreach my $param ( @params ) {
676 my $labels = $orig_mod -> labels
( parameter_type
=> $param );
677 $param_names{$param} = $labels -> [0] if ( defined $labels );
680 foreach my $name ( @
{$modelfit -> {'raw_results_header'}} ) {
682 foreach my $param ( @params, 'eigen', 'shrinkage_etas', 'shrinkage_wres' ) {
683 if ( $name eq $param ){
684 if( defined $param_names{$name} ) {
685 push( @new_header , @
{$param_names{$name}} );
687 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
688 push ( @new_header, uc(substr($name,0,2)).$i );
693 } elsif ( $name eq 'se'.$param ) {
695 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
696 push ( @new_names, uc(substr($param,0,2)).$i );
698 map ( $_ = 'se'.$_, @new_names );
700 push( @new_header, @new_names );
706 push( @new_header, $name );
710 $modelfit -> {'raw_results_header'} = \
@new_header;
712 if ( $type eq 'bca' ) {
713 foreach my $row ( @
{$modelfit -> {'raw_results'}} ) {
714 unshift( @
{$row}, 'bootstrap' );
716 unshift( @
{$modelfit -> {'raw_results_header'}}, 'method' );
719 @
{$self -> {'raw_results_header'}} = @
{$modelfit -> {'raw_results_header'}};
726 end _modelfit_raw_results_callback
728 # }}} _modelfit_raw_results_callback
730 # {{{ modelfit_analyze
732 start modelfit_analyze
734 my @params = @
{$self -> {'parameters'}};
735 my @diagnostic_params = @
{$self -> {'diagnostic_parameters'}};
736 my ( @print_order, @calculation_order );
738 if ( $self -> {'type'} eq 'bca' ) {
740 # -------------------------- BCa method ---------------------------------
744 @calculation_order = @
{$self -> {'bca_calculation_order'}};
745 @print_order = @
{$self -> {'bca_print_order'}};
746 my $jk_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
747 $self -> {'threads'} -> [1]:$self -> {'threads'};
748 my $done = ( -e
$self -> {'directory'}."/jackknife_done.$model_number" ) ?
1 : 0;
751 # {{{ Create Jackknife
753 ui
-> print( category
=> 'bootstrap',
754 message
=> "Running a Jackknife for the BCa estimates" );
755 $self -> {'jackknife'} = tool
::cdd
::jackknife
->
756 new
( models
=> [$self -> models
-> [$model_number -1]],
757 case_columns
=> $self -> models
-> [$model_number -1]
758 -> datas
-> [0] -> idcolumn
,
759 _raw_results_callback
=> $self ->
760 _jackknife_raw_results_callback
( model_number
=> $model_number ),
761 parent_tool_id
=> $self -> {'tool_id'},
762 threads
=> $jk_threads,
764 shrinkage
=> $self -> {'shrinkage'},
765 nonparametric_marginals
=> $self -> {'nonparametric_marginals'},
766 nonparametric_etas
=> $self -> {'nonparametric_etas'},
767 adaptive
=> $self -> {'adaptive'},
768 rerun
=> $self -> {'rerun'},
769 verbose
=> $self -> {'verbose'},
770 cross_validate
=> 0 );
771 # Create a checkpoint. Log the samples and individuals.
772 open( DONE
, ">".$self -> {'directory'}."/jackknife_done.$model_number" ) ;
773 print DONE
"Jackknife directory:\n";
774 print DONE
$self -> {'jackknife'} -> directory
,"\n";
775 my @seed = random_get_seed
;
776 print DONE
"seed: @seed\n";
779 # }}} Create Jackknife
783 # {{{ Recreate Jackknife
785 open( DONE
, $self -> {'directory'}."/jackknife_done.$model_number" );
788 my ( $stored_directory ) = $rows[1];
789 chomp( $stored_directory );
790 if ( not -e
$stored_directory ) {
791 debug
-> die( message
=> "The Jackknife directory ".$stored_directory.
792 "indicated by ".$self -> {'directory'}.
793 "/jackknife_done.$model_number".
794 " from the old bootstrap run in ".
795 $self -> {'directory'}." does not exist" );
797 my @seed = split(' ',$rows[2]);
798 shift( @seed ); # get rid of 'seed'-word
799 $self -> {'jackknife'} = tool
::cdd
::jackknife
->
800 new
( models
=> [$self -> models
-> [$model_number -1]],
801 case_columns
=> $self -> models
-> [$model_number -1]
802 -> datas
-> [0] -> idcolumn
,
803 _raw_results_callback
=> $self ->
804 _jackknife_raw_results_callback
( model_number
=> $model_number ),
805 threads
=> $jk_threads,
806 parent_tool_id
=> $self -> {'tool_id'},
807 directory
=> $stored_directory,
809 shrinkage
=> $self -> {'shrinkage'},
810 nonparametric_marginals
=> $self -> {'nonparametric_marginals'},
811 nonparametric_etas
=> $self -> {'nonparametric_etas'},
812 adaptive
=> $self -> {'adaptive'},
813 rerun
=> $self -> {'rerun'},
814 verbose
=> $self -> {'verbose'},
815 cross_validate
=> 0 );
816 random_set_seed
( @seed );
817 ui
-> print( category
=> 'bootstrap',
818 message
=> "Restarting BCa Jackknife from ".
820 unless $self -> {'parent_threads'} > 1;
822 # }}} Recreate Jackknife
826 $self -> {'jackknife'} -> run
;
827 $self -> {'jackknife_results'} = $self -> {'jackknife'} -> {'results'};
828 $self -> {'jackknife_prepared_models'} = $self -> {'jackknife'} -> {'prepared_models'};
830 $self -> {'jackknife_raw_results'}[$model_number-1] =
831 $self -> {'jackknife'} -> raw_results
;
832 # $self -> {'jackknife'} -> raw_results -> [$model_number-1];
833 # $Data::Dumper::Maxdepth = 0;
834 # print Dumper $self -> {'jackknife_raw_results'};
839 @calculation_order = @
{$self -> {'calculation_order'}};
840 @print_order = @
{$self -> {'print_order'}};
841 $self -> {'bootstrap_raw_results'}[$model_number-1] =
842 $self -> {'tools'} -> [0] -> raw_results
;
843 # $self -> {'tools'} -> [0] -> raw_results -> [$model_number-1];
845 unless( ref($self -> {'raw_results_header'}[0]) eq 'ARRAY' ) {
846 my $tmp = $self -> {'raw_results_header'};
847 $self -> {'raw_results_header'} = [];
848 $self -> {'raw_results_header'}[$model_number-1] = $tmp;
851 my @param_names = @
{$self -> models
-> [$model_number -1] -> outputs
-> [0] -> labels
};
852 my ( @diagnostic_names, @tmp_names );
853 foreach my $param ( @diagnostic_params ) {
854 push( @tmp_names, $param );
855 $tmp_names[$#tmp_names] =~ s/_/\./g;
857 for ( my $i = 0; $i <= $#param_names; $i++ ) {
858 unshift( @
{$param_names[$i]}, 'OFV' );
859 push( @
{$diagnostic_names[$i]}, @tmp_names );
866 # {{{ prepare_results
868 start prepare_results
872 # The '3' is there to skip model, problem and subproblem numbers
874 my ( @calculation_order, @print_order, %diag_idx );
875 if ( $self -> {'type'} eq 'bca' ) {
876 @calculation_order = @
{$self -> {'bca_calculation_order'}};
877 @print_order = @
{$self -> {'bca_print_order'}};
879 @calculation_order = @
{$self -> {'calculation_order'}};
880 @print_order = @
{$self -> {'print_order'}};
882 if ( $self -> {'type'} eq 'bca' ) {
883 # $self -> read_raw_results();
884 $self -> bca_read_raw_results
();
885 # if ( not defined $self -> {'bootstrap_raw_results'} );
887 # if ( not defined $self -> {'raw_results'} ) {
888 $self -> read_raw_results
();
889 $self -> {'bootstrap_raw_results'} = $self -> {'raw_results'};
893 for ( my $i = 0; $i < scalar @
{$self -> {'diagnostic_parameters'}}; $i++ ) {
894 $diag_idx{$self -> {'diagnostic_parameters'} -> [$i]} = $i + $skip_mps;
899 # --------------------- Get data from raw_results -------------------------
901 # Divide the data into diagnostics and estimates. Included in estimates are
902 # the parametric estimates, the standard errors of these, the nonparametric
903 # estimates, the shrinkage in eta and the shrinkage in wres
904 # The diagnostics end up in {'bootstrap_diagnostics'} and
905 # {'jackknife_diagnostics'}. The estimates in {'bootstrap_estimates'} and
906 # {'jackknife_estimates'}.
