remove sourceforge download url
[PyX.git] / pyx / metapost / mp_path.py
blob03d5f74ee1a1cbbe17c235861e19d9e67a6e14c2
1 # -*- coding: ISO-8859-1 -*-
3 # Copyright (C) 2011 Michael Schindler <m-schindler@users.sourceforge.net>
5 # This file is part of PyX (http://pyx.sourceforge.net/).
7 # PyX is free software; you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation; either version 2 of the License, or
10 # (at your option) any later version.
12 # PyX is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with PyX; if not, write to the Free Software
19 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
21 from math import atan2, sin, cos, sqrt, pi
23 ################################################################################
24 # Internal functions of MetaPost
26 # This file re-implements some of the functionality of MetaPost
27 # (http://tug.org/metapost). MetaPost was developed by John D. Hobby and
28 # others. The code of Metapost is in the public domain, which we understand as
29 # an implicit permission to reuse the code here (see the comment at
30 # http://www.gnu.org/licenses/license-list.html)
32 # This file is based on the MetaPost version distributed by TeXLive:
33 # svn://tug.org/texlive/trunk/Build/source/texk/web2c/mplibdir revision 22737 #
34 # (2011-05-31)
35 ################################################################################
37 # from mplib.h:
38 mp_endpoint = 0
39 mp_explicit = 1
40 mp_given = 2
41 mp_curl = 3
42 mp_open = 4
43 mp_end_cycle = 5
45 # from mpmath.c:
46 unity = 1.0
47 two = 2.0
48 fraction_half = 0.5
49 fraction_one = 1.0
50 fraction_three = 3.0
51 one_eighty_deg = pi
52 three_sixty_deg = 2*pi
54 def mp_make_choices(knots, epsilon): # <<<
55 """Implements mp_make_choices from metapost (mp.c)"""
56 # 334: If consecutive knots are equal, join them explicitly
57 p = knots
58 while True:
59 q = p.next
60 if p.rtype > mp_explicit and (p.x_pt-q.x_pt)**2 + (p.y_pt-q.y_pt)**2 < epsilon**2:
61 p.rtype = mp_explicit
62 if p.ltype == mp_open:
63 p.ltype = mp_curl
64 p.set_left_curl(unity)
65 q.ltype = mp_explicit
66 if q.rtype == mp_open:
67 q.rtype = mp_curl
68 q.set_right_curl(unity)
69 p.rx_pt = p.x_pt
70 q.lx_pt = p.x_pt
71 p.ry_pt = p.y_pt
72 q.ly_pt = p.y_pt
73 p = q
74 if p is knots:
75 break
77 # 335:
78 # If there are no breakpoints, it is necessary to compute the direction angles around an entire cycle.
79 # In this case the mp left type of the first node is temporarily changed to end cycle.
