1 # {{{ include statements
3 start include statements
9 use ext
::Math
::MatrixReal
;
11 if ( $PsN::config
-> {'_'} -> {'use_database'} ) {
15 end include statements
17 # }}} include statements
23 foreach my $attribute ( 'logfile', 'raw_results_file' ) {
24 if ( not( ref($this -> {$attribute}) eq 'ARRAY' or
25 ref($this -> {$attribute}) eq 'HASH' ) ) {
26 my $tmp = $this -> {$attribute};
27 if ( not defined $tmp and $attribute eq 'logfile' ) {
30 $this -> {$attribute} = [];
31 for ( my $i = 1; $i <= scalar @
{$this -> {'models'}}; $i++ ) {
33 if ( $name =~ /\./ ) {
40 OSspecific
::absolute_path
( $this -> {'directory'}, $name );
41 push ( @
{$this -> {$attribute}}, $ldir.$name ) ;
45 if ( $PsN::config
-> {'_'} -> {'use_database'} ) {
46 my( $found_log, $found_cdd_id ) = $this -> read_cdd_log
;
48 $this -> register_cdd_in_database
unless ( $found_cdd_id );
50 $this -> log_object
unless ( $found_log and $found_cdd_id );
51 print "Found ",$this -> {'cdd_id'},"\n";
58 # {{{ register_cdd_in_database
60 start register_cdd_in_database
62 if ( $PsN::config
-> {'_'} -> {'use_database'} ) {
63 my $dbh = DBI
-> connect("DBI:mysql:host=".$PsN::config
-> {'_'} -> {'database_server'}.
64 ";databse=".$PsN::config
-> {'_'} -> {'project'},
65 $PsN::config
-> {'_'} -> {'user'},
66 $PsN::config
-> {'_'} -> {'password'},
69 # bins and case_column can be defined for more than one model. Skip
70 # registration of these for now.
71 # $sth = $dbh -> prepare("INSERT INTO ".$PsN::config -> {'_'} -> {'project'}.
72 # ".cdd ( tool_id, bins, case_column ) ".
73 # "VALUES (".$self -> {'tool_id'}.", '".$self -> {'bins'}.
74 # "', '".$self -> {'case_column'}."' )");
75 $sth = $dbh -> prepare
("INSERT INTO ".$PsN::config
-> {'_'} -> {'project'}.
77 "VALUES (".$self -> {'tool_id'}." )");
79 $self -> {'cdd_id'} = $sth->{'mysql_insertid'};
84 end register_cdd_in_database
86 # }}} register_cdd_in_database
88 # {{{ register_mfit_results
90 start register_mfit_results
92 if ( $PsN::config
-> {'_'} -> {'use_database'} ) {
93 my $dbh = DBI
-> connect("DBI:mysql:host=".$PsN::config
-> {'_'} -> {'database_server'}.
94 ";databse=".$PsN::config
-> {'_'} -> {'project'},
95 $PsN::config
-> {'_'} -> {'user'},
96 $PsN::config
-> {'_'} -> {'password'},
98 $dbh -> do( "LOCK TABLES ".$PsN::config
-> {'_'} -> {'project'}.
99 ".cdd_modelfit_results WRITE" );
100 my $sth = $dbh -> prepare
( "SELECT MAX(cdd_modelfit_results_id)".
101 " FROM ".$PsN::config
-> {'_'} -> {'project'}.
102 ".cdd_modelfit_results" );
103 $sth -> execute
or debug
-> die( message
=> $sth->errstr ) ;
104 my $select_arr = $sth -> fetchall_arrayref
;
105 $first_res_id = defined $select_arr -> [0][0] ?
($select_arr -> [0][0] + 1) : 0;
106 $last_res_id = $first_res_id + $#cook_score;
110 for( my $i = 0; $i <= $#cook_score; $i++ ) {
111 $insert_values = $insert_values."," if ( defined $insert_values );
112 $insert_values = $insert_values.
113 "('".$self -> {'cdd_id'}."', '".$self -> {'model_ids'}[$model_number-1].
114 "', '".$self -> {'prepared_model_ids'}[($model_number-1)*($#cook_score+1)+$i].
116 "','$cook_score[$i]', '$covariance_ratio[$i]', '$projections[$i][0]', '$projections[$i][01]', '$outside_n_sd[$i]' )";
118 $dbh -> do("INSERT INTO ".$PsN::config
-> {'_'} -> {'project'}.
119 ".cdd_modelfit_results ".
120 "( cdd_id, orig_model_id, model_id, ".
121 "bin, cook_score, covariance_ratio, ".
122 "pca_component_1, pca_component_2, outside_n_sd ) ".
123 "VALUES $insert_values");
124 $dbh -> do( "UNLOCK TABLES" );
128 end register_mfit_results
130 # }}} register_mfit_results
135 if( -e
$self -> {'directory'}.'object.txt' ) {
137 open( OLOG
, '<'.$self -> {'directory'}.'object.txt' );
140 for ( my $i = 1; $i < $#olog; $i++ ) {
141 $str = $str.$olog[$i];
144 my %tmp = eval( $str );
146 if( exists $tmp{'cdd_id'} ) {
147 $self -> {'cdd_id'} = $tmp{'cdd_id'};
156 # {{{ llp_pre_fork_setup
158 start llp_pre_fork_setup
160 $self -> modelfit_pre_fork_setup
;
162 end llp_pre_fork_setup
164 # }}} llp_pre_fork_setup
166 # {{{ modelfit_pre_fork_setup
168 start modelfit_pre_fork_setup
170 # These attributes can be given as a
171 # 1. A scalar : used for all models and problems
172 # 2. A 1-dim. array : specified per problem but same for all models
173 # 3. A 2-dim. array : specified per problem and model
174 my $bins = $self -> {'bins'};
175 # my $idxs = $self -> {'grouping_indexes'};
176 my $case_columns = $self -> {'case_columns'};
178 if ( defined $bins ) {
179 unless ( ref( \
$bins ) eq 'SCALAR' or
180 ( ref( $bins ) eq 'ARRAY' and scalar @
{$bins} > 0 ) ) {
181 debug
-> die( message
=> "Attribute bins is ",
182 "defined as a ",ref( $bins ),
183 "and is neither a scalar or a non-zero size array." );
184 } elsif ( ref( \
$bins ) eq 'SCALAR' ) {
186 foreach my $model ( @
{$self -> {'models'}} ) {
188 foreach my $problem ( @
{$model -> problems
} ) {
189 push( @pr_bins, $bins );
191 push( @mo_bins, \
@pr_bins );
193 $self -> {'bins'} = \
@mo_bins;
194 } elsif ( ref( $bins ) eq 'ARRAY' ) {
195 unless ( ref( \
$bins -> [0] ) eq 'SCALAR' or
196 ( ref( $bins -> [0] ) eq 'ARRAY' and scalar @
{$bins -> [0]} > 0 ) ) {
197 debug
-> die( message
=> "Attribute bins is ",
198 "defined as a ",ref( $bins -> [0] ),
199 "and is neither a scalar or a non-zero size array." );
200 } elsif ( ref(\
$bins -> [0]) eq 'SCALAR' ) {
202 foreach my $model ( @
{$self -> {'models'}} ) {
203 push( @mo_bins, $bins );
205 $self -> {'bins'} = \
@mo_bins;
210 foreach my $model ( @
{$self -> {'models'}} ) {
212 foreach my $data ( @
{$model -> datas
} ) {
213 push( @pr_bins, $data -> count_ind
);
215 push( @mo_bins, \
@pr_bins );
217 $self -> {'bins'} = \
@mo_bins;
220 if ( defined $case_columns ) {
221 if ( defined $case_columns ) {
222 unless ( ref( \
$case_columns ) eq 'SCALAR' or
223 ( ref( $case_columns ) eq 'ARRAY' and scalar @
{$case_columns} > 0 ) ) {
224 debug
-> die( message
=> "Attribute case_columns is ",
225 "defined as a ",ref( $case_columns ),
226 "and is neither a scalar or a non-zero size array." );
227 } elsif ( ref( \
$case_columns ) eq 'SCALAR' ) {
229 my @mo_case_columns = ();
230 foreach my $model ( @
{$self -> {'models'}} ) {
231 my @pr_case_columns = ();
232 for( my $i = 1; $i <= scalar @
{$model -> problems
}; $i++ ) {
233 if ( not $case_columns =~ /^\d/ ) {
235 my ( $junk, $column_position ) = $model ->
236 _get_option_val_pos
( name
=> $case_columns,
237 record_name
=> 'input',
238 problem_numbers
=> [$i] );
239 # We assume that there is no duplicate column names
240 push ( @pr_case_columns, $column_position->[0][0] );
243 push ( @pr_case_columns, $case_columns );
246 push( @mo_case_columns, \
@pr_case_columns );
248 $self -> {'case_columns'} = \
@mo_case_columns;
249 } elsif ( ref( $case_columns ) eq 'ARRAY' ) {
251 unless ( ref( \
$case_columns -> [0] ) eq 'SCALAR' or
252 ( ref( $case_columns -> [0] ) eq 'ARRAY' and
253 scalar @
{$case_columns -> [0]} > 0 ) ) {
254 debug
-> die( message
=> "Second dimension of attribute case_columns is ",
255 "defined as a ",ref( $case_columns -> [0]),
256 "and is neither a scalar or a non-zero size array." );
257 } elsif ( ref(\
$case_columns -> [0]) eq 'SCALAR' ) {
259 my @mo_case_columns = ();
260 foreach my $model ( @
{$self -> {'models'}} ) {
261 my @pr_case_columns = ();
262 for( my $i = 1; $i <= scalar @
{$model -> problems
}; $i++ ) {
263 if ( not $case_columns =~ /^\d/ ) {
265 my ( $junk, $column_position ) = $model ->
266 _get_option_val_pos
( name
=> $case_columns->[$i-1],
267 record_name
=> 'input',
268 problem_numbers
=> [$i] );
269 # We assume that there is no duplicate column names
270 push ( @pr_case_columns, $column_position->[0][0] );
273 push ( @pr_case_columns, $case_columns -> [$i-1] );
276 push( @mo_case_columns, \
@pr_case_columns );
278 $self -> {'case_columns'} = \
@mo_case_columns;
279 } elsif ( ref($case_columns -> [0]) eq 'ARRAY' ) {
281 my @mo_case_columns = ();
282 for( my $j = 0; $j < scalar @
{$self -> {'models'}}; $j++ ) {
283 my @pr_case_columns = ();
284 for( my $i = 1; $i <= scalar @
{$self -> {'models'} -> problems
}; $i++ ) {
285 if ( not $case_columns =~ /^\d/ ) {
287 my ( $junk, $column_position ) = $self -> {'models'} -> [$j] ->
288 _get_option_val_pos
( name
=> $case_columns->[$j]->[$i-1],
289 record_name
=> 'input',
290 problem_numbers
=> [$i] );
291 # We assume that there is no duplicate column names
292 push ( @pr_case_columns, $column_position->[0][0] );
295 push ( @pr_case_columns, $case_columns -> [$j]->[$i-1] );
298 push( @mo_case_columns, \
@pr_case_columns );
300 $self -> {'case_columns'} = \
@mo_case_columns;
304 debug
-> die( message
=> "case_columns is not specified for model $model_number" );
308 end modelfit_pre_fork_setup
310 # }}} modelfit_pre_fork_setup
316 my $subm_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
317 $self -> {'threads'} -> [1]:$self -> {'threads'};
318 $self -> general_setup
( model_number
=> $model_number,
319 class => 'tool::modelfit',
320 subm_threads
=> $subm_threads );
330 if (ref( $self -> {'threads'} ) eq 'ARRAY') {
331 @subm_threads = @
{$self -> {'threads'}};
332 unshift(@subm_threads);
334 @subm_threads = ($self -> {'threads'});
336 $self -> general_setup
( model_number
=> $model_number,
337 class => 'tool::llp',
338 subm_threads
=> \
@subm_threads );
347 # Sub tool threads can be given as scalar or reference to an array?