907 # The number of runs that are selected for calculation of the results is
910 # {{{ Get the data from the runs
912 foreach my $tool ( 'bootstrap', 'jackknife' ) {
913 if ( defined $self -> {$tool.'_raw_results'} ) {
914 for ( my $i = 0; $i < scalar @
{$self->{$tool.'_raw_results'}}; $i++ ) { # All models
916 # {{{ Get the number of columns with estimates
919 foreach my $param ( 'theta', 'omega', 'sigma' ) {
921 $self -> {'models'} -> [$i] -> labels
( parameter_type
=> $param );
922 # we can't use labels directly since different models may have different
923 # labels (still within the same modelfit)
924 my $numpar = scalar @
{$labels -> [0]} if ( defined $labels and
925 defined $labels -> [0] );
926 $cols_orig += ( $numpar*3 ); # est + SE + eigen values
928 # nonparametric omegas and shrinkage
929 my $nomegas = $self -> {'models'} -> [$i] -> nomegas
;
930 my $numpar = $nomegas -> [0];
932 # shrinkage omega + wres shrinkage
933 $cols_orig += $numpar + 1;
934 # $cols_orig += ($numpar*($numpar+1)/2 + $numpar + 1);
938 # }}} Get the number of columns with estimates
940 # {{{ Loop, choose and set diagnostics and estimates
943 $return_section{'name'} = 'Warnings';
944 my ( $skip_term, $skip_cov, $skip_warn, $skip_bound );
946 # print Dumper $self->{$tool.'_raw_results'};
947 for ( my $j = 0; $j < scalar @
{$self->{$tool.'_raw_results'}->[$i]}; $j++ ) { # orig model + prepared_models
948 my $columns = scalar @
{$self->{$tool.'_raw_results'}->[$i][$j]};
950 # ----------------------- Diagnostics -----------------------------
952 for ( my $m = $skip_mps; $m < scalar @
{$self -> {'diagnostic_parameters'}} + $skip_mps; $m++ ) { # value
953 $self->{$tool.'_diagnostics'}->[$i][$j][$m-$skip_mps] =
954 $self->{$tool.'_raw_results'}->[$i][$j][$m];
957 if ( $self -> {'skip_minimization_terminated'} and
958 ( not defined $self->{$tool.'_raw_results'}->
959 [$i][$j][$diag_idx{'minimization_successful'}]
960 or not $self->{$tool.'_raw_results'}->
961 [$i][$j][$diag_idx{'minimization_successful'}] ) ) {
964 } elsif ( $self -> {'skip_covariance_step_terminated'} and not
965 $self->{$tool.'_raw_results'}->
966 [$i][$j][$diag_idx{'covariance_step_successful'}] ) {
969 } elsif ( $self -> {'skip_with_covstep_warnings'} and
970 $self->{$tool.'_raw_results'}->
971 [$i][$j][$diag_idx{'covariance_step_warnings'}] ) {
974 } elsif ( $self -> {'skip_estimate_near_boundary'} and
975 $self->{$tool.'_raw_results'}->
976 [$i][$j][$diag_idx{'estimate_near_boundary'}] ) {
981 # ------------------------ Estimates ------------------------------
984 for ( my $m = scalar @
{$self -> {'diagnostic_parameters'}} + $skip_mps; $m < $columns; $m++ ) { # value
985 my $val = $self->{$tool.'_raw_results'}->[$i][$j][$m];
986 $self->{$tool.'_estimates'}->
987 [$i][$included][$m-(scalar @
{$self -> {'diagnostic_parameters'}} + $skip_mps)] = $val;
993 # }}} Loop, choose and set diagnostics and estimates
995 # {{{ push #runs to results
997 if ( defined $skip_term ) {
998 push( @
{$return_section{'values'}}, "$skip_term runs with miminization ".
999 "terminated were skipped when calculating the $tool results" );
1001 if ( defined $skip_cov ) {
1002 push( @
{$return_section{'values'}}, "$skip_cov runs with aborted ".
1003 "covariance steps were skipped when calculating the $tool results" );
1005 if ( defined $skip_warn ) {
1006 push( @
{$return_section{'values'}}, "$skip_warn runs with errors from ".
1007 "the covariance step were skipped when calculating the $tool results" );
1009 if ( defined $skip_bound ) {
1010 push( @
{$return_section{'values'}}, "$skip_bound runs with estimates ".
1011 "near a boundary were skipped when calculating the $tool results" );
1013 $return_section{'labels'} = [];
1014 push( @
{$self -> {'results'}[$i]{'own'}},\
%return_section );
1016 # }}} push #runs to results
1022 # $Data::Dumper::Maxdepth = 5;
1023 # die Dumper $self -> {'bootstrap_diagnostics'};
1025 # }}} Get the data from the runs
1027 # ---------------------- Calculate the results ----------------------------
1029 # {{{ Result calculations
1031 for ( my $i = 0; $i < scalar @
{$self -> {'bootstrap_raw_results'}} ; $i++ ) { # All models
1033 my $mps_offset = $self -> {'bca'} ?
4 : 3; # <- this is the offset to
1034 # diagonstic_parameters,
1035 # which is one more for
1036 # the method column added
1039 my @param_names = @
{$self -> {'raw_results_header'}[$i]}[($mps_offset + scalar @
{$self -> {'diagnostic_parameters'}}) .. (scalar @
{$self -> {'raw_results_header'}[$i]} - 1)];
1040 my ( @diagnostic_names, @tmp_names );
1041 foreach my $param ( @
{$self -> {'diagnostic_parameters'}} ) {
1042 push( @tmp_names, $param );
1043 $tmp_names[$#tmp_names] =~ s/_/\./g;
1046 @diagnostic_names = @tmp_names;
1047 foreach my $result_type ( @calculation_order ) {
1048 my @names = $result_type eq 'diagnostic_means' ?
