add chroot config option needed to use a chrooted TeX installation
[PyX.git] / mathutils.py
blobdaaa3718d7f3ef73842a1eb3576f69e3c881ed53
1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2005-2006 Michael Schindler <m-schindler@users.sourceforge.net>
5 # Copyright (C) 2006 André Wobst <wobsta@users.sourceforge.net>
7 # This file is part of PyX (http://pyx.sourceforge.net/).
9 # PyX is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or
12 # (at your option) any later version.
14 # PyX is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with PyX; if not, write to the Free Software
21 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 import math, types
25 # try:
26 # import Numeric, LinearAlgebra
27 # _has_numeric = 1
28 # except:
29 # _has_numeric = 0
32 def sign(x):
33 """sign of x, i.e. +1 or -1; returns 1 for x == 0"""
34 if x >= 0:
35 return 1
36 return -1
39 def asinh(x):
40 """Return the arc hyperbolic sine of x."""
41 return math.log(x+math.sqrt(x*x+1))
44 def acosh(x):
45 """Return the arc hyperbolic cosine of x."""
46 return math.log(x+math.sqrt(x*x-1))
49 def _realroots_quadratic(a1, a0):
50 """gives the real roots of x**2 + a1 * x + a0 = 0"""
51 D = a1*a1 - 4*a0
52 if D < 0:
53 return []
54 SD = math.sqrt(D)
55 return [0.5 * (-a1 + SD), 0.5 * (-a1 - SD)]
58 def _realroots_cubic(a2, a1, a0):
59 """gives the real roots of x**3 + a2 * x**2 + a1 * x + a0 = 0"""
60 # see http://mathworld.wolfram.com/CubicFormula.html for details
62 Q = (3*a1 - a2*a2) / 9.0
63 R = (9*a2*a1 - 27*a0 - 2*a2*a2*a2) / 54.0
64 D = Q*Q*Q + R*R
66 if D > 0: # one real and two complex roots
67 SD = math.sqrt(D)
68 if R + SD >= 0:
69 S = (R + SD)**(1/3.0)
70 else:
71 S = -(-R - SD)**(1/3.0)
72 if R - SD >= 0:
73 T = (R - SD)**(1/3.0)
74 else:
75 T = -(SD - R)**(1/3.0)
76 return [S + T - a2/3.0]
77 elif D == 0:
78 if Q == 0: # one real root (R==0)
79 return [-a2/3.0]
80 else: # two real roots (R>0, Q<0)
81 S = -math.sqrt(-Q)
82 return [2*S - a2/3.0, -S - a2/3.0]
83 else: # three real roots (Q<0)
84 SQ = math.sqrt(-Q)
85 arg = R / (SQ**3)
86 if arg >= 1:
87 theta = 0
88 elif arg <= -1:
89 theta = math.pi
90 else:
91 theta = math.acos(R/(SQ**3))
92 return [2 * SQ * math.cos((theta + 2*2*i*math.pi)/3.0) - a2/3.0 for i in range(3)]
95 def _realroots_quartic(a3, a2, a1, a0):
96 """gives the real roots of x**4 + a3 * x**3 + a2 * x**2 + a1 * x + a0 = 0"""
97 # see http://mathworld.wolfram.com/QuarticEquation.html for details
98 ys = _realroots_cubic(-a2, a1*a3 - 4*a0, 4*a0*a2 - a1*a1 - a0*a3*a3)
99 ys = [y for y in ys if a3*a3-4*a2+4*y >= 0 and y*y-4*a0 >= 0]
100 if not ys:
101 return []
102 y1 = min(ys)
103 if a3*y1-2*a1 < 0:
104 return (_realroots_quadratic(0.5*(a3+math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1-math.sqrt(y1*y1-4*a0))) +
105 _realroots_quadratic(0.5*(a3-math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1+math.sqrt(y1*y1-4*a0))))
106 else:
107 return (_realroots_quadratic(0.5*(a3+math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1+math.sqrt(y1*y1-4*a0))) +
108 _realroots_quadratic(0.5*(a3-math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1-math.sqrt(y1*y1-4*a0))))
111 def realpolyroots(*cs):
112 """returns the roots of a polynom with given coefficients
114 polynomial with coefficients given in cs:
115 0 = \sum_i cs[i] * x^(len(cs)-i-1)
117 if not cs:
118 return [0]
119 try:
120 f = 1.0/cs[0]
121 cs = [f*c for c in cs[1:]]
122 except ArithmeticError:
123 return realpolyroots(*cs[1:])
124 else:
125 n = len(cs)
126 if n == 0:
127 return []
128 elif n == 1:
129 return [-cs[0]]
130 elif n == 2:
131 return _realroots_quadratic(*cs)
132 elif n == 3:
133 return _realroots_cubic(*cs)
134 elif n == 4:
135 return _realroots_quartic(*cs)
136 else:
137 raise RuntimeError("realpolyroots solver currently limited to polynoms up to the power of 4")
140 # def realpolyroots_eigenvalue(*cs):
141 # # as realpolyroots but using an equivalent eigenvalue problem
142 # # (this code is currently used for functional tests only)
143 # if not _has_numeric:
144 # raise RuntimeError("realpolyroots_eigenvalue depends on Numeric")
145 # if not cs:
146 # return [0]
147 # try:
148 # f = 1.0/cs[0]
149 # cs = [f*c for c in cs[1:]]
150 # except ArithmeticError:
151 # return realpolyroots_eigenvalue(*cs[1:])
152 # else:
153 # if not cs:
154 # return []
155 # n = len(cs)
156 # a = Numeric.zeros((n, n), Numeric.Float)
157 # for i in range(n-1):
158 # a[i+1][i] = 1
159 # for i in range(n):
160 # a[0][i] = -cs[i]
161 # rs = []
162 # for r in LinearAlgebra.eigenvalues(a):
163 # if type(r) == types.ComplexType:
164 # if not r.imag:
165 # rs.append(r.real)
166 # else:
167 # rs.append(r)
168 # return rs