348 my $subm_threads = $parm{'subm_threads'};
349 my $own_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
350 $self -> {'threads'} -> [0]:$self -> {'threads'};
351 # case_column names are matched in the model, not the data!
353 my $model = $self -> {'models'} -> [$model_number-1];
354 my @bins = @
{$self -> {'bins'} -> [$model_number-1]};
356 # Check which models that hasn't been run and run them
357 # This will be performed each step but will only result in running
358 # models at the first step, if at all.
360 # If more than one process is used, there is a VERY high risk of interaction
361 # between the processes when creating directories for model fits. Therefore
362 # the {'directory'} attribute is given explicitly below.
365 unless ( $model -> is_run
) {
367 # ----------------------- Run original run ------------------------------
372 if ( defined $self -> {'subtool_arguments'} ) {
373 %subargs = %{$self -> {'subtool_arguments'}};
375 if( $self -> {'nonparametric_etas'} or
376 $self -> {'nonparametric_marginals'} ) {
377 $model -> add_nonparametric_code
;
380 my $orig_fit = tool
::modelfit
->
381 new
( reference_object
=> $self,
383 threads
=> $subm_threads,
384 directory
=> $self -> {'directory'}.'/orig_modelfit_dir'.$model_number,
386 parent_threads
=> $own_threads,
387 parent_tool_id
=> $self -> {'tool_id'},
389 raw_results
=> undef,
390 prepared_models
=> undef,
394 # $Data::Dumper::Maxdepth=1;
395 # die Dumper $orig_fit;
396 # ( models => [$model],
398 # run_on_lsf => $self -> {'run_on_lsf'},
399 # no_remote_execution => $self -> {'no_remote_execution'},
400 # no_remote_compile => $self -> {'no_remote_compile'},
401 # lsf_queue => $self -> {'lsf_queue'},
402 # lsf_options => $self -> {'lsf_options'},
403 # lsf_job_name => $self -> {'lsf_job_name'},
404 # lsf_project_name => $self -> {'lsf_project_name'},
406 # run_on_nordugrid => $self -> {'run_on_nordugrid'},
407 # cpu_time => $self -> {'cpu_time'},
409 # parent_tool_id => $self -> {'tool_id'},
412 # nm_version => $self -> {'nm_version'},
413 # picky => $self -> {'picky'},
414 # compress => $self -> {'compress'},
415 # threads => $subm_threads,
416 # retries => $self -> {'retries'},
417 # remove_temp_files => $self -> {'remove_temp_files'},
418 # base_directory => $self -> {'directory'},
419 # directory => $self -> {'directory'}.'/orig_modelfit_dir'.$model_number,
420 # parent_threads => $own_threads );
422 ui
-> print( category
=> 'cdd',
423 message
=> 'Executing base model.' );
432 # ------------------------ Print a log-header -----------------------------
436 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
437 my $ui_text = sprintf("%-5s",'RUN').','.sprintf("%20s",'FILENAME ').',';
438 print LOG
sprintf("%-5s",'RUN'),',',sprintf("%20s",'FILENAME '),',';
439 foreach my $param ( 'ofv', 'theta', 'omega', 'sigma' ) {
440 my $accessor = $param eq 'ofv' ?
$param : $param.'s';
441 my $orig_ests = $model -> outputs
-> [0] -> $accessor;
443 if( defined $orig_ests ){
444 for ( my $j = 0; $j < scalar @
{$orig_ests}; $j++ ) {
445 if ( $param eq 'ofv' ) {
446 my $label = uc($param)."_".($j+1);
447 $ui_text = $ui_text.sprintf("%12s",$label).',';
448 print LOG
sprintf("%12s",$label),',';
450 # Loop the parameter numbers (skip sub problem level)
451 if( defined $orig_ests -> [$j] and
452 defined $orig_ests -> [$j][0] ){
453 for ( my $num = 1; $num <= scalar @
{$orig_ests -> [$j][0]}; $num++ ) {
454 my $label = uc($param).$num."_".($j+1);
455 $ui_text = $ui_text.sprintf("%12s",$label).',';
456 print LOG
sprintf("%12s",$label),',';
468 # ------------------------ Log original run -------------------------------
472 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
473 $ui_text = sprintf("%5s",'0').','.sprintf("%20s",$model -> filename
).',';
474 print LOG
sprintf("%5s",'0'),',',sprintf("%20s",$model -> filename
),',';
475 foreach my $param ( 'ofv', 'theta', 'omega', 'sigma' ) {
476 my $accessor = $param eq 'ofv' ?
$param : $param.'s';
477 my $orig_ests = $model -> outputs
-> [0] -> $accessor;
479 if( defined $orig_ests ) {
480 for ( my $j = 0; $j < scalar @
{$orig_ests}; $j++ ) {
481 if ( $param eq 'ofv' ) {
482 $ui_text = $ui_text.sprintf("%12f",$orig_ests -> [$j][0]).',';
483 print LOG
sprintf("%12f",$orig_ests -> [$j][0]),',';
485 # Loop the parameter numbers (skip sub problem level)
486 if( defined $orig_ests -> [$j] and
487 defined $orig_ests -> [$j][0] ){
488 for ( my $num = 0; $num < scalar @
{$orig_ests -> [$j][0]}; $num++ ) {
489 $ui_text = $ui_text.sprintf("%12f",$orig_ests -> [$j][0][$num]).',';
490 print LOG
sprintf("%12f",$orig_ests -> [$j][0][$num]),',';
502 # --------------------- Initiate some variables ----------------------------
506 my $case_column = $self -> {'case_columns'} -> [$model_number-1] -> [0];
508 # Case-deletion Diagnostics will only work for models with one problem.
509 my $orig_data = $model -> datas
-> [0];
511 if ( not defined $orig_data ) {
512 debug
-> die( message
=> "No data file to resample from found in ".$model -> full_name
);
515 my @problems = @
{$model -> problems
};
518 my ( @skipped_ids, @skipped_keys, @skipped_values );
520 my %orig_factors = %{$orig_data -> factors
( column
=> $case_column )};
521 my $maxbins = scalar keys %orig_factors;
522 my $pr_bins = ( defined $bins[0] and $bins[0] <= $maxbins ) ?
525 my $done = ( -e
$self -> {'directory'}."/m$model_number/done" ) ?
1 : 0;
527 my ( @seed, $new_datas, $skip_ids, $skip_keys, $skip_values, $remainders );
533 # -------------- Create new case-deleted data sets ----------------------
537 # Keep the new sample data objects i memory and write them to disk later
538 # with a proper name.
540 ( $new_datas, $skip_ids, $skip_keys, $skip_values, $remainders )
541 = $orig_data -> case_deletion
( case_column
=> $case_column,
542 selection
=> $self -> {'selection_method'},
545 directory
=> $self -> {'directory'}.'/m'.$model_number );
546 my $ndatas = scalar @
{$new_datas};
547 open( DB
, ">".$self -> {'directory'}."m$model_number/done.database.models" );
549 for ( my $j = 1; $j <= $ndatas; $j++ ) {
550 my @names = ( 'cdd_'.$j, 'rem_'.$j );
551 my @datasets = ( $new_datas -> [$j-1], $remainders -> [$j-1] );
552 foreach my $i ( 0, 1 ) {
553 my $dataset = $datasets[$i];
554 my ($data_dir, $data_file) = OSspecific
::absolute_path
( $self -> {'directory'}.'/m'.$model_number,
556 # $dataset -> directory( $data_dir );
557 # $dataset -> filename( $data_file );
559 my $newmodel = $model -> copy
( filename
=> $data_dir.$names[$i].'.mod',
562 $newmodel -> ignore_missing_files
(1);
563 $newmodel -> datafiles
( new_names
=> [$names[$i].'.dta'] );
564 $newmodel -> outputfile
( $data_dir.$names[$i].".lst" );
565 $newmodel -> datas
-> [0] = $dataset;
567 # set MAXEVAL=0. Again, CDD will only work for one $PROBLEM
568 $newmodel -> maxeval
( new_values
=> [[0]] );
571 if( $self -> {'nonparametric_etas'} or
572 $self -> {'nonparametric_marginals'} ) {
573 $newmodel -> add_nonparametric_code
;
577 push( @
{$new_models[$i]}, $newmodel );
578 $model_ids[$j*$i+$j-1] = $newmodel -> register_in_database
( force
=> 1 ) ;
579 print DB
$model_ids[$j*$i+$j-1],"\n";
580 $self -> {'prepared_model_ids'}[($model_number-1)*$ndatas*2+$j*$i+$j-1] =
581 $model_ids[$j*$i+$j-1];
585 # my $new_data = $new_datas -> [$j-1];
586 # my ($data_dir, $data_file) = OSspecific::absolute_path( $self -> {'directory'}.'/m'.$model_number,
587 # 'cdd_'.$j.'.dta' );
588 # $new_data -> directory( $data_dir );
589 # $new_data -> filename( $data_file );
590 # $new_data -> flush;
591 # my $newmodel = $model -> copy( filename => $data_dir."cdd_$j.mod",
594 # $newmodel -> ignore_missing_files(1);
595 # $newmodel -> datafiles( new_names => ["cdd_$j.dta"] );
596 # $newmodel -> outputfile( $data_dir."cdd_$j.lst" );
597 # $newmodel -> datas -> [0] = $new_data;
598 # $newmodel -> _write;
599 # push( @new_models, $newmodel );
600 # $model_ids[$j-1] = $newmodel -> register_in_database( force => 1 );
601 # print DB $model_ids[$j-1],"\n";
602 # $self -> {'prepared_model_ids'}[($model_number-1)*$ndatas+$j-1] =
606 if ( not -e
$self -> {'directory'}."m$model_number/done.database.tool_models" ) {
607 $self -> register_tm_relation
( model_ids
=> \
@model_ids,
608 prepared_models
=> 1 );
609 open( DB
, ">".$self -> {'directory'}."m$model_number/done.database.tool_models" );
613 # Create a checkpoint. Log the samples and individuals.