1049 @diagnostic_names : @param_names;
1050 my $calc = 'calculate_'.$result_type;
1051 $self -> $calc( model_number
=> ($i+1),
1052 parameter_names
=> \
@names );
1054 foreach my $result_type ( @print_order ) {
1055 my $name = $result_type;
1058 $return_section{'name'} = $name;
1059 $return_section{'values'} = $self -> {$result_type} -> [$i];
1060 $return_section{'labels'} = $self -> {$result_type.'_labels'} -> [$i];
1061 push( @
{$self -> {'results'}[$i]{'own'}},\
%return_section );
1065 # }}} Result calculations
1070 # }}} prepare_results
1078 my $outcome = shift;
1080 my $l = (7 - length( $outcome ))/2;
1082 $c_num = '07' if ( $outcome eq 'OK' );
1083 $c_num = '13' if ( $outcome eq 'WARNING' );
1084 $c_num = '05' if ( $outcome eq 'ERROR' );
1085 # my $text = sprintf( "%-66s%2s%7s%-5s\n\n", $name, '[ ', $outcome. ' ' x $l, ' ]' );
1086 my $text = sprintf( "%-66s%2s%7s%-5s", $name, '[ ', $outcome. ' ' x
$l, ' ]' );
1087 # cprintf( "%-66s%2s\x03$c_num%7s\x030%-5s", $name, '[ ', $outcome. ' ' x $l, ' ]' );
1088 # my $text = cprintf( "%-66s%2s\x03$c_num%7s\x030%-5s", $name, '[ ', $outcome. ' ' x $l, ' ]' );
1089 print $text, "\n\n";
1090 print $file $text if defined $file;
1102 my $diag_number = scalar @
{$self -> {'diagnostic_parameters'}} - 1;
1104 for ( my $i = 0; $i <= $diag_number; $i++ ) {
1105 $diag_idxs{$self -> {'diagnostic_parameters'} -> [$i]} = $i;
1108 open( my $log, ">test.log" );
1109 for ( my $i = 0; $i < scalar @
{$self -> {'bootstrap_raw_results'}} ; $i++ ) { # All models
1110 print "MODEL ",$i+1,"\n" if ( scalar @
{$self -> {'bootstrap_raw_results'}} > 1 );
1111 if ( $self -> {'diagnostic_means'} ->
1112 [$i][0][$diag_idxs{'minimization_successful'}] >
1113 $self -> {'minimization_successful_limit'} ) {
1114 acknowledge
( 'Successful minimization ratio = '.
1115 $self -> {'diagnostic_means'} ->
1116 [$i][0][$diag_idxs{'minimization_successful'}], 'OK', $log );
1118 acknowledge
( 'Termination problems in '.
1119 sprintf("%4.2f", ($self -> {'diagnostic_means'} ->
1120 [$i][0][$diag_idxs{'minimization_successful'}]*100))
1121 .'% of the bootstrap runs', 'WARNING', $log );
1124 if ( $self -> {'diagnostic_means'} ->
1125 [$i][0][$diag_idxs{'covariance_step_successful'}] >
1126 $self -> {'covariance_step_successful_limit'} ) {
1127 acknowledge
( 'Successful covariance step ratio = '.$self -> {'diagnostic_means'} ->
1128 [$i][0][$diag_idxs{'covariance_step_successful'}], 'OK', $log );
1130 acknowledge
( 'Covariance step problems in '.
1131 sprintf("%4.2f", ($self -> {'diagnostic_means'} ->
1132 [$i][0][$diag_idxs{'covariance_step_successful'}]*100))
1133 .'% of the bootstrap runs', 'WARNING', $log );
1136 if ( $self -> {'diagnostic_means'} ->
1137 [$i][0][$diag_idxs{'covariance_step_warnings'}] <
1138 $self -> {'covariance_step_warnings_limit'} ) {
1139 acknowledge
( 'Covariance step warnings ratio = '.$self -> {'diagnostic_means'} ->
1140 [$i][0][$diag_idxs{'covariance_step_warnings'}], 'OK', $log );
1142 acknowledge
( 'Covariance step warnings in '.
1143 sprintf("%4.2f", ($self -> {'diagnostic_means'} ->
1144 [$i][0][$diag_idxs{'covariance_step_warnings'}]*100))
1145 .'% of the bootstrap runs', 'WARNING', $log );
1148 if ( $self -> {'diagnostic_means'} ->
1149 [$i][0][$diag_idxs{'estimate_near_boundary'}] <
1150 $self -> {'estimate_near_boundary_limit'} ) {
1151 acknowledge
( 'Estimate near boundary ratio = '.$self -> {'diagnostic_means'} ->
1152 [$i][0][$diag_idxs{'estimate_near_boundary'}], 'OK', $log );
1154 acknowledge
( 'Estimate near boundary found in '.
1155 sprintf("%4.2f", ($self -> {'diagnostic_means'} ->
1156 [$i][0][$diag_idxs{'estimate_near_boundary'}]*100))
1157 .'% of the bootstrap runs', 'WARNING', $log );
1159 my $sum = sum
( $self -> {'within_se_confidence_intervals'}->
1160 [$i]{$self -> {'se_confidence_intervals_level'}} );
1161 if ( not defined $sum or $sum < 1 ) {
1162 acknowledge
( 'No '.(100-$self -> {'se_confidence_intervals_level'}).
1163 '% confidence intervals based on the'.
1164 ' bootstrap standard errors include '.
1165 $self -> {'se_confidence_intervals_check'}, 'OK', $log );
1167 acknowledge
( "$sum ".(100-$self -> {'se_confidence_intervals_level'}).
1168 "% confidence intervals based on the bootstrap".
1170 $self -> {'se_confidence_intervals_check'}, 'WARNING', $log );
1172 scalar @
{$self -> {'within_se_confidence_intervals'}->
1173 [$i]{$self -> {'se_confidence_intervals_level'}}} - 1;
1174 for ( my $l = 0; $l <= $found ; $l++ ) {
1175 if ( $self -> {'within_se_confidence_intervals'}->
1176 [$i]{$self -> {'se_confidence_intervals_level'}}[$l] ) {
1177 printf( "\t%-20s\n",
1178 $self -> {'standard_error_confidence_intervals_labels'} ->
1181 sprintf( "\t%-20s\n",
1182 $self -> {'standard_error_confidence_intervals_labels'} ->
1184 print "\n" if ( $l == $found );
1185 print $log "\n" if ( $l == $found );
1190 my $sum = sum
( $self -> {'large_bias'}-> [$i][0] );
1191 if ( not defined $sum or $sum < 1 ) {
1192 acknowledge
( 'No bias larger than '.
1193 ($self -> {'large_bias_limit'}*100).'% found', 'OK', $log );
1195 acknowledge
( "$sum estimates were found to have a relative bias > ".
1196 $self -> {'large_bias_limit'}, 'WARNING', $log );
1198 scalar @
{$self -> {'large_bias'}->
1200 for ( my $l = 0; $l <= $found ; $l++ ) {
1201 if ( $self -> {'large_bias'}->
1203 printf( "\t%-20s%3.2f %\n", $self -> {'bias_labels'} ->
1204 [$i][1][$l], ($self -> {'bias'} -> [$i][0][$l]/
1205 $self->{'bootstrap_estimates'} -> [$i][0][$l])*100 );
1207 # sprintf( "\t%-20s\n",
1208 # $self -> {'percentile_confidence_intervals_labels'} ->
1210 print "\n" if ( $l == $found );
1211 print $log "\n" if ( $l == $found );
1216 if ( $self -> {'type'} eq 'bca' ) {
1217 my $sum = sum
( $self -> {'within_bca_confidence_intervals'}->
1218 [$i]{$self -> {'bca_confidence_intervals_level'}} );
1219 if ( not defined $sum or $sum < 1 ) {
1220 acknowledge
( 'No '.(100-$self -> {'bca_confidence_intervals_level'}).
