prevent double call of _cleanup, which harms usefiles (and is a bad idea in general)
[PyX.git] / manual / trafo.rst
blob8e60fb5e55c6502ef3b73d9a02d9518820ec45df
2 .. module:: trafo
4 *******************************************
5 Module :mod:`trafo`: Linear transformations
6 *******************************************
9 With the  ``trafo`` module PyX supports linear transformations, which can  then
10 be applied to canvases,  Bézier paths and other objects. It consists of the main
11 class ``trafo`` representing a general linear transformation and subclasses
12 thereof, which provide special operations like translation, rotation, scaling,
13 and mirroring.
16 Class :class:`trafo`
17 ====================
19 The ``trafo`` class represents a general linear transformation, which is defined
20 for a vector :math:`\vec{x}` as
22 .. math::
24    \vec{x}' = \mathsf{A}\, \vec{x} + \vec{b}\ ,
26 where :math:`\mathsf{A}` is the transformation matrix and :math:`\vec{b}` the
27 translation vector. The transformation matrix must not be singular, *i.e.* we
28 require :math:`\det \mathsf{A} \ne 0`.
30 Multiple ``trafo`` instances can be multiplied, corresponding to a consecutive
31 application of the respective transformation. Note that ``trafo1*trafo2`` means
32 that ``trafo1`` is applied after ``trafo2``, *i.e.* the new transformation is
33 given  by :math:`\mathsf{A} = \mathsf{A}_1 \mathsf{A}_2` and :math:`\vec{b} =
34 \mathsf{A}_1 \vec{b}_2 + \vec{b}_1`.  Use the ``trafo`` methods described below,
35 if you prefer thinking the other way round. The inverse of a transformation can
36 be obtained via the ``trafo`` method ``inverse()``, defined by the inverse
37 :math:`\mathsf{A}^{-1}` of the transformation matrix and the translation vector
38 :math:`-\mathsf{A}^{-1}\vec{b}`.
40 .. class:: trafo(matrix=((1,0),(0,1)), vector=(0,0))
42    create new ``trafo`` instance with transformation ``matrix`` and ``vector``
44 .. method:: apply(x, y)
46    apply ``trafo`` to point vector :math:`(\mathtt{x}, \mathtt{y})`.
48 .. method:: inverse()
50    returns inverse transformation of ``trafo``.
52 .. method:: mirrored(angle)
54    returns ``trafo`` followed by mirroring at line through :math:`(0,0)` with
55    direction ``angle`` in degrees.
57 .. method:: rotated(angle, x=None, y=None)
59    returns ``trafo`` followed by rotation by ``angle`` degrees around point
60    :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not given.
62 .. method:: scaled(sx, sy=None, x=None, y=None)
64    returns ``trafo`` followed by scaling with scaling factor ``sx`` in
65    :math:`x`\ -direction, ``sy`` in :math:`y`\ -direction
66    (:math:`\mathtt{sy}=\mathtt{sx}`, if not given) with scaling center
67    :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not given.
69 .. method:: slanted(a, angle=0, x=None, y=None)
71    returns ``trafo`` followed by slant by ``angle`` around point
72    :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not given.
74 .. method:: translated(x, y)
76    returns ``trafo`` followed by translation by vector :math:`(\mathtt{x}, \mathtt{y})`.
79 Subclasses of :class:`trafo`
80 ============================
82 The ``trafo`` module provides a number of subclasses of the ``trafo`` class,
83 each of which corresponds to one ``trafo`` method.
85 .. class:: mirror(angle)
87    mirroring at line through :math:`(0,0)` with direction ``angle`` in degrees.
89 .. class:: rotate(angle, x=None, y=None)
91    rotation by ``angle`` degrees around point :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not given.
93 .. class:: scale(sx, sy=None, x=None, y=None)
95    scaling with scaling factor ``sx`` in :math:`x`\ -direction, ``sy`` in
96    :math:`y`\ -direction (:math:`\mathtt{sy}=\mathtt{sx}`, if not given) with
97    scaling center :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not
98    given.
100 .. class:: slant(a, angle=0, x=None, y=None)
102    slant by ``angle`` around point :math:`(\mathtt{x}, \mathtt{y})`, or :math:`(0,0)`, if not given.
104 .. class:: translate(x, y)
106    translation by vector :math:`(\mathtt{x}, \mathtt{y})`.