614 open( DONE
, ">".$self -> {'directory'}."/m$model_number/done" ) ;
615 print DONE
"Sampling from ",$orig_data -> filename
, " performed\n";
616 print DONE
"$pr_bins bins\n";
617 print DONE
"Skipped individuals:\n";
618 for( my $k = 0; $k < scalar @
{$skip_ids}; $k++ ) {
619 print DONE
join(',',@
{$skip_ids -> [$k]}),"\n";
621 print DONE
"Skipped keys:\n";
622 for( my $k = 0; $k < scalar @
{$skip_keys}; $k++ ) {
623 print DONE
join(',',@
{$skip_keys -> [$k]}),"\n";
625 print DONE
"Skipped values:\n";
626 for( my $k = 0; $k < scalar @
{$skip_values}; $k++ ) {
627 print DONE
join(',',@
{$skip_values -> [$k]}),"\n";
629 @seed = random_get_seed
;
630 print DONE
"seed: @seed\n";
633 open( SKIP
, ">".$self -> {'directory'}."skipped_individuals".$model_number.".csv" ) ;
634 for( my $k = 0; $k < scalar @
{$skip_ids}; $k++ ) {
635 print SKIP
join(',',@
{$skip_ids -> [$k]}),"\n";
638 open( SKIP
, ">".$self -> {'directory'}."skipped_keys".$model_number.".csv" ) ;
639 for( my $k = 0; $k < scalar @
{$skip_keys}; $k++ ) {
640 print SKIP
join(',',@
{$skip_keys -> [$k]}),"\n";
648 # --------- Recreate the datasets and models from a checkpoint ----------
652 ui
-> print( category
=> 'cdd',
653 message
=> "Recreating models from a previous run" );
654 open( DONE
, $self -> {'directory'}."/m$model_number/done" );
657 my ( $junk, $junk, $stored_filename, $junk ) = split(' ',$rows[0],4);
658 my ( $stored_bins, $junk ) = split(' ',$rows[1],2);
659 my ( @stored_ids, @stored_keys, @stored_values );
660 for ( my $k = 3; $k < 3+$stored_bins; $k++ ) {
662 my @bin_ids = split(',', $rows[$k] );
663 push( @stored_ids, \
@bin_ids );
665 for ( my $k = 4+$stored_bins; $k < 4+2*$stored_bins; $k++ ) {
667 my @bin_keys = split(',', $rows[$k] );
668 push( @stored_keys, \
@bin_keys );
670 for ( my $k = 5+2*$stored_bins; $k < 5+3*$stored_bins; $k++ ) {
672 my @bin_values = split(',', $rows[$k] );
673 push( @stored_values, \
@bin_values );
675 @seed = split(' ',$rows[5+3*$stored_bins]);
676 $skip_ids = \
@stored_ids;
677 $skip_keys = \
@stored_keys;
678 $skip_values = \
@stored_values;
679 shift( @seed ); # get rid of 'seed'-word
681 # Reinitiate the model objects
683 my $reg_relations = 0;
684 if ( -e
$self -> {'directory'}."m$model_number/done.database.models" ) {
685 open( DB
, $self -> {'directory'}."m$model_number/done.database.models" );
689 open( DB
, ">".$self -> {'directory'}."m$model_number/done.database.models" );
692 for ( my $j = 1; $j <= $stored_bins; $j++ ) {
693 my @names = ( 'cdd_'.$j, 'rem_'.$j );
694 foreach my $i ( 0, 1 ) {
695 my ($model_dir, $filename) = OSspecific
::absolute_path
( $self -> {'directory'}.'/m'.
698 my ($out_dir, $outfilename) = OSspecific
::absolute_path
( $self -> {'directory'}.'/m'.
701 my $new_mod = model
->
702 new
( directory
=> $model_dir,
703 filename
=> $filename,
704 outputfile
=> $outfilename,
705 extra_files
=> $model -> extra_files
,
707 ignore_missing_files
=> 1,
709 model_id
=> $model_ids[$j*$i+$j-1] );
710 push( @
{$new_models[$i]}, $new_mod );
712 if( not defined $model_ids[$j*$i+$j-1] ) {
713 $model_ids[$j*$i+$j-1] = $new_mod -> register_in_database
;
714 print DB
$model_ids[$j-1],"\n";
716 $self -> {'prepared_model_ids'}[($model_number-1)*
717 $stored_bins+$j*$i+$j-1] =
718 $model_ids[$j*$i+$j-1];
721 # my ($model_dir, $filename) = OSspecific::absolute_path( $self -> {'directory'}.'/m'.
723 # 'cdd_'.$j.'.mod' );
724 # my ($out_dir, $outfilename) = OSspecific::absolute_path( $self -> {'directory'}.'/m'.
726 # '/cdd_'.$j.'.lst' );
727 # my $new_mod = model ->
728 # new( directory => $model_dir,
729 # filename => $filename,
730 # outputfile => $outfilename,
731 # extra_files => $model -> extra_files,
733 # ignore_missing_files => 1,
735 # model_id => $model_ids[$j-1] );
736 # push( @new_models, $new_mod );
738 # if( not defined $model_ids[$j-1] ) {
739 # $model_ids[$j-1] = $new_mod -> register_in_database;
740 # print DB $model_ids[$j-1],"\n";
742 # $self -> {'prepared_model_ids'}[($model_number-1)*$stored_bins+$j-1] =
744 my $nl = $j == $stored_bins ?
"" : "\r";
745 ui
-> print( category
=> 'cdd',
746 message
=> ui
-> status_bar
( sofar
=> $j+1,
747 goal
=> $stored_bins+1 ).$nl,
752 if ( not -e
$self -> {'directory'}."m$model_number/done.database.tool_models" ) {
753 $self -> register_tm_relation
( model_ids
=> \
@model_ids,
754 prepared_models
=> 1 ) if ( $reg_relations );
755 open( DB
, ">".$self -> {'directory'}."m$model_number/done.database.tool_models" );
759 ui
-> print( category
=> 'cdd',
760 message
=> " ... done." );
761 random_set_seed
( @seed );
762 ui
-> print( category
=> 'cdd',
763 message
=> "Using $stored_bins previously sampled case-deletion sets ".
764 "from $stored_filename" )
765 unless $self -> {'parent_threads'} > 1;
770 push( @skipped_ids, $skip_ids );
771 push( @skipped_keys, $skip_keys );
772 push( @skipped_values, $skip_values );
774 # Use only the first half (the case-deleted) of the data sets.
775 $self -> {'prepared_models'}[$model_number-1]{'own'} = $new_models[0];
777 # The remainders are left until the analyze step
778 $self -> {'prediction_models'}[$model_number-1]{'own'} = $new_models[1];
780 # --------------------- Create the sub tools ------------------------------
785 $subdir =~ s/tool:://;
786 my @subtools = @
{$self -> {'subtools'}};
789 if ( defined $self -> {'subtool_arguments'} ) {
790 %subargs = %{$self -> {'subtool_arguments'}};
792 push( @
{$self -> {'tools'}},
794 new
( reference_object
=> $self,
795 models
=> $new_models[0],
796 threads
=> $subm_threads,
797 directory
=> $self -> {'directory'}.'/'.$subdir.'_dir'.$model_number,
798 _raw_results_callback
=> $self ->
799 _modelfit_raw_results_callback
( model_number
=> $model_number ),
800 subtools
=> \
@subtools,
801 parent_threads
=> $own_threads,
802 parent_tool_id
=> $self -> {'tool_id'},
804 raw_results
=> undef,
805 prepared_models
=> undef,
810 # ( models => $new_models[0],
811 # nm_version => $self -> {'nm_version'},
812 # run_on_lsf => $self -> {'run_on_lsf'},
813 # no_remote_execution => $self -> {'no_remote_execution'},
814 # no_remote_compile => $self -> {'no_remote_compile'},
815 # lsf_queue => $self -> {'lsf_queue'},
816 # lsf_options => $self -> {'lsf_options'},
817 # lsf_job_name => $self -> {'lsf_job_name'},
818 # lsf_project_name => $self -> {'lsf_project_name'},
820 # run_on_nordugrid => $self -> {'run_on_nordugrid'},
821 # cpu_time => $self -> {'cpu_time'},
823 # parent_tool_id => $self -> {'tool_id'},
825 # picky => $self -> {'picky'},
826 # compress => $self -> {'compress'},
827 # threads => $subm_threads,
828 # retries => $self -> {'retries'},
829 # remove_temp_files => $self -> {'remove_temp_files'},
830 # base_directory => $self -> {'directory'},
831 # directory => $self -> {'directory'}.'/'.$subdir.'_dir'.$model_number,
832 # _raw_results_callback => $self ->
833 # _modelfit_raw_results_callback( model_number => $model_number ),
834 # subtools => \@subtools,
835 # parent_threads => $own_threads,
840 open( SKIP
, ">".$self -> {'directory'}."skipped_values".$model_number.".csv" ) ;
841 for( my $k = 0; $k < scalar @
{$skip_values}; $k++ ) {
842 print SKIP
join(',',@
{$skip_values -> [$k]}),"\n";
857 # $proc_results{'skipped.section.identifiers'} = $self -> {'skipped.section.identifiers'};
858 # $proc_results{'skipped_ids'} = $self -> {'skipped_ids'};
859 # $proc_results{'skipped_keys'} = $self -> {'skipped_keys'};
860 # $proc_results{'skipped_values'} = $self -> {'skipped_values'};
862 push( @
{$self -> {'results'} -> {'own'}}, \
%proc_results );
868 # {{{ _modelfit_raw_results_callback
870 start _modelfit_raw_results_callback
873 # Use the cdd's raw_results file.