1221 '% BCa confidence intervals include '.
1222 $self -> {'bca_confidence_intervals_check'}, 'OK', $log );
1224 acknowledge
( "$sum ".(100-$self -> {'bca_confidence_intervals_level'}).
1225 "% BCa confidence intervals include ".
1226 $self -> {'bca_confidence_intervals_check'}, 'WARNING', $log );
1228 scalar @
{$self -> {'within_bca_confidence_intervals'}->
1229 [$i]{$self -> {'bca_confidence_intervals_level'}}} - 1;
1230 for ( my $l = 0; $l <= $found ; $l++ ) {
1231 if ( $self -> {'within_bca_confidence_intervals'}->
1232 [$i]{$self -> {'bca_confidence_intervals_level'}}[$l] ) {
1233 printf( "\t%-20s\n",
1234 $self -> {'bca_confidence_intervals_labels'} ->
1237 sprintf( "\t%-20s\n",
1238 $self -> {'bca_confidence_intervals_labels'} ->
1240 print "\n" if ( $l == $found );
1241 print $log "\n" if ( $l == $found );
1246 my $sum = sum
( $self -> {'within_percentiles'}->
1247 [$i]{$self -> {'percentile_confidence_intervals_level'}} );
1248 if ( not defined $sum or $sum < 1 ) {
1249 acknowledge
( 'No '.(100-$self -> {'percentile_confidence_intervals_level'}).
1250 '% confidence intervals based on the'.
1251 ' bootstrap percentiles include '.
1252 $self -> {'percentile_confidence_intervals_check'}, 'OK', $log );
1254 acknowledge
( "$sum ".(100-$self -> {'percentile_confidence_intervals_level'}).
1255 "% confidence intervals based on the percentiles".
1257 $self -> {'percentile_confidence_intervals_check'}, 'WARNING', $log );
1259 scalar @
{$self -> {'within_percentiles'}->
1260 [$i]{$self -> {'percentile_confidence_intervals_level'}}} - 1;
1261 for ( my $l = 0; $l <= $found ; $l++ ) {
1262 if ( $self -> {'within_percentiles'}->
1263 [$i]{$self -> {'percentile_confidence_intervals_level'}}[$l] ) {
1264 printf( "\t%-20s\n",
1265 $self -> {'percentile_confidence_intervals_labels'} ->
1268 sprintf( "\t%-20s\n",
1269 $self -> {'percentile_confidence_intervals_labels'} ->
1271 print "\n" if ( $l == $found );
1272 print $log "\n" if ( $l == $found );
1284 # {{{ bca_read_raw_results
1286 start bca_read_raw_results
1288 $self -> {'raw_results_header'} = [];
1289 for ( my $i = 1; $i <= scalar @
{$self->{'models'}}; $i++ ) { # All models
1290 if ( -e
$self -> {'directory'}.'raw_results'.$i.'.csv' ) {
1291 open( RRES
, $self -> {'directory'}.'raw_results'.$i.'.csv' );
1294 map { chomp; my @tmp = split(',',$_); $_ = \
@tmp } @file ;
1296 my $header = shift @file;
1298 # Get rid of 'method' column
1299 my $cols = scalar(@
{$header})-1;
1300 @
{$self -> {'raw_results_header'}[$i-1]} = @
{$header}[1..$cols];
1301 $self -> {'raw_results'} -> [$i-1] = \
@file;
1302 for( my $j = 0; $j <= $#file; $j++ ) {
1303 if ( $file[$j][0] eq 'jackknife' ) {
1304 shift( @
{$file[$j]} );
1305 # $self -> {'jackknife_raw_results'}[$i-1] = \@file;
1306 push( @
{$self -> {'jackknife_raw_results'}[$i-1]}, $file[$j]);
1308 shift( @
{$file[$j]} );
1309 # $self -> {'bootstrap_raw_results'}[$i-1] = \@file;
1310 push( @
{$self -> {'bootstrap_raw_results'}[$i-1]}, $file[$j] );
1316 end bca_read_raw_results
1318 # }}} bca_read_raw_results
1320 # {{{ calculate_diagnostic_means
1322 start calculate_diagnostic_means
1324 my ( @sum, @diagsum, %diag_idx );
1325 for ( my $i = 0; $i < scalar @
{$self -> {'diagnostic_parameters'}}; $i++ ) {
1326 $diag_idx{$self -> {'diagnostic_parameters'} -> [$i]} = $i;
1330 # Prepared model, skip the first (the original)
1331 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_diagnostics'} ->
1332 [$model_number-1]}; $k++ ) {
1334 if( defined $self -> {'bootstrap_diagnostics'} ->
1335 [$model_number-1][$k] ) {
1337 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_diagnostics'} ->
1338 [$model_number-1][$k]}; $l++ ) {
1339 $sum[$l] += $self -> {'bootstrap_diagnostics'} ->
1340 [$model_number-1][$k][$l];
1345 # divide by the number of bootstrap samples (-1 to get rid of the original
1346 # model) The [0] in the index is there to indicate the 'model' level. Mostly
1348 for ( my $l = 0; $l <= $#sum; $l++ ) {
1349 if( $l == $diag_idx{'significant_digits'} ) {
1350 $self -> {'diagnostic_means'} -> [$model_number-1][0][$l] =
1353 $self -> {'diagnostic_means'} -> [$model_number-1][0][$l] =
1354 $sum[$l] / ( scalar @
{$self -> {'bootstrap_diagnostics'} ->
1355 [$model_number-1]} - 1);
1358 $self -> {'diagnostic_means_labels'} -> [$model_number-1] =
1359 [[],\
@parameter_names];
1361 end calculate_diagnostic_means
1363 # }}} calculate_diagnostic_means
1365 # {{{ calculate_means
1367 start calculate_means
1369 my ( @sum, @diagsum );
1370 # Prepared model, skip the first (the original)
1371 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_estimates'} ->
1372 [$model_number-1]}; $k++ ) {
1374 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_estimates'} ->
1375 [$model_number-1][$k]}; $l++ ) {
1376 $sum[$l] += $self -> {'bootstrap_estimates'} ->
1377 [$model_number-1][$k][$l];
1380 # divide by the number of bootstrap samples (-1 to get rid of the original
1381 # model) The [0] in the index is there to indicate the 'model' level. Mostly
1383 my $samples = scalar @
{$self -> {'bootstrap_estimates'} ->
1384 [$model_number-1]} - 1;
1385 for ( my $l = 0; $l <= $#sum; $l++ ) {
1386 my $mean = $sum[$l] / $samples;
1387 $self -> {'means'} -> [$model_number-1][0][$l] = $mean;
1388 my $bias = $mean - $self ->
1389 {'bootstrap_estimates'} -> [$model_number-1][0][$l];
1390 $self -> {'bias'} -> [$model_number-1][0][$l] = $bias;
1391 if ( $self->{'bootstrap_estimates'} -> [$model_number-1][0][$l] != 0 and
1392 $bias/$self->{'bootstrap_estimates'} -> [$model_number-1][0][$l]
1393 > $self -> {'large_bias_limit'} ) {
1394 $self -> {'large_bias'} -> [$model_number-1][0][$l] = 1;
1396 $self -> {'large_bias'} -> [$model_number-1][0][$l] = 0;
1399 $self -> {'means_labels'} -> [$model_number-1] =
1400 [[],\
@parameter_names];
1402 $self -> {'bias_labels'} -> [$model_number-1] =
1403 [[],\
@parameter_names];
1407 # }}} calculate_means
1409 # {{{ calculate_jackknife_means
1411 start calculate_jackknife_means
1414 # Prepared model, skip the first (the original)
1415 if( defined $self -> {'jackknife_estimates'} ){
1416 for ( my $k = 1; $k < scalar @
{$self -> {'jackknife_estimates'}->[$model_number-1]}; $k++ ) {
1418 for ( my $l = 0; $l <
1419 scalar @
{$self -> {'jackknife_estimates'}->[$model_number-1][$k]}; $l++ ) {
1420 $sum[$l] += $self -> {'jackknife_estimates'}->[$model_number-1][$k][$l];
1423 # divide by the number of bootstrap samples (-1 to get rid of the original model)
1424 # The [0] in the index is there to indicate the 'model' level. Mostly used for printing
1425 for ( my $l = 0; $l <
1426 scalar @
{$self -> {'jackknife_estimates'}->[$model_number-1][0]}; $l++ ) {
1427 if( ( scalar @
{$self -> {'jackknife_estimates'}->[$model_number-1]} - 1) != 0 ) {
1428 $self -> {'jackknife_means'} -> [$model_number-1][0][$l] =
1429 $sum[$l] / ( scalar @
{$self -> {'jackknife_estimates'}->[$model_number-1]} - 1);
1432 $self -> {'jackknife_means_labels'} -> [$model_number-1] = [[],\
@parameter_names];
1435 end calculate_jackknife_means
1437 # }}} calculate_jackknife_means
1439 # {{{ calculate_medians
1440 start calculate_medians
1443 # Loop the parameters
1444 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_estimates'}->
1445 [$model_number-1][0]}; $l++ ) {
1446 my @parameter_array;
1447 # From 1 to get rid of original model
1448 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_estimates'}->
1449 [$model_number-1]}; $k++ ) {
1450 $parameter_array[$k-1] =
1451 $self -> {'bootstrap_estimates'}->[$model_number-1][$k][$l];
1453 my @sorted = sort {$a <=> $b} @parameter_array;
1454 # median postition is half the ( array length - 1 ).