80 # Find the first breakpoint, h, on the path
81 # insert an artificial breakpoint if the path is an unbroken cycle
82 h = knots
83 while True:
84 if h.ltype != mp_open or h.rtype != mp_open:
85 break
86 h = h.next
87 if h is knots:
88 h.ltype = mp_end_cycle
89 break
91 p = h
92 while True:
93 # 336:
94 # Fill in the control points between p and the next breakpoint, then advance p to that breakpoint
95 q = p.next
96 if p.rtype >= mp_given:
97 while q.ltype == mp_open and q.rtype == mp_open:
98 q = q.next
99 # the breakpoints are now p and q
101 # 346:
102 # Calculate the turning angles psi_k and the distances d(k, k+1)
103 # set n to the length of the path
104 k = 0
105 s = p
106 n = knots.linked_len()
107 delta_x, delta_y, delta, psi = [], [], [], [None]
108 while True:
109 t = s.next
110 assert len(delta_x) == k
111 delta_x.append(t.x_pt - s.x_pt)
112 delta_y.append(t.y_pt - s.y_pt)
113 delta.append(mp_pyth_add(delta_x[k], delta_y[k]))
114 if k > 0:
115 sine = mp_make_fraction(delta_y[k-1], delta[k-1])
116 cosine = mp_make_fraction(delta_x[k-1], delta[k-1])
117 psi.append(mp_n_arg(
118 mp_take_fraction(delta_x[k], cosine) + mp_take_fraction(delta_y[k], sine),
119 mp_take_fraction(delta_y[k], cosine) - mp_take_fraction(delta_x[k], sine)))
120 k += 1
121 s = t
122 if s == q:
123 n = k
124 if k >= n and s.ltype != mp_end_cycle:
125 break
126 if k == n:
127 psi.append(0)
128 else:
129 # for closed paths:
130 psi.append(psi[1])
132 # 347: Remove open types at the breakpoints
133 if q.ltype == mp_open:
134 delx_pt = q.rx_pt - q.x_pt
135 dely_pt = q.ry_pt - q.y_pt
136 if delx_pt**2 + dely_pt**2 < epsilon**2:
137 # use curl if the controls are not usable for giving an angle
138 q.ltype = mp_curl
139 q.set_left_curl(unity)
140 else:
141 q.ltype = mp_given
142 q.set_left_given(mp_n_arg(delx_pt, dely_pt))
144 if p.rtype == mp_open and p.ltype == mp_explicit:
145 delx_pt = p.x_pt - p.lx_pt
146 dely_pt = p.y_pt - p.ly_pt
147 if delx_pt**2 + dely_pt**2 < epsilon**2:
148 p.rtype = mp_curl
149 p.set_right_curl(unity)
150 else:
151 p.rtype = mp_given
152 p.set_right_given(mp_n_arg(delx_pt, dely_pt))
154 # call the internal solving routine
155 mp_solve_choices(p, q, n, delta_x, delta_y, delta, psi)
157 elif p.rtype == mp_endpoint:
158 # 337: Give reasonable values for the unused control points between p and q
159 p.rx_pt = p.x_pt
160 p.ry_pt = p.y_pt
161 q.lx_pt = q.x_pt
162 q.ly_pt = q.y_pt
164 p = q
165 if p is h:
166 break
167 # >>>
168 def mp_solve_choices(p, q, n, delta_x, delta_y, delta, psi): # <<<
169 """Implements mp_solve_choices form metapost (mp.c)"""
170 uu = [None]*(len(delta)+1) # relations between adjacent angles ("matrix" entries)
171 ww = [None]*len(uu) # additional matrix entries for the cyclic case
172 vv = [None]*len(uu) # angles ("rhs" entries)
173 theta = [None]*len(uu) # solution of the linear system of equations
174 # 348:
175 # the "matrix" is in tridiagonal form, the solution is obtained by Gaussian elimination.
176 # uu and ww are of type "fraction", vv and theta are of type "angle"
177 # k is the current knot number
178 # r, s, t registers for list traversal
179 k = 0
180 s = p
181 r = 0
182 while True:
183 t = s.next
184 if k == 0: # <<<
185 # 354:
186 # Get the linear equations started
187 # or return with the control points in place, if linear equations needn't be solved
189 if s.rtype == mp_given: # <<<