874 # The cdd and the bootstrap's callback methods are identical
875 # in the beginning, then the cdd callback adds cook.scores and
879 OSspecific
::absolute_path
( $self -> {'directory'},
880 $self -> {'raw_results_file'}[$model_number-1] );
881 my $orig_mod = $self -> {'models'}[$model_number-1];
882 my $xv = $self -> {'cross_validate'};
884 my $modelfit = shift;
886 my %max_hash = %{$mh_ref};
887 $modelfit -> raw_results_file
( $dir.$file );
888 if( $cross_validation_set ) {
889 $modelfit -> raw_results_append
( 1 ) if( not $self -> {'bca_mode'} ); # overwrite when doing a jackknife
890 my ( @new_header, %param_names );
891 foreach my $row ( @
{$modelfit -> {'raw_results'}} ) {
892 unshift( @
{$row}, 'cross_validation' );
894 $modelfit -> {'raw_results_header'} = undef; # May be a bit silly to do...
896 # my @orig_res = ( 0, 1, 1 ); # Model zero: original run. Problem 1 and subproblem 1
897 # foreach my $param ( @{$modelfit -> raw_results_header} ){
898 # next if( $param eq 'model' or $param eq 'problem' or $param eq 'subproblem' );
899 # my ( $accessor, $res );
900 # if ( $param eq 'theta' or $param eq 'omega' or $param eq 'sigma' or
901 # $param eq 'setheta' or $param eq 'seomega' or $param eq 'sesigma' or
902 # $param eq 'npomega' ) {
904 # $accessor = $param.'s';
905 # $res = $orig_mod -> {'outputs'} -> [0] -> $accessor;
907 # } elsif ( $param eq 'shrinkage_etas' ) {
909 # # Shrinkage does not work for subproblems right now.
910 # $res = $orig_mod -> eta_shrinkage;
912 # } elsif ( $param eq 'shrinkage_wres' ) {
914 # $res = $orig_mod -> wres_shrinkage;
918 # $res = $orig_mod -> {'outputs'} -> [0] -> $param;
924 # $res = defined $res ? $res -> [0][0] : undef;
925 # if( defined $res ) {
926 # if ( ref $res eq 'ARRAY' ) {
927 # push( @orig_res, @{$res} );
928 # push( @orig_res, (undef) x ($max_hash{$param}- scalar @{$res}) );
930 # push( @orig_res, $res );
933 # push( @orig_res, (undef) x $max_hash{$param} );
940 my ($raw_results_row,$row_structure) = $self -> create_raw_results_rows
( max_hash
=> $mh_ref,
941 model
=> $orig_mod );
943 unshift( @
{$modelfit -> {'raw_results'}}, @
{$raw_results_row} );
945 &{$self -> {'_raw_results_callback'}}( $self, $modelfit )
946 if ( defined $self -> {'_raw_results_callback'} );
948 my ( @new_header, %param_names );
949 my @params = ( 'theta', 'omega', 'sigma' );
950 foreach my $param ( @params ) {
951 my $labels = $orig_mod -> labels
( parameter_type
=> $param );
952 $param_names{$param} = $labels -> [0] if ( defined $labels );
955 foreach my $name ( @
{$modelfit -> {'raw_results_header'}} ) {
957 foreach my $param ( @params, 'eigen', 'shrinkage_etas', 'shrinkage_wres' ) {
958 if ( $name eq $param ){
959 if( defined $param_names{$name} ) {
960 push( @new_header , @
{$param_names{$name}} );
962 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
963 push ( @new_header, uc(substr($name,0,2)).$i );
968 } elsif ( $name eq 'se'.$param ) {
970 for ( my $i = 1; $i <= $max_hash{ $name }; $i++ ) {
971 push ( @new_names, uc(substr($param,0,2)).$i );
973 map ( $_ = 'se'.$_, @new_names );
975 push( @new_header, @new_names );
981 push( @new_header, $name );
985 $modelfit -> {'raw_results_header'} = \
@new_header;
987 if( $xv and not $self -> {'bca_mode'} ) {
988 foreach my $row ( @
{$modelfit -> {'raw_results'}} ) {
989 unshift( @
{$row}, 'cdd' );
991 unshift( @
{$modelfit -> {'raw_results_header'}}, 'method' );
997 end _modelfit_raw_results_callback
999 # }}} _modelfit_raw_results_callback
1001 # {{{ modelfit_analyze
1003 start modelfit_analyze
1005 # Only valid for one problem and one sub problem.
1007 if ( $self -> {'cross_validate'} ) {
1009 # --- Evaluate the models on the remainder data sets ----
1014 $i < scalar @
{$self -> {'prediction_models'}[$model_number-1]{'own'}};
1016 $self -> {'prediction_models'}[$model_number-1]{'own'}[$i] ->
1017 update_inits
( from_model
=> $self ->
1018 {'prepared_models'}[$model_number-1]{'own'}[$i]);
1019 $self -> {'prediction_models'}[$model_number-1]{'own'}[$i] ->
1020 remove_records
( type
=> 'covariance' );
1021 $self -> {'prediction_models'}[$model_number-1]{'own'}[$i] -> _write
;
1024 OSspecific
::absolute_path
( $self -> {'directory'},
1025 $self -> {'raw_results_file'}[$model_number-1] );
1026 my $xv_threads = ref( $self -> {'threads'} ) eq 'ARRAY' ?
1027 $self -> {'threads'} -> [1]:$self -> {'threads'};
1028 my $mod_eval = tool
::modelfit
->
1029 new
( reference_object
=> $self,
1031 {'prediction_models'}[$model_number-1]{'own'},
1032 base_directory
=> $self -> {'directory'},
1033 directory
=> $self -> {'directory'}.
1034 'evaluation_dir'.$model_number,
1035 threads
=> $xv_threads,
1036 _raw_results_callback
=> $self ->
1037 _modelfit_raw_results_callback
( model_number
=> $model_number,
1038 cross_validation_set
=> 1 ),
1039 parent_tool_id
=> $self -> {'tool_id'},
1041 raw_results
=> undef,
1042 prepared_models
=> undef,
1045 $Data::Dumper
::Maxdepth
= 2;
1046 print "Running xv runs\n";
1053 # ------------ Cook-scores and Covariance-Ratios ----------
1055 # {{{ Cook-scores and Covariance-Ratios
1057 # ---------------------- Cook-score -----------------------
1061 my ( @cook_score, @cov_ratio );
1062 if( $self -> models
-> [$model_number-1] ->
1063 outputs
-> [0] -> covariance_step_successful
-> [0][0]) {
1065 ui
-> print( category
=> 'cdd',
1066 message
=> "Calculating the cook-scores" );
1070 my $output_harvest = $self ->
1071 harvest_output
( accessors
=> ['est_thetas','est_omegas','est_sigmas'],
1072 search_output
=> 1 );
1074 # Calculate the changes
1075 foreach my $param ( 'est_thetas', 'est_omegas', 'est_sigmas' ) {
1076 my $orig_est = $self -> models
-> [$model_number-1] -> outputs
-> [0] -> $param;
1078 my $est = defined $output_harvest -> {$param} ?
1079 $output_harvest -> {$param} -> [$model_number-1]{'own'} : [];
1080 if( defined $est ) {
1081 for ( my $i = 0; $i < scalar @
{$est}; $i++ ) {
1082 if( defined $est->[$i][0][0] ) {
1083 my $n_par = scalar @
{$est->[$i][0][0]};
1084 # Since we use the _estimated_ parameters there should be no undefined elements
1085 # Not sure what to do if we find one... /Lasse
1086 for( my $j = 0; $j < $n_par; $j++ ) {
1087 push( @
{$changes[$i]}, $orig_est->[0][0][$j]-$est->[$i][0][0][$j]);
1094 my $inverse_covariance_matrix = $self -> models
-> [$model_number-1] ->
1095 outputs
-> [0] -> inverse_covariance_matrix
-> [0][0];
1097 # Equation: sqrt((orig_est-est(i))'*inv_cov_matrix*(orig_est-est(i)))
1098 for ( my $i = 0; $i <= $#changes; $i++ ) {
1099 if( defined $changes[$i] and
1100 scalar @
{$changes[$i]} > 0 and
1101 defined $inverse_covariance_matrix ) {
1102 my $vec_changes = Math
::MatrixReal
->
1103 new_from_cols
( [$changes[$i]] );
1104 $cook_score[$i] = $inverse_covariance_matrix*$vec_changes;
1105 $cook_score[$i] = ~$vec_changes*$cook_score[$i];
1107 $cook_score[$i] = undef;
1110 my $nl = $i == $#changes ?
"" : "\r";
1111 ui
-> print( category
=> 'cdd',
1112 message
=> ui
-> status_bar
( sofar
=> $i+1,
1113 goal
=> $#changes+1 ).$nl,
1118 # Calculate the square root
1119 # The matrixreal object holds a 1x1 matrix in the first position of its array.
1120 for ( my $i = 0; $i <= $#cook_score; $i++ ) {
1121 if( defined $cook_score[$i] and
1122 $cook_score[$i][0][0][0] >= 0 ) {
1123 $cook_score[$i] = sqrt($cook_score[$i][0][0][0]);
1125 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
1127 if( defined $cook_score[$i] ) {
1128 $mes = "Negative squared cook-score ",$cook_score[$i][0][0][0];
1130 $mes = "Undefined squared cook-score";
1132 $mes .= "; can't take the square root.\n",
1133 "The cook-score for model $model_number and cdd bin $i was set to zero\n";
1136 debug
-> warn( level
=> 1,
1139 $cook_score[$i] = 0;
1140 # $cook_score[$i] = undef;
1145 $self -> {'cook_scores'} = \
@cook_score;
1147 ui
-> print( category
=> 'cdd',
1148 message
=> " ... done." );
1152 # ------------------- Covariance Ratio --------------------
1154 # {{{ Covariance Ratio
1156 if( $self -> models
-> [$model_number-1] ->
1157 outputs
-> [0] -> covariance_step_successful
-> [0][0]) {
1159 # {{{ sub clear dots
1163 my @matrix = @
{$m_ref};
1164 # get rid of '........'