1455 my $median_position = ( $#sorted ) / 2;
1456 my ($int_med,$frac_med) = split(/\./, $median_position );
1457 $frac_med = eval("0.".$frac_med);
1458 my $median_low = $sorted[ $int_med ];
1459 my $median_high = ( $sorted[ $int_med + 1 ] - $sorted[ $int_med ] ) * $frac_med;
1460 $medians[$l] = $median_low + $median_high;
1462 # The [0] in the index is there to indicate the 'model' level. Mostly used for printing
1463 $self -> {'medians'} -> [$model_number-1][0] = \
@medians;
1464 $self -> {'medians_labels'} -> [$model_number-1] = [[],\
@parameter_names];
1466 end calculate_medians
1467 # }}} calculate_medians
1469 # {{{ calculate_standard_error_confidence_intervals
1470 start calculate_standard_error_confidence_intervals
1472 # Sort the limits from the inside out
1473 my @limits = sort { $b <=> $a } keys %{$self -> {'confidence_limits'}};
1474 foreach my $limit ( @limits ) {
1475 my ( @lower_limits, @upper_limits, @within_ci );
1476 # Loop the estimates of the first (original) model
1477 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_estimates'}->
1478 [$model_number-1][0]}; $l++ ) {
1480 $self -> {'bootstrap_estimates'}->[$model_number-1][0][$l] -
1481 $self -> {'standard_errors'}->[$model_number-1][0][$l] *
1482 $self -> {'confidence_limits'} ->{$limit};
1484 $self -> {'bootstrap_estimates'}->[$model_number-1][0][$l] +
1485 $self -> {'standard_errors'}->[$model_number-1][0][$l] *
1486 $self -> {'confidence_limits'} ->{$limit};
1487 push( @lower_limits, $lower_limit );
1488 push( @upper_limits, $upper_limit );
1489 if ( $self -> {'se_confidence_intervals_check'} < $upper_limit and
1490 $self -> {'se_confidence_intervals_check'} > $lower_limit ) {
1491 push( @within_ci , 1 );
1493 push( @within_ci , 0 );
1496 unshift( @
{$self -> {'standard_error_confidence_intervals'} ->
1497 [$model_number-1]}, \
@lower_limits );
1498 push( @
{$self -> {'standard_error_confidence_intervals'} ->
1499 [$model_number-1]}, \
@upper_limits );
1500 $self -> {'within_se_confidence_intervals'} ->
1501 [$model_number-1]{$limit} = \
@within_ci;
1502 unshift( @
{$self -> {'standard_error_confidence_intervals_labels'} ->
1503 [$model_number-1][0]}, ($limit/2).'%' );
1504 push( @
{$self -> {'standard_error_confidence_intervals_labels'} ->
1505 [$model_number-1][0]}, (100-($limit/2)).'%' );
1506 push( @
{$self -> {'within_se_confidence_intervals_labels'} ->
1507 [$model_number-1][0]}, $limit.'%' );
1509 $self -> {'standard_error_confidence_intervals_labels'} -> [$model_number-1][1] =
1511 $self -> {'within_se_confidence_intervals_labels'} -> [$model_number-1][1] =
1514 end calculate_standard_error_confidence_intervals
1515 # }}} calculate_standard_error_confidence_intervals
1517 # {{{ calculate_standard_errors
1519 start calculate_standard_errors
1522 # Prepared model, skip the first (the original)
1523 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_estimates'}->[$model_number-1]}; $k++ ) {
1525 for ( my $l = 0; $l <
1526 scalar @
{$self -> {'bootstrap_estimates'}->[$model_number-1][$k]}; $l++ ) {
1527 $se[$l] += ( $self -> {'bootstrap_estimates'}->[$model_number-1][$k][$l] -
1528 $self -> {'means'}->[$model_number-1][0][$l] )**2;
1531 # divide by the number of bootstrap samples -1 (-2 to get rid of the original model)
1532 # The [0] in the index is there to indicate the 'model' level.