190 if t.ltype == mp_given:
191 # 372: Reduce to simple case of two givens and return
192 aa = mp_n_arg(delta_x[0], delta_y[0])
193 ct, st = mp_n_sin_cos(p.right_given() - aa)
194 cf, sf = mp_n_sin_cos(q.left_given() - aa)
195 mp_set_controls(p, q, delta_x[0], delta_y[0], st, ct, -sf, cf)
196 return
197 else:
198 # 362:
199 vv[0] = s.right_given() - mp_n_arg(delta_x[0], delta_y[0])
200 vv[0] = reduce_angle(vv[0])
201 uu[0] = 0
202 ww[0] = 0
203 # >>>
204 elif s.rtype == mp_curl: # <<<
205 if t.ltype == mp_curl:
206 # 373: (mp.pdf) Reduce to simple case of straight line and return
207 p.rtype = mp_explicit
208 q.ltype = mp_explicit
209 lt = abs(q.left_tension())
210 rt = abs(p.right_tension())
212 ff = mp_make_fraction(unity, 3.0*rt)
213 p.rx_pt = p.x_pt + mp_take_fraction(delta_x[0], ff)
214 p.ry_pt = p.y_pt + mp_take_fraction(delta_y[0], ff)
216 ff = mp_make_fraction(unity, 3.0*lt)
217 q.lx_pt = q.x_pt - mp_take_fraction(delta_x[0], ff)
218 q.ly_pt = q.y_pt - mp_take_fraction(delta_y[0], ff)
219 return
221 else: # t.ltype != mp_curl
222 # 363:
223 cc = s.right_curl()
224 lt = abs(t.left_tension())
225 rt = abs(s.right_tension())
226 uu[0] = mp_curl_ratio(cc, rt, lt)
227 vv[0] = -mp_take_fraction(psi[1], uu[0])
228 ww[0] = 0
229 # >>>
230 elif s.rtype == mp_open: # <<<
231 uu[0] = 0
232 vv[0] = 0
233 ww[0] = fraction_one
234 # >>>
235 # end of 354 >>>
236 else: # k > 0 <<<
238 if s.ltype == mp_end_cycle or s.ltype == mp_open: # <<<
239 # 356: Set up equation to match mock curvatures at z_k;
240 # then finish loop with theta_n adjusted to equal theta_0, if a
241 # cycle has ended
243 # 357: Calculate the values
244 # aa = Ak/Bk, bb = Dk/Ck, dd = (3-alpha_{k-1})d(k,k+1),
245 # ee = (3-beta_{k+1})d(k-1,k), cc=(Bk-uk-Ak)/Bk
246 aa = mp_make_fraction(unity, 3.0*abs(r.right_tension()) - unity)
247 dd = mp_take_fraction(delta[k],
248 fraction_three - mp_make_fraction(unity, abs(r.right_tension())))
249 bb = mp_make_fraction(unity, 3*abs(t.left_tension()) - unity)
250 ee = mp_take_fraction(delta[k-1],
251 fraction_three - mp_make_fraction(unity, abs(t.left_tension())))
252 cc = fraction_one - mp_take_fraction(uu[k-1], aa)
254 # 358: Calculate the ratio ff = Ck/(Ck + Bk - uk-1Ak)
255 dd = mp_take_fraction(dd, cc)
256 lt = abs(s.left_tension())
257 rt = abs(s.right_tension())
258 if lt < rt:
259 dd *= (lt/rt)**2
260 elif lt > rt:
261 ee *= (rt/lt)**2
262 ff = mp_make_fraction(ee, ee + dd)
264 uu[k] = mp_take_fraction(ff, bb)
266 # 359: Calculate the values of vk and wk
267 acc = -mp_take_fraction(psi[k+1], uu[k])
268 if r.rtype == mp_curl:
269 ww[k] = 0
270 vv[k] = acc - mp_take_fraction(psi[1], fraction_one - ff)
271 else:
272 ff = mp_make_fraction(fraction_one - ff, cc)
273 acc = acc - mp_take_fraction(psi[k], ff)
274 ff = mp_take_fraction(ff, aa)
275 vv[k] = acc - mp_take_fraction(vv[k-1], ff)
276 ww[k] = -mp_take_fraction(ww[k-1], ff)
278 if s.ltype == mp_end_cycle:
279 # 360: Adjust theta_n to equal theta_0 and finish loop
281 aa = 0
282 bb = fraction_one
283 while True:
284 k -= 1
285 if k == 0:
286 k = n
287 aa = vv[k] - mp_take_fraction(aa, uu[k])
288 bb = ww[k] - mp_take_fraction(bb, uu[k])
289 if k == n:
290 break
291 aa = mp_make_fraction(aa, fraction_one - bb)
292 theta[n] = aa
293 vv[0] = aa
294 for k in range(1, n):
295 vv[k] = vv[k] + mp_take_fraction(aa, ww[k])
296 break
297 # >>>
298 elif s.ltype == mp_curl: # <<<