1166 foreach ( @matrix ) {
1167 push( @clear, $_ ) unless ( $_ eq '.........' );
1169 # print Dumper \@clear;
1175 # {{{ sub make square
1179 my @matrix = @
{$m_ref};
1180 # Make the matrix square:
1181 my $elements = scalar @matrix; # = M*(M+1)/2
1182 my $M = -0.5 + sqrt( 0.25 + 2 * $elements );
1184 for ( my $m = 1; $m <= $M; $m++ ) {
1185 for ( my $n = 1; $n <= $m; $n++ ) {
1186 push( @
{$square[$m-1]}, $matrix[($m-1)*$m/2 + $n - 1] );
1187 unless ( $m == $n ) {
1188 push( @
{$square[$n-1]}, $matrix[($m-1)*$m/2 + $n - 1] );
1197 ui
-> print( category
=> 'cdd',
1198 message
=> "Calculating the covariance-ratios" );
1200 # Equation: sqrt(det(cov_matrix(i))/det(cov_matrix(orig)))
1201 my $cov_linear = $self -> models
-> [$model_number-1] ->
1202 outputs
-> [0] -> raw_covmatrix
-> [0][0];
1204 if( defined $cov_linear ) {
1205 my $orig_cov = Math
::MatrixReal
->
1206 new_from_cols
( make_square
( clear_dots
( $cov_linear ) ) );
1207 $orig_det = $orig_cov -> det
();
1209 # AUTOLOAD: raw_covmatrix
1211 my $output_harvest = $self -> harvest_output
( accessors
=> ['raw_covmatrix'],
1212 search_output
=> 1 );
1214 my $est_cov = defined $output_harvest -> {'raw_covmatrix'} ?
$output_harvest -> {'raw_covmatrix'} -> [$model_number-1]{'own'} : [];
1216 my $mods = scalar @
{$est_cov};
1217 for ( my $i = 0; $i < scalar @
{$est_cov}; $i++ ) {
1218 if ( $orig_det != 0 and defined $est_cov->[$i][0][0] ) {
1219 my $cov = Math
::MatrixReal
->
1220 new_from_cols
( make_square
( clear_dots
( $est_cov->[$i][0][0] ) ) );
1221 my $ratio = $cov -> det
() / $orig_det;
1223 push( @cov_ratio, sqrt( $ratio ) );
1225 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
1226 print LOG
"Negative covariance ratio ",$ratio,
1227 "; can't take the square root.\n",
1228 "The covariance ratio for model $model_number and cdd bin $i was set to one (1)\n";
1229 # "The covariance ratio for model $model_number and cdd bin $i was set to undef\n";
1231 push( @cov_ratio, 1 );
1232 # push( @cov_ratio, undef );
1235 open( LOG
, ">>".$self -> {'logfile'}[$model_number-1] );
1236 print LOG
"The determinant of the cov-matrix of the original run was zero\n",
1237 "or the determinant of cdd bin $i was undefined\n",
1238 "The covariance ratio for model $model_number and cdd bin $i was set to one (1)\n";
1239 # "The covariance ratio for model $model_number and cdd bin $i was set to undef\n";
1241 push( @cov_ratio, 1 );
1242 # push( @cov_ratio, undef );
1245 my $nl = $i == $mods-1 ?
"" : "\r";
1246 ui
-> print( category
=> 'cdd',
1247 message
=> ui
-> status_bar
( sofar
=> $i+1,
1248 goal
=> $mods ).$nl,
1254 $self -> {'covariance_ratios'} = \
@cov_ratio;
1256 ui
-> print( category
=> 'cdd',
1257 message
=> " ... done." );
1259 # }}} Covariance Ratio
1261 # - Perform a PCA on the cook-score:covariance-ratio data --
1265 my ( @outside_n_sd, $eig_ref, $eig_vec_ref, $proj_ref, $std_ref );
1267 if( $self -> models
-> [$model_number-1] ->
1268 outputs
-> [0] -> covariance_step_successful
-> [0][0]) {
1270 ( $eig_ref, $eig_vec_ref, $proj_ref, $std_ref ) =
1271 # die Dumper [\@cook_score,\@cov_ratio];
1272 $self -> pca
( data_matrix
=> [\
@cook_score,\
@cov_ratio] );
1273 my @projections = @
{$proj_ref};
1274 my @standard_deviation = @
{$std_ref};
1278 # ---- Mark the runs with CS-CR outside N standard deviations of the PCA ----
1282 for( my $i = 0; $i <= $#projections; $i++ ) {
1283 my $vector_length = 0;
1284 for( my $j = 0; $j <= 1; $j++ ) {
1285 $vector_length += $projections[$i][$j]**2;
1287 $vector_length = sqrt( $vector_length );
1289 for( my $j = 0; $j <= 1; $j++ ) {
1290 $n_sd += (($projections[$i][$j]/$vector_length)*$standard_deviation[$j])**2;
1292 $n_sd = ( $self -> {'outside_n_sd_check'} * sqrt( $n_sd ) );
1293 $outside_n_sd[$i] = $vector_length > $n_sd ?
1 : 0;
1297 $self -> {'outside_n_sd'} = \
@outside_n_sd;
1301 my %covariance_return_section;
1302 $covariance_return_section{'name'} = 'Diagnostics';
1303 $covariance_return_section{'labels'} = [[],['cook.scores','covariance.ratios','outside.n.sd']];
1306 for( my $i = 0; $i <= $#cov_ratio; $i ++ ){
1307 push( @res_array , [$cook_score[$i],$cov_ratio[$i],$outside_n_sd[$i]] );
1310 $covariance_return_section{'values'} = \
@res_array;
1312 push( @
{$self -> {'results'}[$model_number-1]{'own'}},\
%covariance_return_section );
1316 # --------- Relative estimate change and Jackknife bias ----------
1318 # {{{ Relative change of the parameter estimates
1320 my $output_harvest = $self -> harvest_output
( accessors
=> ['ofv', 'thetas', 'omegas', 'sigmas','sethetas', 'seomegas', 'sesigmas'],
1321 search_output
=> 1 );
1324 $return_section{'name'} = 'relative.changes';
1325 $return_section{'labels'} = [[],[]];
1327 my %bias_return_section;
1328 $bias_return_section{'name'} = 'Jackknife.bias.estimate';
1329 $bias_return_section{'labels'} = [['bias','relative.bias'],[]];
1331 my ( @bias, @bias_num, @b_orig, @rel_bias );
1333 foreach my $param ( 'thetas', 'omegas', 'sigmas' ) {
1334 my $orig_est = $self -> {'models'} -> [$model_number-1] -> outputs
-> [0] -> $param;
1335 if ( defined $orig_est->[0][0] ) {
1336 for ( my $j = 0; $j < scalar @
{$orig_est->[0][0]}; $j++ ) {
1337 $b_orig[$k++] = $orig_est->[0][0][$j];
1344 for ( my $i = 0; $i < scalar @
{$output_harvest -> {'ofv'} -> [$model_number-1]{'own'}}; $i++ ) {
1347 foreach my $param ( 'ofv', 'thetas', 'omegas', 'sigmas',
1348 'sethetas', 'seomegas', 'sesigmas',) {
1350 my $orig_est = $self -> {'models'} -> [$model_number-1] -> outputs
-> [0] -> $param;
1351 my $est = defined $output_harvest -> {$param} ?
$output_harvest -> {$param} -> [$model_number-1]{'own'} : [];
1353 if ( $param eq 'ofv' ) {
1354 if ( defined $orig_est->[0][0] and $orig_est->[0][0] != 0 ) {
1355 push( @values, ($est->[$i][0][0]-$orig_est->[0][0])/$orig_est->[0][0]*100 );
1357 push( @values, 'INF' );
1360 push( @
{$return_section{'labels'} -> [1]}, $param );
1364 if( defined $est->[$i][0][0] ){
1365 for ( my $j = 0; $j < scalar @
{$est->[$i][0][0]}; $j++ ) {
1366 if ( defined $orig_est->[0][0][$j] and $orig_est->[0][0][$j] != 0 ) {
1367 push( @values, ($est->[$i][0][0][$j]-$orig_est->[0][0][$j])/$orig_est->[0][0][$j]*100);
1368 if( substr($param,0,2) ne 'se' ) {
1369 $bias[$k] += $est->[$i][0][0][$j];
1373 push( @values, 'INF' );
1374 if( substr($param,0,2) ne 'se' ) {
1378 if( substr($param,0,2) eq 'se' ) {
1379 push( @
{$return_section{'labels'} -> [1]}, uc(substr($param,0,4)).($j+1) );
1381 my $lbl = uc(substr($param,0,2)).($j+1);
1382 push( @
{$bias_return_section{'labels'} -> [1]}, $lbl );
1383 push( @
{$return_section{'labels'} -> [1]}, $lbl );
1391 push( @rel_ests, \
@values );
1396 for( my $i = 0; $i <= $#bias_num; $i++ ) {
1397 # The [0] is there to handle the fact that thw bins
1398 # attribute is restructured per model and problem
1399 next if( not defined $bias[$i] );
1400 $bias[$i] = ($self -> {'bins'}[$model_number-1][0]-1)*
1401 ($bias[$i]/$bias_num[$i]-$b_orig[$i]);
1402 if( defined $b_orig[$i] and $b_orig[$i] != 0 ) {
1403 $rel_bias[$i] = $bias[$i]/$b_orig[$i]*100;
1405 $rel_bias[$i] = undef;
1408 $bias_return_section{'values'} = [\
@bias,\
@rel_bias];
1410 $return_section{'values'} = \
@rel_ests ;
1411 push( @
{$self -> {'results'}[$model_number-1]{'own'}},\
%return_section );
1412 push( @
{$self -> {'results'}[$model_number-1]{'own'}},\
%bias_return_section );
1414 # }}} Relative change of the parameter estimates
1417 $self -> update_raw_results
(model_number
=> $model_number);
1419 # ------------- Register the results in a Database ----------------
1421 if( not -e
$self -> {'directory'}."m$model_number/done.database.results" ) {
1422 open( DB
, ">".$self -> {'directory'}."m$model_number/done.database.results" );
1423 my ( $start_id, $last_id ) = $self ->
1424 register_mfit_results
( model_number
=> $model_number,
1425 cook_score
=> \
@cook_score,
1426 covariance_ratio
=> \
@cov_ratio,
1427 projections
=> $proj_ref,
1428 outside_n_sd
=> \
@outside_n_sd );
1429 print DB
"$start_id-$last_id\n";
1433 # experimental: to save memory
1434 $self -> {'prepared_models'}[$model_number-1]{'own'} = undef;
1435 if( defined $PsN::config
-> {'_'} -> {'R'} and
1436 -e
$PsN::lib_dir
. '/R-scripts/cdd.R' ) {
1437 # copy the cdd R-script
1438 cp
( $PsN::lib_dir
. '/R-scripts/cdd.R', $self -> {'directory'} );
1439 # Execute the script
1440 system( $PsN::config
-> {'_'} -> {'R'}." CMD BATCH cdd.R" );
1443 end modelfit_analyze
1445 # }}} modelfit_analyze
1450 my $D = Math
::MatrixReal
->
1451 new_from_rows
( \
@data_matrix );
1452 my @n_dim = @
{$data_matrix[0]};
1453 my @d_dim = @data_matrix;
1454 my $n = scalar @n_dim;
1455 my $d = scalar @d_dim;
1456 map( $_=(1/$n), @n_dim );
1457 my $frac_vec_n = Math
::MatrixReal
->
1458 new_from_cols
( [\
@n_dim] );
1459 map( $_=1, @n_dim );
1460 map( $_=1, @d_dim );
1461 my $one_vec_n = Math
::MatrixReal
->
1462 new_from_cols
( [\
@n_dim] );
1463 my $one_vec_d = Math
::MatrixReal
->
1464 new_from_cols
( [\
@d_dim] );
1465 my $one_vec_d_n = $one_vec_d * ~$one_vec_n;
1466 my $M = $D*$frac_vec_n;
1467 my $M_matrix = $M * ~$one_vec_n;
1469 # Calculate the mean-subtracted data
1470 my $S = $D-$M_matrix;
1472 # compue the empirical covariance matrix
1475 # compute the eigenvalues and vectors
1476 my ($l, $V) = $C -> sym_diagonalize
();
1478 # Project the original data on the eigenvectors
1482 # l, V and projections are all MatrixReal objects.