1533 for ( my $l = 0; $l <
1534 scalar @
{$self -> {'bootstrap_estimates'}->[$model_number-1][0]}; $l++ ) {
1535 my $div = ( scalar @
{$self -> {'bootstrap_estimates'}->[$model_number-1]} - 2 );
1536 if( defined $div and not $div == 0 ) {
1537 $self -> {'standard_errors'} -> [$model_number-1][0][$l] =
1538 ($se[$l] / $div )**0.5;
1540 $self -> {'standard_errors'} -> [$model_number-1][0][$l] = undef;
1543 $self -> {'standard_errors_labels'} -> [$model_number-1] = [[],\
@parameter_names];
1545 end calculate_standard_errors
1547 # }}} calculate_standard_errors
1549 # {{{ calculate_bca_confidence_intervals
1551 start calculate_bca_confidence_intervals
1554 my $arr_ref = shift;
1555 my $orig_value = shift;
1556 my $num_less_than_orig = 0;
1559 foreach my $value ( @
{$arr_ref} ) {
1560 if ( defined $value and $value ne '' ) {
1561 $num_less_than_orig++ if ( $value < $orig_value );
1566 unless ( $nvalues == 0 ) {
1567 if ( ($num_less_than_orig / $nvalues ) == 0 ) {
1569 } elsif ( ($num_less_than_orig / $nvalues ) == 1 ) {
1572 $z0 = udistr
( 1 - ($num_less_than_orig / $nvalues ) );
1575 # return ( $z0, $nvalues );
1580 my $arr_ref = shift;
1581 my $jk_mean = shift;
1586 foreach my $value ( @
{$arr_ref} ){
1587 if ( defined $value and $value ne '' ) {
1588 $acc_upper = $acc_upper + ($jk_mean-$value)**3;
1589 $acc_lower = $acc_lower + ($jk_mean-$value)**2;
1593 $acc_lower = 6*($acc_lower**(3/2));
1594 unless ( $acc_lower == 0 ) {
1595 $acc = $acc_upper / $acc_lower;
1597 $acc = $acc_upper / 0.001;
1599 # return ( $acc, $nvalues );
1604 my $old_alphas = shift;
1608 my @new_alphas = ();
1609 foreach my $position ( @
{$old_alphas} ) {
1610 if ( $position == 0 ){
1612 } elsif ( $position == 100 ) {
1615 $denom = $z0 + udistr
( 1 - $position/100 );
1617 my $nom = 1 - $acc * $denom;
1618 my $lim = 100*uprob
( - ( $z0 + $denom / $nom ) );
1619 push( @new_alphas, $lim );
1621 return \
@new_alphas;
1624 my @limits = sort { $a <=> $b } keys %{$self -> {'confidence_limits'}};
1625 # Add the upper limits
1626 my $limnum = $#limits;
1627 for ( my $i = $limnum; $i >= 0; $i-- ) {
1628 $limits[$i] = $limits[$i]/2;
1629 push( @limits, 100-$limits[$i] );
1631 my ( @bootstrap_array, @jackknife_array, @new_alphas, @z0, @acc );
1632 # Loop the estimates of the first (original) model
1633 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_estimates'}->
1634 [$model_number-1][0]}; $l++ ) {
1635 my ( @unsorted_array1, @unsorted_array2 );
1636 # Loop the bootstrap samples from 1 to get rid of original model
1637 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_estimates'}->
1638 [$model_number-1]}; $k++ ) {
1639 $unsorted_array1[$k-1] =
1640 $self -> {'bootstrap_estimates'}->[$model_number-1][$k][$l];
1642 @
{$bootstrap_array[$l]} = sort {$a <=> $b} @unsorted_array1;
1644 # Loop the jackknife samples from 1 to get rid of original model
1645 for ( my $k = 1; $k < scalar @
{$self -> {'jackknife_estimates'}->
1646 [$model_number-1]}; $k++ ) {
1647 $unsorted_array2[$k-1] =
1648 $self -> {'jackknife_estimates'}->[$model_number-1][$k][$l];
1650 @
{$jackknife_array[$l]} = sort {$a <=> $b} @unsorted_array2;
1651 $z0[$l] = c_get_z0
( $bootstrap_array[$l],
1652 $self -> {'bootstrap_estimates'} ->
1653 [$model_number-1][0][$l] );
1654 $acc[$l] = c_get_acc
( $jackknife_array[$l],
1655 $self -> {'jackknife_means'} ->
1656 [$model_number-1][0][$l] );
1657 $new_alphas[$l] = c_get_alphas
( \
@limits, $acc[$l], $z0[$l] );
1660 for ( my $lim_idx = 0; $lim_idx <= $#limits; $lim_idx++ ) {
1663 for ( my $l = 0; $l <= $#bootstrap_array; $l++ ) {
1664 my $limit = $new_alphas[$l][$lim_idx]/100;
1665 my $position = ( scalar @
{$bootstrap_array[$l]} + 1 ) * $limit;
1667 if ( $position < 1 ) {
1668 $percentile = undef;
1669 } elsif ( $position > scalar @
{$bootstrap_array[$l]} ) {
1670 $percentile = undef;
1672 my ($int_med,$frac_med) = split(/\./, $position );
1673 $frac_med = eval("0.".$frac_med);
1674 my $percentile_low = $bootstrap_array[$l][ $int_med - 1];
1675 my $percentile_high = ( $bootstrap_array[$l][ $int_med ] -
1676 $bootstrap_array[$l][ $int_med - 1] ) * $frac_med;
1677 $percentile = $percentile_low + $percentile_high;
1679 push( @percentiles, $percentile );
1681 push( @
{$self -> {'bca_confidence_intervals'} -> [$model_number-1]},
1683 push( @
{$self -> {'bca_confidence_intervals_labels'}->[$model_number-1][0]},
1684 $limits[$lim_idx].'%');
1686 # Check the intervals
1687 for ( my $lim_idx = 0; $lim_idx <= $limnum; $lim_idx++ ) {
1689 for ( my $l = 0; $l <= $#bootstrap_array; $l++ ) {
1690 my $lower_limit = $self -> {'bca_confidence_intervals'} ->
1691 [$model_number-1][$lim_idx][$l];
1692 my $upper_limit = $self -> {'bca_confidence_intervals'} ->
1693 [$model_number-1][($limnum*2+1)-$lim_idx][$l];
1694 if ( $self -> {'bca_confidence_intervals_check'} < $upper_limit and
1695 $self -> {'bca_confidence_intervals_check'} > $lower_limit ) {
1696 push( @within_ci , 1 );
1698 push( @within_ci , 0 );
1701 $self -> {'within_bca_confidence_intervals'} ->
1702 [$model_number-1]{$limits[$lim_idx]*2} = \
@within_ci;
1704 $self -> {'bca_confidence_intervals_labels'} -> [$model_number-1][1] =
1707 end calculate_bca_confidence_intervals
1709 # }}} calculate_bca_confidence_intervals
1711 # {{{ calculate_percentile_confidence_intervals
1713 start calculate_percentile_confidence_intervals
1715 # Sort the limits from the inside out
1716 my @limits = sort { $b <=> $a } keys %{$self -> {'confidence_limits'}};
1717 foreach my $limit ( @limits ) {
1718 my ( @lower_limits, @upper_limits, @within_ci );
1719 # Loop the estimates of the first (original) model
1720 for ( my $l = 0; $l < scalar @
{$self -> {'bootstrap_estimates'}->
1721 [$model_number-1][0]}; $l++ ) {
1722 my @parameter_array;
1723 # Loop the bootstrap samples from 1 to get rid of original model
1724 for ( my $k = 1; $k < scalar @
{$self -> {'bootstrap_estimates'}->
1725 [$model_number-1]}; $k++ ) {
1726 my $val = $self -> {'bootstrap_estimates'}->[$model_number-1][$k][$l];
1727 # get rid of undefined values (these were probably deleted
1728 # when the bootstrap_estimates was created
1729 push( @parameter_array, $val ) if( defined $val );
1731 my @sorted = sort {$a <=> $b} @parameter_array;
1732 for my $side ( 'lower', 'upper' ) {
1733 my $use_limit = $side eq 'lower' ?