299 # 364:
300 cc = s.left_curl()
301 lt = abs(s.left_tension())
302 rt = abs(r.right_tension())
303 ff = mp_curl_ratio(cc, lt, rt)
304 theta[n] = -mp_make_fraction(mp_take_fraction(vv[n-1], ff),
305 fraction_one - mp_take_fraction(ff, uu[n-1]))
306 break
307 # >>>
308 elif s.ltype == mp_given: # <<<
309 # 361:
310 theta[n] = s.left_given() - mp_n_arg(delta_x[n-1], delta_y[n-1])
311 theta[n] = reduce_angle(theta[n])
312 break
313 # >>>
315 # end of k == 0, k != 0 >>>
317 r = s
318 s = t
319 k += 1
321 # 367:
322 # Finish choosing angles and assigning control points
323 for k in range(n-1, -1, -1):
324 theta[k] = vv[k] - mp_take_fraction(theta[k+1], uu[k])
325 s = p
326 k = 0
327 while True:
328 t = s.next
329 ct, st = mp_n_sin_cos(theta[k])
330 cf, sf = mp_n_sin_cos(-psi[k+1]-theta[k+1])
331 mp_set_controls(s, t, delta_x[k], delta_y[k], st, ct, sf, cf)
332 k += 1
333 s = t
334 if k == n:
335 break
336 # >>>
337 def mp_n_arg(x, y): # <<<
338 return atan2(y, x)
339 # >>>
340 def mp_n_sin_cos(z): # <<<
341 """Given an integer z that is 2**20 times an angle theta in degrees, the
342 purpose of n sin cos(z) is to set x = r cos theta and y = r sin theta
343 (approximately), for some rather large number r. The maximum of x and y
344 will be between 2**28 and 2**30, so that there will be hardly any loss of
345 accuracy. Then x and y are divided by r."""
346 # 67: mpmath.pdf
347 return cos(z), sin(z)
348 # >>>
349 def mp_set_controls(p, q, delta_x, delta_y, st, ct, sf, cf): # <<<
350 """The set controls routine actually puts the control points into a pair of
351 consecutive nodes p and q. Global variables are used to record the values
352 of sin(theta), cos(theta), sin(phi), and cos(phi) needed in this
353 calculation.
355 See mp.pdf, item 370"""
356 lt = abs(q.left_tension())
357 rt = abs(p.right_tension())
358 rr = mp_velocity(st, ct, sf, cf, rt)
359 ss = mp_velocity(sf, cf, st, ct, lt)
360 if p.right_tension() < 0 or q.left_tension() < 0:
361 # 371: Decrease the velocities, if necessary, to stay inside the bounding triangle
362 # this is the only place where the sign of the tension counts
363 if (st >= 0 and sf >= 0) or (st <= 0 and sf <= 0):
364 sine = mp_take_fraction(abs(st), cf) + mp_take_fraction(abs(sf), ct) # sin(theta+phi)
365 if sine > 0:
366 #sine = mp_take_fraction(sine, fraction_one + unity) # safety factor
367 sine *= 1.00024414062 # safety factor
368 if p.right_tension() < 0:
369 if mp_ab_vs_cd(abs(sf), fraction_one, rr, sine) < 0:
370 rr = mp_make_fraction(abs(sf), sine)
371 if q.left_tension() < 0:
372 if mp_ab_vs_cd(abs(st), fraction_one, ss, sine) < 0:
373 ss = mp_make_fraction(abs(st), sine)
375 p.rx_pt = p.x_pt + mp_take_fraction(mp_take_fraction(delta_x, ct) - mp_take_fraction(delta_y, st), rr)
376 p.ry_pt = p.y_pt + mp_take_fraction(mp_take_fraction(delta_y, ct) + mp_take_fraction(delta_x, st), rr)
377 q.lx_pt = q.x_pt - mp_take_fraction(mp_take_fraction(delta_x, cf) + mp_take_fraction(delta_y, sf), ss)
378 q.ly_pt = q.y_pt - mp_take_fraction(mp_take_fraction(delta_y, cf) - mp_take_fraction(delta_x, sf), ss)
379 p.rtype = mp_explicit
380 q.ltype = mp_explicit
381 # >>>
382 def mp_make_fraction(p, q): # <<<
383 # 17: mpmath.pdf
384 """The make fraction routine produces the fraction equivalent of p/q, given
385 integers p and q; it computes the integer f = floor(2**28 p/q + 1/2), when
386 p and q are positive.