1483 # We need to return the normal perl equivalents.
1484 @eigenvalues = @
{$l->[0]};
1485 @eigenvectors = @
{$V->[0]};
1486 @std = @
{$self -> std
( data_matrix
=> $P -> [0] )};
1487 # Make $P a n * d matrix
1489 @projections = @
{$P->[0]};
1497 my ( @sum, @pow_2_sum );
1498 if ( defined $data_matrix[0] ) {
1499 my $n = scalar @
{$data_matrix[0]};
1500 for( my $i = 0; $i <= $#data_matrix; $i++ ) {
1501 for( my $j = 0; $j < $n; $j++ ) {
1502 $sum[$i] = $sum[$i]+$data_matrix[$i][$j];
1503 $pow_2_sum[$i] += $data_matrix[$i][$j]*$data_matrix[$i][$j];
1505 $std[$i] = sqrt( ( $n*$pow_2_sum[$i] - $sum[$i]*$sum[$i] ) / ($n*$n) );
1512 # {{{ modelfit_post_fork_analyze
1514 start modelfit_post_fork_analyze
1516 # my @modelfit_results = @{ $self -> {'results'} -> {'subtools'} };
1517 my @modelfit_results = @
{ $self -> {'results'} };
1519 ui
-> print( category
=> 'cdd',
1520 message
=> "Soon done" );
1522 end modelfit_post_fork_analyze
1524 # }}} modelfit_post_fork_analyze
1526 # {{{ modelfit_results
1528 start modelfit_results
1530 my @orig_models = @
{$self -> {'models'}};
1531 my @orig_raw_results = ();
1532 foreach my $orig_model ( @orig_models ) {
1533 my $orig_output = $orig_model -> outputs
-> [0];
1534 push( @orig_raw_results, $orig_output -> $accessor );
1536 # my @models = @{$self -> {'prepared_models'}};
1537 my @outputs = @
{$self -> {'results'}};
1539 my @raw_results = ();
1541 foreach my $mod ( @outputs ) {
1543 foreach my $output ( @
{$mod -> {'subset_outputs'}} ) {
1544 push( @raw_inner, $output -> $accessor );
1546 push( @raw_results, \
@raw_inner );
1548 if ( $format eq 'relative' or $format eq 'relative_percent' ) {
1550 for ( my $i = 0; $i <= $#orig_raw_results; $i++ ) {
1551 print "Model\t$i\n";
1552 my @rel_subset = ();
1553 for ( my $i2 = 0; $i2 < scalar @
{$raw_results[$i]}; $i2++ ) {
1554 print "Subset Model\t$i2\n";
1556 for ( my $j = 0; $j < scalar @
{$orig_raw_results[$i]}; $j++ ) {
1557 print "Problem\t$j\n";
1558 if( ref( $orig_raw_results[$i][$j] ) eq 'ARRAY' ) {
1559 my @rel_subprob = ();
1560 for ( my $k = 0; $k < scalar @
{$orig_raw_results[$i][$j]}; $k++ ) {
1561 print "Subprob\t$k\n";
1562 if( ref( $orig_raw_results[$i][$j][$k] ) eq 'ARRAY' ) {
1563 my @rel_instance = ();
1564 for ( my $l = 0; $l < scalar @
{$orig_raw_results[$i][$j][$k]}; $l++ ) {
1565 print "Instance\t$l\n";
1566 my $orig = $orig_raw_results[$i][$j][$k][$l];
1567 my $res = $raw_results[$i][$i2][$j][$k][$l];
1568 if( defined $orig and ! $orig == 0 ) {
1569 print "ORIGINAL $orig\n";
1570 print "SUBSET $res\n";
1571 print "RELATIVE ",$res/$orig,"\n";
1572 if ( $format eq 'relative_percent' ) {
1573 push( @rel_instance, ($res/$orig-1)*100 );
1575 push( @rel_instance, $res/$orig );
1578 push( @rel_instance, 'NA' );
1580 push( @rel_subprob,\
@rel_instance );
1582 } elsif( ref( $orig_raw_results[$i][$j][$k] ) eq 'SCALAR' ) {
1583 print "One instance per problem\n";
1584 my $orig = $orig_raw_results[$i][$j][$k];
1585 my $res = $raw_results[$i][$i2][$j][$k];
1586 if( defined $orig and ! $orig == 0 ) {
1587 print "ORIGINAL $orig\n";
1588 print "SUBSET $res\n";
1589 print "RELATIVE ",$res/$orig,"\n";
1590 if ( $format eq 'relative_percent' ) {
1591 push( @rel_subprob, ($res/$orig-1)*100 );
1593 push( @rel_subprob, $res/$orig );
1596 push( @rel_subprob, 'NA' );
1599 print "WARNING: tool::cdd -> modelfit_results: neither\n\t".
1600 "array or scalar reference found at layer 4 in result data\n\t".
1601 "structure (found ",ref( $orig_raw_results[$i][$j][$k] ),")\n";
1604 push( @rel_prob, \
@rel_subprob );
1605 } elsif( ref( $orig_raw_results[$i][$j] ) eq 'SCALAR' ) {
1606 print "One instance per problem\n";
1607 my $orig = $orig_raw_results[$i][$j];
1608 my $res = $raw_results[$i][$i2][$j];
1609 if( defined $orig and ! $orig == 0 ) {
1610 print "ORIGINAL $orig\n";
1611 print "SUBSET $res\n";
1612 print "RELATIVE ",$res/$orig,"\n";
1613 if ( $format eq 'relative_percent' ) {
1614 push( @rel_prob, ($res/$orig-1)*100 );
1616 push( @rel_prob, $res/$orig );
1619 push( @rel_prob, 'NA' );
1622 print "WARNING: tool::cdd -> modelfit_results: neither\n\t".
1623 "array or scalar reference found at layer 3 in result data\n\t".
1624 "structure (found ",ref( $orig_raw_results[$i][$j] ),")\n";
1627 push( @rel_subset, \
@rel_prob );
1629 push( @results, \
@rel_subset );
1632 @results = @raw_results;
1635 end modelfit_results
1637 # }}} modelfit_results
1639 # {{{ relative_estimates
1641 start relative_estimates
1643 my $accessor = $parameter.'s';
1644 my @params = $self -> $accessor;
1646 # print "Parameter: $parameter\n";
1647 # sub process_inner_results {
1648 # my $res_ref = shift;
1651 # foreach my $res ( @{$res_ref} ) {
1652 # if ( ref ( $res ) eq 'ARRAY' ) {
1653 # process_inner_results( $res, $pad );
1655 # print "RELEST $pad\t$res\n";
1659 # process_inner_results( \@params, 0 );
1661 my @orig_params = $self -> $accessor( original_models
=> 1 );
1662 # [?][model][prob][subp][#]
1663 # print "ORIG TH1: ",$orig_params[0][0][0][0][0],"\n";
1664 for ( my $i = 0; $i < scalar @params; $i++ ) {
1667 for ( my $j = 0; $j < scalar @
{$params[$i]}; $j++ ) {
1668 # Loop over data sets
1670 for ( my $k = 1; $k < scalar @
{$params[$i]->[$j]}; $k++ ) {
1671 # Loop over problems (sort of, at least)
1673 for ( my $l = 0; $l < scalar @
{$params[$i]->[$j]->[$k]}; $l++ ) {
1674 # Loop over sub problems (sort of, at least)
1676 for ( my $m = 0; $m < scalar @
{$params[$i]->[$j]->[$k]->[$l]}; $m++ ) {
1677 # Loop over the params
1679 for ( my $n = 0; $n < scalar @
{$params[$i][$j][$k][$l][$m]}; $n++ ) {
1680 my $orig = $orig_params[$i][$j][$l][$m][$n];
1681 # my $orig = $params[$i][$j][0][$l][$m][$n];
1682 my $prep = $params[$i][$j][$k][$l][$m][$n];
1684 if ( $percentage ) {
1685 push( @par, ($prep/$orig*100)-100 );
1687 push( @par, $prep/$orig );
1690 push( @par, $PsN::out_miss_data
);
1693 push( @sub, \
@par );
1695 push( @prob, \
@sub );
1697 push( @prep, \
@prob );
1699 push( @mod, \
@prep );
1701 push( @relative_estimates, \
@mod );
1704 end relative_estimates
1706 # }}} relative_estimates
1708 # {{{ relative_confidence_limits
1710 start relative_confidence_limits
1712 my @params = @
{$self -> confidence_limits
( class => 'tool::llp',
1713 parameter
=> $parameter )};
1714 for ( my $i = 0; $i < scalar @params; $i++ ) {
1717 for ( my $j = 1; $j < scalar @
{$params[$i]}; $j++ ) {
1718 # Loop over data sets
1720 my @nums = sort {$a <=> $b} keys %{$params[$i][$j]};
1721 foreach my $num ( @nums ) {
1723 for ( my $n = 0; $n < scalar @
{$params[$i][$j]->{$num}}; $n++ ) {
1725 for ( my $o = 0; $o < scalar @
{$params[$i][$j]->{$num}->[$n]}; $o++ ) {
1726 # OBS: the [0] in the $j position points at the first element i.e
1727 # the results of the tool run on the original model
1728 my $orig = $params[$i][0]->{$num}->[$n][$o];
1729 my $prep = $params[$i][$j]->{$num}->[$n][$o];
1730 print "ORIG: $orig, PREP: $prep\n";
1732 if ( $percentage ) {
1733 push( @side_lim, ($prep/$orig*100)-100 );
1735 push( @side_lim, $prep/$orig );
1738 push( @side_lim, $PsN::out_miss_data
);
1741 push( @prob_lim, \
@side_lim );
1743 $num_lim{$num} = \
@prob_lim;
1745 push( @mod, \
%num_lim );
1747 push( @relative_limits, \
@mod );
1750 end relative_confidence_limits
1752 # }}} relative_confidence_limits
1754 # {{{ llp_print_results
1756 start llp_print_results
1758 # NOTE! Only valid for models with one problem and one sub problem!