$limit/200 : 1-($limit/200);
1734 # percentile postition is:
1735 my $percentile_position = ( $#sorted + 2 ) * $use_limit;
1737 if ( $percentile_position < 1 ) {
1738 $percentile = undef;
1739 } elsif ( $percentile_position > $#sorted +1) {
1740 $percentile = undef;
1742 my ($int_med,$frac_med) = split(/\./, $percentile_position );
1743 $frac_med = eval("0.".$frac_med);
1744 my $percentile_low = $sorted[ $int_med - 1];
1745 my $percentile_high = ( $sorted[ $int_med ] - $sorted[ $int_med - 1] ) * $frac_med;
1746 $percentile = $percentile_low + $percentile_high;
1748 push( @lower_limits, $percentile ) if ( $side eq 'lower' );
1749 push( @upper_limits, $percentile ) if ( $side eq 'upper' );
1751 if ( $self -> {'percentile_confidence_intervals_check'} < $upper_limits[$#upper_limits] and
1752 $self -> {'percentile_confidence_intervals_check'} > $lower_limits[$#lower_limits] ) {
1753 push( @within_ci , 1 );
1755 push( @within_ci , 0 );
1758 unshift( @
{$self -> {'percentile_confidence_intervals'} ->
1759 [$model_number-1]}, \
@lower_limits );
1760 push( @
{$self -> {'percentile_confidence_intervals'} ->
1761 [$model_number-1]}, \
@upper_limits );
1762 unshift( @
{$self -> {'percentile_confidence_intervals_labels'}->
1763 [$model_number-1][0]}, ($limit/2).'%' );
1764 push( @
{$self -> {'percentile_confidence_intervals_labels'}->
1765 [$model_number-1][0]},(100-($limit/2)).'%');
1766 $self -> {'within_percentiles'}->[$model_number-1]{$limit}=\
@within_ci;
1768 $self -> {'percentile_confidence_intervals_labels'} ->
1769 [$model_number-1][1] = \
@parameter_names;
1771 end calculate_percentile_confidence_intervals
1773 # }}} calculate_percentile_confidence_intervals
1775 # {{{ modelfit_post_fork_analyze
1777 start modelfit_post_fork_analyze
1778 end modelfit_post_fork_analyze
1786 my $dataObj = $model -> datas
-> [0];
1787 for( my $i = 1; $i <= $self -> {'samples'}; $i++ ) {
1788 my ($bs_dir, $bs_name) = OSspecific
::absolute_path
( $self -> {'directory'}, "bs$i.dta" );
1789 my $new_name = $bs_dir . $bs_name;
1790 my $boot_sample = $dataObj -> resample
( 'subjects' => $self -> {'subjects'},
1791 'new_name' => $new_name,
1792 'target' => $target );
1793 my $newmodel = $model -> copy
( filename
=> "bs$i.mod",
1795 ignore_missing_files
=> 1 );
1796 $newmodel -> datafile
( new_name
=> "bs$i.dta" );
1797 $newmodel -> datas
-> [0] = $boot_sample ;
1799 push( @resample_models, $newmodel );
1809 foreach my $tool ( @
{$self -> {'tools'}} ) {
1810 my @models = @
{$tool -> models
};
1811 foreach my $model (@models){
1812 my $dataObj = $model -> datas
-> [0];
1813 for( my $i = 1; $i <= $samples; $i++ ) {
1814 my $boot_sample = $dataObj -> resample
( 'subjects' => $self -> {'subjects'},
1815 'new_name' => "bs$i.dta",
1816 'target' => $target );
1818 $newmodel = $model -> copy
( filename
=> "bs$i.mod" );
1819 $newmodel -> datafile
( new_name
=> "bs$i.dta" );
1820 $newmodel -> datas
-> [0] = $boot_sample ;
1822 if( defined( $tool -> models
) ){
1823 push( @
{$tool -> models
}, $newmodel );
1825 $tool -> models
( [ $newmodel ] );
1838 # Run the print_results specific for the subtool
1839 my $sub_print_results = $self -> {'subtools'} -> [0];
1840 if ( defined $sub_print_results ) {
1844 my $size_ref = shift;
1846 if ( defined $arr and ref($arr) eq 'ARRAY' ) {
1847 push( @
{$size_ref}, scalar @
{$arr} );
1848 ( $dim, $size_ref ) = get_dim
( $arr->[0], $dim, $size_ref );
1850 return ( $dim, $size_ref );
1854 if ( not defined $val or $val eq '' ) {
1855 return sprintf("%10s",$PsN::output_style
).',';
1858 my $nodot = /.*\..*/ ?
0 : 1;
1860 if ( /.*\D+.*/ or $nodot) {
1861 return sprintf("%10s",$val).',';
1863 return sprintf("%10.5f",$val).',';
1867 debug
-> die( message
=> "No results_file defined" )
1868 unless ( defined $self -> {'results_file'} );
1869 open ( RES
, ">".$self -> {'directory'}.'/'.$self -> {'results_file'} );
1870 if ( defined $self -> {'results'} ) {
1871 my @all_results = @
{$self -> {'results'}};
1872 for ( my $i = 0; $i <= $#all_results; $i++ ) {
1873 if ( defined $all_results[$i]{'own'} ) {
1874 my @my_results = @
{$all_results[$i]{'own'}};
1875 for ( my $j = 0; $j <= $#my_results; $j++ ) {
1876 # These size estimates include the problem and sub_problem dimensions:
1877 my ( $ldim, $lsize_ref ) = get_dim
( $my_results[$j]{'labels'}, -1, [] );
1878 my ( $vdim, $vsize_ref ) = get_dim
( $my_results[$j]{'values'}, -1, [] );
1879 print RES
$my_results[$j]{'name'},"\n" if ( $vdim > 1 );
1880 if ( defined $my_results[$j]{'values'} and
1881 scalar @
{$my_results[$j]{'values'}} >= 0 ) {
1882 my @values = @
{$my_results[$j]{'values'}};
1884 if ( defined $my_results[$j]{'labels'} and
1885 scalar @
{$my_results[$j]{'labels'}} >= 0 ) {
1886 @labels = @
{$my_results[$j]{'labels'}};
1889 # Print Header Labels
1891 my $label = \
@labels;
1892 print RES
','.format_value
($label),"\n";
1893 } elsif ( $ldim == 2 and defined $labels[1] ) {
1895 for ( my $n = 0; $n < scalar @
{$labels[1]}; $n++ ) {
1896 my $label = $labels[1][$n];
1897 print RES format_value
($label);
1899 print RES
"\n" if ( scalar @
{$labels[1]} );
1903 print RES
','.format_value
(\
@values),"\n";
1904 } elsif ( $vdim == 1 ) {
1905 for ( my $m = 0; $m < scalar @
{\
@values}; $m++ ) {
1906 my $label = $labels[$m];
1907 print RES
','.format_value
($label);
1908 my $val = $values[$m];
1909 print RES
','.format_value
($val),"\n";
1911 } elsif ( $vdim == 2 ) {
1912 for ( my $m = 0; $m < scalar @
{\
@values}; $m++ ) {
1915 $label = $labels[$m];
1916 } elsif ( $ldim == 2 ) {
1917 $label = $labels[0][$m];
1919 print RES format_value
($label);
1920 if ( defined $values[$m] ) {
1921 for ( my $n = 0; $n < scalar @
{$values[$m]}; $n++ ) {
1922 print RES format_value
($values[$m][$n]);
1935 debug
-> warn( level
=> 2,
1936 message
=> "No subtools defined".