388 In machine language this would simply be (2**28*p)div q"""
389 return p/q
390 # >>>
391 def mp_take_fraction(q, f): # <<<
392 # 20: mpmath.pdf
393 """The dual of make fraction is take fraction, which multiplies a given
394 integer q by a fraction f. When the operands are positive, it computes
395 p = floor(q*f/2**28 + 1/2), a symmetric function of q and f."""
396 return q*f
397 # >>>
398 def mp_pyth_add(a, b): # <<<
399 # 44: mpmath.pdf
400 """Pythagorean addition sqrt(a**2 + b**2) is implemented by an elegant
401 iterative scheme due to Cleve Moler and Donald Morrison [IBM Journal of
402 Research and Development 27 (1983), 577-581]. It modifies a and b in such a
403 way that their Pythagorean sum remains invariant, while the smaller
404 argument decreases."""
405 return sqrt(a*a + b*b)
406 # >>>
407 def mp_curl_ratio(gamma, a_tension, b_tension): # <<<
408 """The curl ratio subroutine has three arguments, which our previous
409 notation encourages us to call gamma, 1/alpha, and 1/beta. It is a somewhat
410 tedious program to calculate
411 [(3-alpha)alpha^2 gamma + beta^3] / [alpha^3 gamma + (3-beta)beta^2],
412 with the result reduced to 4 if it exceeds 4. (This reduction of curl is
413 necessary only if the curl and tension are both large.) The values of alpha
414 and beta will be at most 4/3.
416 See mp.pdf (items 365, 366)."""
417 alpha = 1.0/a_tension
418 beta = 1.0/b_tension
419 return min(4.0, ((3.0-alpha)*alpha**2*gamma + beta**3) /
420 (alpha**3*gamma + (3.0-beta)*beta**2))
421 # >>>
422 def mp_ab_vs_cd(a, b, c, d): # <<<
423 """Tests rigorously if ab is greater than, equal to, or less than cd, given
424 integers (a, b, c, d). In most cases a quick decision is reached. The
425 result is +1, 0, or -1 in the three respective cases.
426 See mpmath.pdf (item 33)."""
427 if a*b == c*d:
428 return 0
429 if a*b > c*d:
430 return 1
431 return -1
432 # >>>
433 def mp_velocity(st, ct, sf, cf, t): # <<<
434 """Metapost's standard velocity subroutine for cubic Bezier curves.
435 See mpmath.pdf (item 30) and mp.pdf (item 339)."""
436 return min(4.0, (2.0 + sqrt(2)*(st-sf/16.0)*(sf-st/16.0)*(ct-cf)) /
437 (1.5*t*(2+(sqrt(5)-1)*ct + (3-sqrt(5))*cf)))
438 # >>>
439 def reduce_angle(A): # <<<
440 """A macro in mp.c"""
441 if abs(A) > one_eighty_deg:
442 if A > 0:
443 A -= three_sixty_deg
444 else:
445 A += three_sixty_deg
446 return A
447 # >>>
449 # vim:foldmethod=marker:foldmarker=<<<,>>>