1760 my %relative_values;
1761 $relative_values{'theta_cis'} = $self ->
1762 relative_confidence_limits
( parameter
=> 'theta',
1764 $relative_values{'omega_cis'} = $self ->
1765 relative_confidence_limits
( parameter
=> 'omega',
1767 $relative_values{'sigma_cis'} = $self ->
1768 relative_confidence_limits
( parameter
=> 'sigma',
1770 $relative_values{'thetas'} = $self ->
1771 relative_estimates
( parameter
=> 'theta',
1773 $relative_values{'omegas'} = $self ->
1774 relative_estimates
( parameter
=> 'omega',
1776 $relative_values{'sigmas'} = $self ->
1777 relative_estimates
( parameter
=> 'sigma',
1779 $relative_values{'sethetas'} = $self ->
1780 relative_estimates
( parameter
=> 'setheta',
1782 $relative_values{'seomegas'} = $self ->
1783 relative_estimates
( parameter
=> 'seomega',
1785 $relative_values{'sesigmas'} = $self ->
1786 relative_estimates
( parameter
=> 'sesigma',
1790 $prep_values{'theta_cis'} = $self -> confidence_limits
( class => 'tool::llp',
1791 parameter
=> 'theta' );;
1792 $prep_values{'omega_cis'} = $self -> confidence_limits
( class => 'tool::llp',
1793 parameter
=> 'omega' );;
1794 $prep_values{'sigma_cis'} = $self -> confidence_limits
( class => 'tool::llp',
1795 parameter
=> 'sigma' );;
1796 $prep_values{'thetas'} = $self -> thetas
;
1797 $prep_values{'omegas'} = $self -> omegas
;
1798 $prep_values{'sigmas'} = $self -> sigmas
;
1799 $prep_values{'sethetas'} = $self -> sethetas
;
1800 $prep_values{'seomegas'} = $self -> seomegas
;
1801 $prep_values{'sesigmas'} = $self -> sesigmas
;
1805 open( RES
, ">".$self -> {'results_file'} );
1806 print RES
"Case-Deletion Diagnostic with Log-Likelihood Profiling\n";
1808 for ( my $i = 0; $i < scalar @
{$relative_values{'theta_cis'}}; $i++ ) {
1809 print RES
"MODEL:;",$i+1,"\n";
1810 foreach my $param ( 'theta_cis', 'omega_cis', 'sigma_cis' ) {
1811 print RES
"\n",uc($param),":\n";
1812 # Loop over data sets
1814 my @nums = sort {$a <=> $b} keys %{$relative_values{$param}[$i][0]};
1816 foreach my $num ( @nums ) {
1817 printf RES
"$num;;;;";
1820 foreach my $num ( @nums ) {
1821 for ( my $o = 0; $o < scalar @
{$relative_values{$param}[$i][0]->{$num}[0]}; $o++ ) {
1822 my $side = $o == 0 ?
'lower' : 'upper';
1823 printf RES
";$side;rel diff (%)";
1828 foreach my $num ( @nums ) {
1829 for ( my $o = 0; $o < scalar @
{$relative_values{$param}[$i][0]->{$num}[0]}; $o++ ) {
1830 printf RES
";%7.5f",$prep_values{$param}[$i][0]->{$num}[0][$o];
1835 for ( my $j = 0; $j < scalar @
{$relative_values{$param}[$i]}; $j++ ) {
1836 printf RES
"%-7d",$j+1;
1837 my @nums = sort {$a <=> $b} keys %{$relative_values{$param}[$i][$j]};
1838 foreach my $num ( @nums ) {
1839 for ( my $n = 0; $n < scalar @
{$relative_values{$param}[$i][$j]->{$num}}; $n++ ) {
1840 for ( my $o = 0; $o < scalar @
{$relative_values{$param}[$i][$j]->{$num}[$n]}; $o++ ) {
1841 my $rel = $relative_values{$param}[$i][$j]->{$num}[$n][$o];
1842 my $prep = $prep_values{$param}[$i][$j+1]->{$num}[$n][$o];
1843 printf RES
";%7.5f",$prep;
1844 printf RES
";%3.0f",$rel;
1852 # Skipped id's, keys and values:
1856 # sub process_inner_results {
1857 # my $res_ref = shift;
1860 # foreach my $res ( @{$res_ref} ) {
1861 # if ( ref ( $res ) eq 'ARRAY' ) {
1862 # print "$pad ARRAY size ",scalar @{$res},"\n";
1863 # process_inner_results( $res, $pad );
1864 # } elsif ( ref ( $res ) eq 'HASH' ) {
1865 # print "$pad HASH keys ",keys %{$res},"\n";
1867 # print "$pad OTHER\n";
1871 # process_inner_results( $self -> {'results'}, 0 );
1874 foreach my $own ( @
{$self -> {'results'} -> {'own'}} ) {
1875 # print "REF1: ",ref($mod),"\n";
1876 # foreach my $prob ( @{$mod} ) {
1877 # print "REF2: ",ref($prob),"\n";
1878 # foreach my $subprob ( @{$prob} ) {
1879 # print "REF3: ",ref($subprob),"\n";
1880 # print "KEYS: ",keys %{$subprob},"\n";
1883 print RES
"MODEL $i\n";
1884 foreach my $param ( 'skipped_ids', 'skipped_keys', 'skipped_values' ) {
1885 print RES
uc($param),"\n";
1887 foreach my $prep ( @
{$own -> {$param}} ) {
1888 print RES
"Bin no;$j;";
1889 foreach my $val ( @
{$prep} ) {
1900 # for ( my $j = 0; $j < scalar @{$relative_values{'thetas_cis'}->[$i]}; $j++ ) {
1901 # print RES "MODEL:;",$j+1,"\n";
1902 # # Loop over problems (sort of, at least)
1903 # for ( my $l = 0; $l < scalar @{$relative_values{'thetas_cis'}->[$i]->[$j]->[0]}; $l++ ) {
1904 # # Loop over sub problems (sort of, at least)
1905 # for ( my $m = 0; $m < scalar @{$relative_values{'thetas_cis'}->[$i]->[$j]->[0]->[$l]}; $m++ ) {
1906 # # foreach my $param ( 'thetas', 'omegas', 'sigmas',
1907 # # 'sethetas', 'seomegas', 'sesigmas' ) {
1908 # foreach my $param ( 'theta_cis' ) {
1909 # print RES uc($param),":\n\n";
1910 # # Here one could add printing of parameter names, i.e. 'CL V...' or 'TH1 TH2...'