1937 ", using default printing routine" );
1944 # {{{ create_matlab_scripts
1946 start create_matlab_scripts
1948 if( defined $PsN::config
-> {'_'} -> {'matlab_dir'} ){
1949 unless( -e
$PsN::config
-> {'_'} -> {'matlab_dir'} . '/histograms.m' and
1950 -e
$PsN::config
-> {'_'} -> {'matlab_dir'} . '/bca.m' ){
1951 'debug' -> die( message
=> 'Bootstrap matlab template scripts are not installed, no matlab scripts will be generated.' );
1955 open( PROF
, $PsN::config
-> {'_'} -> {'matlab_dir'} . '/histograms.m' );
1959 my $code_area_start=0;
1960 my $code_area_end=0;
1963 for(my $i = 0;$i < scalar(@file); $i++) {
1964 if( $file[$i] =~ /% ---------- Autogenerated code below ----------/ ){
1966 $code_area_start = $i;
1968 if( $file[$i] =~ /% ---------- End autogenerated code ----------/ ){
1969 unless( $found_code ){
1970 'debug' -> die ( message
=> 'Bootstrap matlab template script is malformated, no matlab scripts will be generated' );
1973 $code_area_end = $i;
1978 if( $self -> {'type'} eq 'bca' ){
1979 push( @auto_code, "use_bca = 1; % Was a BCa-type of\n" );
1981 push( @auto_code, "use_bca = 0; % Was a BCa-type of\n" );
1984 push( @auto_code, " % bootstrap run?\n" );
1985 if( ref $self -> {'samples'} eq 'ARRAY' ) {
1986 push( @auto_code, "bs_samples = ".$self -> {'samples'}->[0][0]."; % Number of bootstrap samples\n" );
1988 push( @auto_code, "bs_samples = ".$self -> {'samples'}."; % Number of bootstrap samples\n" );
1990 if( $self -> {'type'} eq 'bca' ){
1991 push( @auto_code, "jk_samples = 36; % Number of (BCa) jackknife samples\n\n" );
1994 push( @auto_code, "str_format = '%30s';\n\n" );
1996 push( @auto_code, "col_names = [ sprintf(str_format,'Significant Digits');\n" );
1997 push( @auto_code, " sprintf(str_format,'OFV');\n" );
1999 my $nps = $self -> {'models'} -> [0] -> nomegas
-> [0];
2002 my( @par_names, @se_names, @np_names, @sh_names );
2003 foreach my $param ( 'theta','omega','sigma' ) {
2004 my $labels = $self -> {'models'} -> [0] -> labels
( parameter_type
=> $param );
2005 if ( defined $labels ){
2006 foreach my $label ( @
{$labels -> [0]} ){
2007 push( @par_names, " sprintf(str_format,'",$label,"');\n" );
2008 push( @se_names, " sprintf(str_format,'",'se-'.$label,"');\n" );
2013 for( my $i = 1; $i <= ($nps*($nps+1)/2); $i++ ) {
2014 push( @np_names, " sprintf(str_format,'",'np-om'.$i,"');\n" );
2017 for( my $i = 1; $i <= $nps; $i++ ) {
2018 push( @sh_names, " sprintf(str_format,'",'shrinkage-eta'.$i,"');\n" );
2021 push( @sh_names, " sprintf(str_format,'",'shrinkage-iwres',"');\n" );
2023 push( @auto_code,(@par_names, @se_names, @np_names, @sh_names));
2024 push( @auto_code, " ];\n\n" );
2026 my @np_columns = (0) x
($nps*($nps+1)/2);
2027 my @sh_columns = (0) x
($nps+1);
2029 if( $self -> {'type'} eq 'bca' ){
2030 push( @auto_code, "fixed_columns = [ 0, 0, " );
2032 push( @auto_code, "fixed_columns = [ 0, 0, " );
2036 foreach my $param ( 'theta','omega','sigma' ) {
2037 my $fixed = $self -> {'models'} -> [0] -> fixed
( parameter_type
=> $param );
2039 if ( defined $fixed ){
2040 push( @fixed_columns, @
{$fixed -> [0]} );
2041 if( $param eq 'theta' ) {
2042 push( @same_columns, (0) x
scalar( @
{$fixed -> [0]} ) );
2046 push( @auto_code , join( ', ' , @fixed_columns).', '.
2047 join( ', ' , @fixed_columns).', '.
2048 join( ', ' , @np_columns).', '.
2049 join( ', ' , @sh_columns)."];\n\n" );
2051 if( $self -> {'type'} eq 'bca' ){
2052 push( @auto_code, "same_columns = [ 0, 0, " );
2054 push( @auto_code, "same_columns = [ 0, 0, " );
2056 foreach my $param ( 'omegas','sigmas' ) {
2057 my $parameters = $self -> {'models'} -> [0] -> problems
-> [0] -> $param;
2058 foreach my $parameter ( @
{$parameters} ){
2059 if( $parameter -> same
() ){
2060 push( @same_columns, (1) x
$parameter -> size
() );
2062 push( @same_columns, (0) x
scalar @
{$parameter -> options
} );
2066 push( @auto_code , join( ', ' , @same_columns ).', '.
2067 join( ', ' , @same_columns).', '.
2068 join( ', ' , @np_columns).', '.
2069 join( ', ' , @sh_columns)."];\n\n" );
2071 push( @auto_code , 'npomegas = '.($nps*($nps+1)/2).";\n\n" );
2074 push( @auto_code, "minimization_successful_col = 4 + use_bca; % Column number for the\n" );
2075 push( @auto_code, " % minimization sucessful flag\n" );
2076 push( @auto_code, "covariance_step_successful_col = 5 + use_bca; % As above for cov-step warnings\n" );
2077 push( @auto_code, "covariance_step_warnings_col = 6 + use_bca; % etc\n" );
2078 push( @auto_code, "estimate_near_boundary_col = 7 + use_bca; % etc\n" );
2080 push( @auto_code, "not_data_cols = 11 + use_bca; % Number of columns in the\n" );
2081 push( @auto_code, " % beginning that are not\n" );
2082 push( @auto_code, " % parameter estimates.\n" );
2084 push( @auto_code, "filename = 'raw_results_matlab.csv';\n" );
2086 splice( @file, $code_area_start, ($code_area_end - $code_area_start), @auto_code );
2087 open( OUTFILE
, ">", $self -> {'directory'} . "/histograms.m" );
2088 print OUTFILE
"addpath " . $PsN::config
-> {'_'} -> {'matlab_dir'} . ";\n";
2089 print OUTFILE
@file ;
2092 open( OUTFILE
, ">", $self -> {'directory'} . "/raw_results_matlab.csv" );
2093 for( my $i = 0; $i < scalar ( @
{$self -> {'raw_results'} -> [0]} ); $i ++ ){
2094 $self -> {'raw_results'} -> [0] -> [$i][0] =
2095 $self -> {'raw_results'} -> [0] -> [$i][0] eq 'bootstrap' ?
2096 1 : $self -> {'raw_results'} -> [0] -> [$i][0];
2097 $self -> {'raw_results'} -> [0] -> [$i][0] =
2098 $self -> {'raw_results'} -> [0] -> [$i][0] eq 'jackknife' ?
2099 2 : $self -> {'raw_results'} -> [0] -> [$i][0];
2100 map( $_ = $_ eq 'NA' ?
'NaN' : $_, @
{$self -> {'raw_results'} -> [0] -> [$i]} );
2101 print OUTFILE
join( ',', @
{$self -> {'raw_results'} -> [0] -> [$i]} ), "\n";
2106 'debug' -> die( message
=> 'matlab_dir not configured, no matlab scripts will be generated.');
2110 end create_matlab_scripts
2114 # {{{ create_R_scripts
2115 start create_R_scripts
2117 unless( -e
$PsN::lib_dir
. '/R-scripts/bootstrap.R' ){
2118 'debug' -> die( message
=> 'Bootstrap R-script are not installed, no R-script will be generated.' );
2121 cp
( $PsN::lib_dir
. '/R-scripts/bootstrap.R', $self -> {'directory'} );
2123 end create_R_scripts