1911 # # Loop over data sets
1912 # for ( my $k = 0; $k < scalar @{$relative_values{$param}->[$i]->[$j]}; $k++ ) {
1913 # printf RES "%-7d",$k+1;
1914 # for ( my $n = 0; $n < scalar @{$relative_values{$param}[$i][$j][$k][$l][$m]}; $n++ ) {
1915 # for ( my $o = 0; $o < scalar @{$relative_values{$param}[$i][$j][$k][$l][$m][$n]}; $o++ ) {
1916 # my $rel = $relative_values{$param}->[$i][$j][$k][$l][$m][$n];
1917 # my $prep = $prep_values{$param}->[$j][$k][$l][$m][$n];
1918 # printf RES ";%7.5f",$prep;
1919 # printf RES ";%3.0f",$rel;
1935 end llp_print_results
1937 # }}} llp_print_results
1939 # {{{ general_print_results
1941 start general_print_results
1943 unless ( defined $self -> {'results'} ) {
1944 print "WARNING: cdd->general_print_results: no return values defined;\n"
1945 ."cannot print results\n";
1948 my %results = %{$self -> {'results'}};
1950 open( RES
, ">".$self -> {'results_file'} );
1951 print RES
"Case-Deletion Diagnostic\n";
1955 unless ( defined $results{'own'} ) {
1956 print "WARNING: cdd->general_print_results: no own return values defined;\n"
1957 ."cannot print results\n";
1962 my @own_results = @
{$results{'own'}};
1963 foreach my $result_unit ( @own_results ) {
1964 print RES
$result_unit -> {'name'},"\n";
1965 print RES
$result_unit -> {'comment'},"\n";
1966 my @values = defined $result_unit{'values'} ? @
{$result_unit{'values'}} : ();
1967 my @labels = defined $result_unit{'labels'} ? @
{$result_unit{'labels'}} : ();
1969 for ( my $i = 0; $i <= $#values; $i++ ) {
1971 for ( my $j = 0; $j <= $#values[$i]; $j++ ) {
1972 # Loop the sub problems
1973 for ( my $k = 0; $k <= $#values[$i][$j]; $k++ ) {
1974 # Loop the first result dimension
1975 for (my $l = 0; $l <= $#values[$i][$j][$k]; $l++ ) {
1976 # Loop the second result dimension
1977 for ( my $m = 0; $m <= $#values[$i][$j][$k][$l]; $m++ ) {
1978 # Loop the second result dimension
1979 for ( my $m = 0; $m <= $#values[$i][$j]$k][$l]; $m++ ) {
1980 foreach my $model_res ( @values ) {
1981 foreach my $prob_res ( @
{$model_unit} ) {
1982 foreach my $subprob_res ( @
{$prob_unit} ) {
1983 foreach my $subprob_res ( @
{$prob_unit} ) {
1987 end general_print_results
1989 # }}} general_print_results
1991 # {{{ modelfit_print_results
1993 start modelfit_print_results
1995 my @parameters = ( 'theta', 'omega', 'sigma',
1996 'setheta', 'seomega', 'sesigma' );
1997 my %relative_values;
2000 foreach my $parameter ( @parameters ) {
2001 my $accessor = $parameter.'s';
2002 $relative_values{$parameter} = $self ->
2003 relative_estimates
( parameter
=> $parameter,
2005 $prep_values{$parameter} = $self -> $accessor;
2006 $orig_values{$parameter} = $self -> $accessor( original_models
=> 1 );
2008 # sub process_results {
2009 # my $res_ref = shift;
2012 # foreach my $res ( @{$res_ref} ) {
2013 # if ( ref ( $res ) eq 'ARRAY' ) {
2014 # process_results( $res, $pad );
2016 # print "final $pad\t$res\n";
2020 # process_results( $relative_values{'thetas'}, 0 );
2024 print "Calling nthetas\n";
2025 $nparam{'thetas'} = $self -> nthetas
( original_models
=> 1 );
2026 print "Done that\n";
2027 open( RES
, ">".$self -> {'results_file'} );
2028 print RES
"Case-Deletion Diagnostic\n";
2029 # Date information to be added
2030 # print RES "Date:;;;;",$self -> {'date'},"\n";
2032 print RES
"Modelfiles:";
2033 foreach my $model ( @
{$self -> {'models'}} ) {
2034 print RES
";;;;",$model -> filename
,"\n";
2037 # Based on columns and number of datasets might better be shown if split by
2038 # model and problem:
2039 print RES
"Based on columns:";
2040 my $vars = $self -> {'case_columns'};
2041 if ( ref( $vars ) eq 'ARRAY' ) {
2042 foreach my $vars2 ( @
{$vars} ) {
2043 if ( ref( $vars2 ) eq 'ARRAY' ) {
2044 foreach my $vars3 ( @
{$vars2} ) {
2045 print RES
";;;;$vars3\n";
2048 print RES
";;;;$vars2\n";
2052 print RES
";;;;$vars\n";
2055 print RES
"Number of data sets:";
2056 my $bins = $self -> {'bins'};
2057 if ( ref( $bins ) eq 'ARRAY' ) {
2058 foreach my $bins2 ( @
{$bins} ) {
2059 if ( ref( $bins2 ) eq 'ARRAY' ) {
2060 foreach my $bins3 ( @
{$bins2} ) {
2061 print RES
";;;;$bins3\n";
2064 print RES
";;;;$bins2\n";
2068 print RES
";;;;$bins\n";
2071 print RES
"Selection:;;;;",$self-> {'selection_method'},"\n";
2072 if ( defined $self -> {'seed'} ) {
2073 print RES
"Seed number:;;;;",$self -> {'seed'},"\n";
2075 print RES
"No seed number specified\n";
2078 # TODO: $skip_keys etc from data->case_deletion must be transferred back to
2079 # the main process and appropriate attributes set.
2081 print RES
"\n\n\n\n";
2083 # process_results( $relative_values{'thetas'}->[0]->[0]->[0], 0 );
2085 for ( my $i = 0; $i < scalar @
{$relative_values{'theta'}}; $i++ ) {
2087 for ( my $j = 0; $j < scalar @
{$relative_values{'theta'}->[$i]}; $j++ ) {
2088 print RES
"MODEL:;",$j+1,"\n";
2089 # Loop over problems (sort of, at least)
2090 for ( my $l = 0; $l < scalar @
{$relative_values{'theta'}->[$i]->[$j]->[0]}; $l++ ) {
2091 # Loop over sub problems (sort of, at least)
2092 for ( my $m = 0; $m < scalar @
{$relative_values{'theta'}->[$i]->[$j]->[0]->[$l]}; $m++ ) {
2093 foreach my $param ( @parameters ) {
2094 print RES
uc($param),":\n\n";
2095 # Here one could add printing of parameter names, i.e. 'CL V...' or 'TH1 TH2...'
2096 # Loop over data sets
2098 for ( my $n = 1; $n <=scalar @
{$relative_values{$param}[$i][$j][0][$l][$m]}; $n++ ) {
2099 printf RES
"estimate;rel diff (%);";
2102 for ( my $n = 1; $n <= scalar @
{$relative_values{$param}[$i][$j][0][$l][$m]}; $n++ ) {
2107 for ( my $n = 0; $n < scalar @
{$relative_values{$param}[$i][$j][0][$l][$m]}; $n++ ) {
2108 printf RES
";%7.5f",$orig_values{$param}[$j][$l][$m][$n];
2112 for ( my $k = 0; $k < scalar @
{$relative_values{$param}->[$i]->[$j]}; $k++ ) {
2113 printf RES
"%-7d",$k+1;
2114 for ( my $n = 0; $n < scalar @
{$relative_values{$param}[$i][$j][$k][$l][$m]}; $n++ ) {
2115 my $rel = $relative_values{$param}->[$i][$j][$k][$l][$m][$n];
2116 my $prep = $prep_values{$param}->[$j][$k+1][$l][$m][$n];
2117 printf RES
";%7.5f",$prep;
2118 printf RES
";%3.0f",$rel;
2131 # sub process_inner_results {
2132 # my $res_ref = shift;
2135 # foreach my $res ( @{$res_ref} ) {
2136 # if ( ref ( $res ) eq 'ARRAY' ) {
2137 # print "$pad ARRAY size ",scalar @{$res},"\n";
2138 # process_inner_results( $res, $pad );
2139 # } elsif ( ref ( $res ) eq 'HASH' ) {
2140 # print "$pad HASH keys ",keys %{$res},"\n";
2142 # print "$pad OTHER\n";
2146 # process_inner_results( $self -> {'results'}, 0 );
2148 # Skipped id's, keys and values:
2151 foreach my $own ( @
{$self -> {'results'} -> {'own'}} ) {
2152 print RES
"MODEL $i\n";
2153 foreach my $param ( 'skipped_ids', 'skipped_keys', 'skipped_values' ) {
2154 print RES
uc($param),"\n";
2156 foreach my $prep ( @
{$own -> {$param}} ) {
2157 print RES
"Bin no;$j;";
2158 foreach my $val ( @
{$prep} ) {
2170 end modelfit_print_results
2172 # }}} modelfit_print_results
2174 # {{{ prepare_results
2176 start prepare_results
2178 if ( not defined $self -> {'raw_results'} ) {
2179 $self -> read_raw_results
();
2189 my ($outside_n_sd, $cook, $covrat );
2190 for( my $i = 0; $i < scalar @
{$self -> {'raw_results_header'} -> [0]} ; $i++) {
2191 if( $self -> {'raw_results_header'} -> [0][$i] eq 'outside.n.sd' ){
2194 if( $self -> {'raw_results_header'} -> [0][$i] eq 'cook.scores' ){
2197 if( $self -> {'raw_results_header'} -> [0][$i] eq 'cov.ratios' ){
2204 my $outcome = shift;
2206 my $l = (7 - length( $outcome ))/2;
2207 my $text = sprintf( "%-66s%2s%7s%-5s", $name, '[ ', $outcome. ' ' x
$l, ' ]' );
2208 print $text, "\n\n";
2209 print $file $text if defined $file;
2212 my ( @num, @cs, @cr ) ;
2213 for( my $model_i = 0; $model_i <= $#{$self -> {'raw_results'}}; $model_i++ ){
2214 for( my $prep_mod_i = 0; $prep_mod_i <= $#{$self -> {'raw_results'} -> [$model_i]}; $prep_mod_i++ ){
2215 my $test_val = $self -> {'raw_results'} -> [$model_i] -> [$prep_mod_i] -> [$outside_n_sd];
2216 if( defined($test_val) and $test_val == 1 ){
2217 push( @num, ($prep_mod_i) ); # prep_mod_i includes the original run as 0
2218 push( @cs, $self -> {'raw_results'} -> [$model_i] -> [$prep_mod_i] -> [$cook] );
2219 push( @cr, $self -> {'raw_results'} -> [$model_i] -> [$prep_mod_i] -> [$covrat] );
2225 acknowledge
( 'No outlying case-deleted data set was found', 'OK' );
2228 acknowledge
( (scalar @num).' case-deleted data sets were marked as outliers', 'WARNING' );
2229 printf( "\t%-20s%20s\t%20s\n", 'Data set', 'cook-score', 'covariance-ratio' );
2230 for( my $i = 0; $i <= $#num; $i++ ) {
2231 printf( "\t%-20s%14s%3.3f\t%14s%3.3f\n", $num[$i], ' ', $cs[$i], ' ', $cr[$i] );
2240 # {{{ update_raw_results
2241 start update_raw_results
2247 # foreach my $section( @{$self -> {'results'}[0] -> {'own'}} ){
2248 # if( $section -> {'name'} eq 'cook.scores' ){
2249 # $cook_scores = $section -> {'values'};
2251 # if( $section -> {'name'} eq 'cov.ratio' ){
2252 # $cov_ratios = $section -> {'values'};
2254 # if( $section -> {'name'} eq 'outside.n.sd' ){
2255 # $outside_n_sd = $section -> {'values'};
2260 OSspecific
::absolute_path
( $self -> {'directory'},
2261 $self -> {'raw_results_file'}[$model_number-1] );
2262 open( RRES
, $dir.$file );
2265 open( RRES
, '>',$dir.$file );
2268 print RRES
$rres[0] . ",cook.scores,cov.ratios,outside.n.sd\n";
2270 print RRES
$rres[1] . ",0,1,0\n";
2273 for( my $i = 2 ; $i <= $#rres; $i ++ ) {
2274 my $row_str = $rres[$i];
2276 $row_str .= sprintf( ",%.5f,%.5f,%1f\n" ,
2277 $self -> {'cook_scores'} -> [$i-2],
2278 $self -> {'covariance_ratios'} -> [$i-2],
2279 $self -> {'outside_n_sd'} -> [$i-2] );
2280 print RRES
$row_str;
2284 end update_raw_results
2286 # }}} update_raw_results
2288 # {{{ create_R_scripts
2289 start create_R_scripts
2291 unless( -e
$PsN::lib_dir
. '/R-scripts/cdd.R' ){
2292 'debug' -> die( message
=> 'CDD R-script are not installed, no matlab scripts will be generated.' );
2295 cp
( $PsN::lib_dir
. '/R-scripts/cdd.R', $self -> {'directory'} );
2297 end create_R_scripts